
Proceedings of the Edinburgh Mathematical Society (2005) 48, 257–277 c©
DOI:10.1017/S0013091504000100 Printed in the United Kingdom

MULTIVARIATE SAMPLING THEOREMS ASSOCIATED WITH
MULTIPARAMETER DIFFERENTIAL OPERATORS

M. H. ANNABY

Department of Mathematics, Faculty of Science,
Cairo University, Giza, Egypt (mhannaby@yahoo.com)

(Received 17 February 2004)

Abstract We investigate the multivariate sampling theory associated with multiparameter eigenvalue
problems. A several-variable counterpart of the classical sampling theorem of Whittaker, Kotel’nikov
and Shannon is given. It arose when the multiparameter system has order one. Two-dimensional sam-
pling theorems associated with two-parameter systems of second-order differential operators will be
established. The sampling formulae are of multivariate non-uniform Lagrange interpolation type. Unlike
many of the known formulae, the interpolating functions are not necessarily products of single variable
functions.
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1. Introduction

In the following Z, R and C denote the sets of integers, real and complex numbers,
respectively. For a positive integer n, the sets Z

n, R
n and C

n denote the sets of all n

integer tuples, n real tuples and n complex tuples. Let E ⊂ R
2 be compact and symmetric

with respect to the origin. A function f ∈ L2(R2) is called band-limited to E if

f(x, y) =
1
2π

∫
E

f̂(u, v) exp(i(ux + vy)) d(u, v), (x, y) ∈ R
2, (1.1)

where f̂(u, v) is the Fourier transform

f̂(u, v) := lim
η→∞

1
2π

∫ η

−η

∫ η

−η

f(x, y) exp(−i(ux + vy)) dxdy, (1.2)

and the limit converges in the L2(R2)-norm, cf. [7, p. 54]. Before the end of this section
we will give a general definition of n-dimensional band-limited functions and state a
multivariate counterpart of the well-known Paley–Wiener theorem [27] established by
Plancherel and Pólya in [30]. A two-dimensional sampling theorem for functions band-
limited to E = [−π, π] × [−π, π] (see, for example, [23,28,29,31]) reads as follows.

257

https://doi.org/10.1017/S0013091504000100 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000100


258 M. H. Annaby

Theorem A. Let f(x, y) be band-limited to [−π, π] × [−π, π]. Then

f(x, y) =
∞∑

n,m=−∞
f(n, m)

sin π(x − n)
π(x − n)

sin π(y − m)
π(y − m)

, (x, y) ∈ R
2. (1.3)

The series (1.3) converges uniformly on compact subsets of R
2.

Theorem A is a two-dimensional version of the classical sampling theorem of Whit-
taker, Kotel’nikov and Shannon (see [34,38] and [10,11]). The theory of non-uniform
sampling of two-dimensional band-limited signals is established by Butzer and Hinsen
in [7,8] (see also [24]). According to the multivariate Paley–Wiener theorem, functions
band-limited to [−π, π]n, n ∈ Z

+ are entire functions of exponential type (see the defi-
nitions below). In [23] the convergence of the sampling representation of such functions
is shown to be absolute and uniform on compact subsets of C

2. In [32] under restrictive
conditions, multidimensional reconstruction formulae were given for multidimensional
signals (functions) which are not necessarily band-limited. The error in these formulae is
proportional to the energy carried in the tail of the function. In case of multidimensional
functions band-limited to [−π, π]n, n ∈ Z

+, the energy carried in the tail of the function
is zero. However, there are still restrictive conditions.

In view of the Kramer analytic theorem, derived by Everitt et al . [17,18], and its appli-
cations in differential equations, the classical sampling theorem of Whittaker, Kotel’nikov
and Shannon can be derived by using the first-order differential operator

−iy′(x) = λy(x), |x| � π, λ ∈ C, y(−π) = y(π)

(see, for example, [15]). Also, Kramer’s theorem is applied to higher-order eigenvalue
problems to derive sampling formulae (see, for example, [3–5,9,14,16]).

In the present article we discuss the possibility of deriving multidimensional sampling
representations for several-variable transforms arising from multiparameter systems of
differential equations. Multivariate sampling theorems appear when investigating the the-
ory associated with partial differential operators (see, for example, [2]). The separation
of variables of the partial differential equation split the problem into several Sturm–
Liouville problems, i.e. a multiparameter system where only one parameter appears in
every equation. This is why the kernels of the sampled integral transforms of [2] are prod-
ucts of functions of two variables, one real and one complex. Moreover, the interpolating
functions are products of single variable functions. In the following we study the situa-
tion when we have a system of multiparameter problems where all eigenvalue parameters
may appear in every differential equation. This will lead to sampling representations
of transforms whose kernels are products of functions of more than two variables and
the interpolating functions are more general than those of [2] or (1.3) above. We derive
two-dimensional sampling representations of two-dimensional integral transforms whose
kernels are solutions of two-parameter systems. The spectral analysis of these systems has
a long history and has been extensively studied (see, for example, [6,19–22,33,35,36]).
In § 3 we introduce these systems as well as the properties we need to derive the sampling
theorems. Section 4 is devoted to the derivation of the multivariate sampling theorems.
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We have four different results according to the distribution of the eigenvalues. Section 5
exhibits all the derived sampling representations with illustrative examples. All results in
this setting are two-dimensional Lagrange interpolation series. Moreover, the sampling
representations are in general non-uniform in the sense of [7, 8]. Section 2 contains a
first-order example that leads to a multivariate counterpart of the classical sampling
theorem of Whittaker, Kotel’nikov and Shannon. In this example, all necessary spectral
properties can be easily checked. We end this introduction by defining several-variable
entire functions of exponential type, their order and by stating the multivariate ana-
logue of the Paley–Wiener theorem of [30]. The definitions and the theorem are taken
from [26, Chapter 3] and [37, Chapter 1]. A function f(z) is said to be entire in z ∈ C

n

if it decomposes into an absolutely convergent power series

f(z) =
∑
K�0

aKzK =
∑

k1,...,kn�0

ak1,...,kn
zk1
1 · · · zk1

1 , (1.4)

where aK = (ak1 , . . . , akn
) are constant coefficients. This definition of entire functions is

in the sense of Weierstrass (see [37, p. 28] and [37, p. 30]) it is equivalent to say that
f(z) is entire in every variable zi. The coefficients aK = (a1, . . . , an) are determined
via [36, pp. 30 and 31]

aK =
1

(2π)n

∫ 2π

0
· · ·

∫ 2π

0

f(reit)
rK

e−itK dt. (1.5)

From now on when we say an entire function we mean entire in Weierstrass’s sense. An
entire function f(z) is called of exponential type σ := (σ1, . . . , σn) � 0 if for every ε > 0
there exists a positive constant Aε such that

|f(z)| � Aε exp
[ n∑

j=1

(σj + ε)|zj |
]
, z = (z1, . . . , zn) ∈ C

n. (1.6)

If inequality (1.6) is satisfied with |zj |ρj , ρj > 0, instead of |zj | for an entire function f(z)
of exponential type σ, then it is said to have order ρ = (ρ1, . . . , ρn) > 0. A several-variable
analogue of the Paley–Wiener theorem [27] is given in [30] and [26, pp. 109 and 110] (see
also [1, p. 134 ff.]). Let Mσp, p > 1, denote the space of all entire functions of exponential
type σ which belong to Lp(Rn) when restricted to R

n. The space Mσ2 will be called the
space of n-variable functions band-limited to ∆σ := {x ∈ R

n : |xj | � σj , j = 1, . . . , n}.

A several-variable analogue of the Paley–Wiener theorem reads as follows.

Theorem B. If f ∈ Mσ2, σ = (σ1, . . . , σn), then the function

f̃(x) =
1

(2π)n/2

∫
Rn

f(z) exp(−ixz) dz, x = (x1, . . . , xn) ∈ R
n, (1.7)

where the integral converges in the mean, is an L2(Rn)-function which vanishes outside
∆σ := {x ∈ R

n : |xj | � σj , j = 1, . . . , n}. Conversely, the function

f(z) =
1

(2π)n/2

∫
∆σ

g(x) exp(ixz) dx, z = (z1, . . . , zn) ∈ C
n, g(x) ∈ L2(∆σ), (1.8)

lies in Mσ2 and g = f̃ almost everywhere.
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2. A multivariate classical result

Let Ωπ := [−π, π]n, with x = (x1, . . . , xn) ∈ Ωπ, n ∈ Z
+. Let A := (αij)1�i,j�n be

an n × n non-singular matrix of complex entries. Let H denote the Hilbert space of all
Lebesgue measurable functions on Ωπ which are square integrable. The inner product
and norm are defined in H to be

〈f, g〉H :=
∫

Ωπ

f(x)ḡ(x) dx, ‖f‖H :=
(∫

Ωπ

|f(x)|2 dx

)1/2

. (2.1)

Consider the first-order multiparameter eigenvalue problem

−iy′
j(xj) = (αj1λ1 + αj2λ2 + · · · + αjnλn)yj(xj), |xj | � π, (2.2)

yj(−π) = yj(π), j = 1, . . . , n, (2.3)

in the parameters λ1, λ2, . . . λn ∈ C. For every j, 1 � j � n, the functions

yj(xj , λ1, . . . , λn) = exp(i(αj1λ1 + αj2λ2 + · · · + αjnλn)xj), j = 1, . . . , n, (2.4)

solve (2.2), where i :=
√

−1. Hence the eigenvalues of the system (2.2), (2.3) are deter-
mined by solving the linear system of equations

α11λ1 + · · · + α1nλn = k1,

α21λ1 + · · · + α2nλn = k2,

...

αn1λ1 + · · · + αnnλn = kn,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.5)

where kj ∈ Z. Let K := (k1, k2, . . . , kn) ∈ Z
n. Then the eigenvalues of (2.2), (2.3) are

λK = (λ1,k1 , . . . , λn,kn
) = A−1K, K ∈ Z

n, (2.6)

where A−1 is the inverse of A. The corresponding set of eigenfunction is

O =
{

ψK(x) =
n∏

j=1

exp(ikjxj) : K = (k1, k2, . . . , kn) ∈ Z
n

}
. (2.7)

The Fourier system O is an orthogonal basis of H. The n-dimensional sampling theorem
associated with the multiparameter problem (2.2), (2.3) is the following.

Theorem 2.1. Let f(λ), λ = (λ1, . . . , λn) ∈ C
n, be the n-variable integral transform

f(λ) =
∫

Ωπ

g(x)Φ(x, λ) dx, g(·) ∈ H, (2.8)

where

Φ(x, λ) :=
n∏

j=1

exp(i(αj1λ1 + · · · + αjnλn)xj). (2.9)
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Then f(λ) admits the sampling representation

f(λ) =
∞∑

k1,...,kn=−∞
f(A−1K)

n∏
j=1

sin π(αj1λ1 + · · · + αjnλn − kj)
π(αj1λ1 + · · · + αjnλn − kj)

λ ∈ C
n. (2.10)

Moreover, f(λ) is an entire function of exponential type

σπ :=
( n∑

k=1

|αk1|π, . . . ,

n∑
k=1

|αkn|π
)

.

Series (2.10) converges absolutely on C
n and uniformly on compact subsets of C

n and
on the subset of all λ ∈ C

n such that Aλ ∈ R
n. In particular, if all entries of A are real,

then (2.10) converges uniformly on R
n.

Proof. Since O is an orthogonal basis of H, then, from Parseval’s identity,

f(λ) =
∑

K∈Zn

〈ḡ(·), ΨK(·)〉
H
〈Φ(·, λ), ΨK(·)〉H

‖ΨK(·)‖2
H

, λ ∈ C
n. (2.11)

Thus, for λ ∈ C
n,

f(λ) =
∞∑

k1,...,kn=−∞

∫
Ωπ

g(x)
∏n

�=1 eik�x� dx ·
∫

Ωπ
Φ(x, λ)

∏n
�=1 e−ik�x� dx∫

Ωπ

∏n
�=1 eik�x�

∏n
�=1 e−ik�x� dx

=
∞∑

k1,...,kn=−∞
f(A−1K)

∫
Ωπ

∏n
j=1 ei(αj1λ1+···+αjnλn)xj

∏n
�=1 e−ik�x� dx∫

Ωπ

∏n
�=1 eik�x�

∏n
�=1 e−ik�x� dx

. (2.12)

Simple calculations yield∫
Ωπ

n∏
j=1

ei(αj1λ1+···+αjnλn)xj

n∏
�=1

e−ik�x� dx =
n∏

j=1

2 sin π(αj1λ1 + · · · + αjnλn − kj)
(αj1λ1 + · · · + αjnλn − kj)

,

(2.13)∫
Ωπ

n∏
�=1

eik�x�

n∏
�=1

e−ik�x� dx = (2π)n, λ ∈ C
n, j = 1, . . . , n. (2.14)

Substituting from (2.13) and (2.14) in (2.12), we get the multivariate sampling expan-
sion (2.10) with pointwise convergence on C

n. Now we establish the other convergence
properties. We start with the absolute convergence. Let λ = (λ1, . . . , λn) ∈ C

n be fixed.
Then, by the Cauchy–Schwarz inequality and Parseval’s identity, we obtain

∞∑
k1,...,kn=−∞

∣∣∣∣f(A−1K)
n∏

j=1

sin π(αj1λ1 + · · · + αjnλn − kj)
π(αj1λ1 + · · · + αjnλn − kj)

∣∣∣∣
=

∞∑
K∈Zn

∣∣∣∣ 〈ḡ(·), ΨK(·)〉
H
〈Φ(·, λ), ΨK(·)〉H

‖ΨK(·)‖2
H

∣∣∣∣
�

( ∞∑
K∈Zn

∣∣∣∣ 〈ḡ(·), ΨK(·)〉H

‖ΨK(·)‖H

∣∣∣∣
2 )1/2( ∞∑

K∈Zn

∣∣∣∣ 〈Φ(·, λ), ΨK(·)〉H

‖ΨK(·)‖H

∣∣∣∣
2 )1/2

< ∞, (2.15)
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since g(·), Φ(·, λ) ∈ H. As for the uniform convergence let N be a positive integer and
define the function

sN (λ) :=
∣∣∣∣f(λ) −

∑
|K|�N

f(A−1K)
n∏

j=1

sin π(αj1λ1 + · · · + αjnλn − kj)
π(αj1λ1 + · · · + αjnλn − kj)

∣∣∣∣, λ ∈ C
n,

(2.16)
where |K| :=

√
k2
1 + · · · + k2

n. To prove uniform convergence of (2.10) on a subset M , it
is sufficient to prove that sN (λ) approaches zero as N → ∞ without depending on λ.
Again, using the Cauchy–Schwarz and Bessel’s inequalities, we obtain

sN (λ) �
∑

|K|>N

∣∣∣∣f(A−1K)
n∏

j=1

sin π(αj1λ1 + · · · + αjnλn − kj)
π(αj1λ1 + · · · + αjnλn − kj)

∣∣∣∣
�

( ∑
|K|>N

∣∣∣∣ 〈ḡ(·), ΨK(·)〉H

‖ΨK(·)‖H

∣∣∣∣
2 )1/2

‖Φ(·, λ)‖H, λ ∈ C
n. (2.17)

To prove uniform convergence on a subset of C
n, it suffices to show that ‖Φ(·, λ)‖H is

bounded on this subset. Indeed,

‖Φ(·, λ)‖H =
n∏

j=1

∫ π

−π

exp(−2 Im zjxj) dxj =
n∏

j=1

sinhπ Im zj

Im zj
, λ ∈ C

n, (2.18)

where zj = αj1λ1 + · · · + αjnλn and Im z is the imaginary part of z. Then ‖Φ(·, λ)‖H is
bounded on compact subsets of C

n, implying the uniform convergence of series (2.10) on
compact subsets of C

n. This also proves that f(λ) is holomorphic on compact subsets of
C

n in Weierstrass’s sense. Hence f is entire. To prove that f(λ) has exponential type σπ

we first apply the Cauchy–Schwarz inequality to the integral transform (2.8) to obtain

|f(λ)| � (2π)n/2 max
x∈Ωπ

|φ(x, λ)|‖g(·)‖H, λ ∈ C
n. (2.19)

Now we prove that

max
x∈Ωπ

|φ(x, λ)| � exp
{ n∑

k=1

( n∑
j=1

|αjk|π
)

|λk|
}

, λ ∈ C
n. (2.20)

Indeed, suppose that φ(x, λ) 	= 0. Since | exp(z)| � exp |z| for all z ∈ C, then

|φ(x, λ)| �
n∏

j=1

exp(|αj1||λ1|π + · · · + |αjn||λjn|π).

Taking the logarithm and collecting similar terms we obtain

ln |φ(x, λ)| �
n∑

k=1

( n∑
j=1

|αjk|π
)

|λk|,
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which leads to inequality (2.20). The last inequality together with (2.19) proves that f(λ)
has exponential type σπ. It remains to prove uniform convergence on the subset of C

n

where Aλ ∈ R
n. This is clear because in this case

‖Φ(·, λ)‖2
H =

n∏
j=1

∫ π

−π

exp(−2 Im zjxj) dxj = (2π)n. (2.21)

This completes the proof of Theorem 2.1. �

Remark 2.2. Under restrictive conditions, Prosser obtained a sampling formula of
the type (2.10) [32, Equation (13)]. From the Paley–Wiener theorem, Theorem B above,
the multivariate transform (2.8) can be written as the several-variable Fourier transform

f(λ) =
1

(2π)n/2

∫
∆σπ

ψ(x) exp(ix · λ) dx, ψ(x) =
1

(2π)n/2

∫
Rn

f(λ) exp(−ix · λ) dλ.

(2.22)
This leads to a sampling representation of f(λ) of the form

f(λ) =
∑
K∈Z

f

(
k1π

σ1
, . . . ,

knπ

σn

) n∏
j=1

sin(σjλj − kjπ)
(σjλj − kjπ)

, (2.23)

where σj :=
∑n

k=1 |αkj |π, j = 1, . . . , n. As in the classical case, the role of the multi-
parameter operators in deriving the previous sampling formulae is not seen here since
we could check and compute everything explicitly. This is because of the exceptional
situation of first-order problems. In higher-order problems, the derivation of the sampling
theorems is impossible without the use of the theory of differential operators.

3. A two-parameter system

In this section we introduce a two-parameter system of second-order Sturm–Liouville
problems. This system is studied by Faierman [19–22] and Sleeman [35, 36] (see also
[6,33]). We state the main results needed for the derivation of the sampling theorems, in
particular, the discreteness of the eigenvalues and the completeness of the eigenfunctions.
Consider the two-parameter system

−y′′(x) + q(x)y(x) = (λ + µ)y(x), 0 � x � π, (3.1)

U1(y) := y(0) cos α − y′(0) sinα = 0, 0 � α < π, (3.2)

U2(y) := y(π) cos β − y′(π) sin β = 0, 0 � β < π, (3.3)

and

−z′′(t) + p(t)z(t) = (λ − µ)z(t), 0 � t � π, (3.4)

V1(z) := z(0) cos γ − z′(0) sin γ = 0, 0 � γ < π, (3.5)

V2(z) := z(π) cos δ − z′(π) sin δ = 0, 0 � δ < π. (3.6)
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Here λ, µ ∈ C are the eigenvalue parameters and q(x), p(t) are continuous real-valued
functions on [0, π]. A complex pair Λ := (λ, µ) is called an eigenvalue of the system (3.1)–
(3.6) if there are non-trivial solutions y(x, Λ) := y(x, λ, µ) of (3.1) which satisfy (3.2),
(3.3) and z(t, Λ) := z(t, λ, µ) of (3.4) which satisfy (3.5), (3.6). In this case the product

Ψ(x, t, Λ) := Ψ(x, t, λ, µ) = y(x, Λ)z(t, Λ), (3.7)

is an eigenfunction of the two-parameter system (3.1)–(3.6) corresponding to the eigen-
value Λ. Let Ω0 := [0, π] × [0, π] and H := L2(Ω0) denote the usual L2(Ω0) space of
Lebesgue measurable functions on Ω0 which are square integrable with the following
inner product and norm:

〈f, g〉H :=
∫ π

0

∫ π

0
f(x, t)ḡ(x, t) dxdt, ‖f‖H :=

(∫ π

0

∫ π

0
|f(x, t)|2 dxdt

)1/2

. (3.8)

Let ϕi(x, λ, µ) = ϕi(x, λ + µ) and χi(t, λ, µ) = χi(t, λ − µ), i = 1, 2, denote the solutions
of (3.1) and (3.4) respectively which satisfy the initial conditions

ϕ1(0, λ + µ) = sinα, ϕ′
1(0, λ + µ) = cos α; (3.9)

ϕ2(π, λ + µ) = sinβ, ϕ′
2(π, λ + µ) = cos β; (3.10)

χ1(0, λ − µ) = sin γ, χ′
1(0, λ − µ) = cos γ; (3.11)

χ2(π, λ − µ) = sin δ, χ′
2(π, λ − µ) = cos δ. (3.12)

Thus, ϕi(x, λ + µ) satisfy (3.1), χi(t, λ − µ) satisfy (3.4) and

Ui(ϕi) = 0, Vi(χi) = 0, i = 1, 2, for all (λ, µ) ∈ C
2. (3.13)

To find the eigenvalues and the eigenfunctions of the system (3.1)–(3.6) we have four
choices.

(i) The eigenvalues are the solutions of the system

U2(ϕ1) = 0, V2(χ1) = 0, (3.14)

and the corresponding eigenfunctions are

Ψ(x, t, λ, µ) = ϕ1(x, λ + µ)χ1(t, λ − µ). (3.15)

(ii) The eigenvalues are the solutions of the system

U2(ϕ1) = 0, V1(χ2) = 0, (3.16)

and the corresponding eigenfunctions are

Ψ(x, t, λ, µ) = ϕ1(x, λ + µ)χ2(t, λ − µ). (3.17)
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(iii) The eigenvalues are the solutions of the system

U1(ϕ2) = 0, V2(χ1) = 0, (3.18)

and the corresponding eigenfunctions are

Ψ(x, t, λ, µ) = ϕ2(x, λ + µ)χ1(t, λ − µ). (3.19)

(iv) The eigenvalues are the solutions of the system

U1(ϕ2) = 0, V1(χ2) = 0, (3.20)

and the corresponding eigenfunctions are

Ψ(x, t, λ, µ) = ϕ2(x, λ + µ)χ2(t, λ − µ). (3.21)

It should be noted that the eigenvalues are the same in every case and the corresponding
eigenfunctions are unique up to a multiplicative constant. Moreover, the following facts
concerning the eigenvalues and the eigenfunctions of system (3.1)–(3.6) hold (cf. [20,35]).

Theorem C. The eigenvalues of the system (3.1)–(3.6) form a denumerable set in
R

2 with no finite limit points. Eigenfunctions corresponding to different eigenvalues are
orthogonal. The totality of all eigenfunctions is an orthogonal basis of H.

4. The sampling theorems

This section includes four different sampling formulae associated with the multiparameter
system (3.1)–(3.6). Classifications will be according to whether there are eigenvalues of
the two-parameter system (3.1)–(3.6) of the form Λ = (λ, µ), where λ 	= ±µ; λ = µ but
λ 	= −µ (i.e. when there are eigenvalues of the form (µ, µ) but there are no eigenvalues
of the form (λ, −λ)); λ = −µ but λ 	= µ and finally when λ = ±µ. Let {Λnm}∞

n,m=1
denote the sequence of all eigenvalues of the system (3.1)–(3.6) for which λ 	= ±µ. For
convenience, let ωij , θij , Ψij be

ωij(λ, µ) = ωij(λ + µ) := Ui(ϕj), 1 � i 	= j � 2, (4.1)

θij(λ, µ) = θij(λ − µ) := Vi(χj), 1 � i 	= j � 2, (4.2)

Ψij(x, t, λ, µ) := φi(x, λ, µ)χj(t, λ, µ), 1 � i, j � 2. (4.3)

The first sampling theorem of this paper is the following.

Theorem 4.1. Assume that system (3.1)–(3.6) has no eigenvalues of the form Λ =
(λ, µ), λ = ±µ. Let g(x, t) ∈ L2(Ω0). Let f11(λ, µ) be the transform

f11(λ, µ) =
∫ π

0

∫ π

0
g(x, t)Ψ11(x, t, λ, µ) dxdt. (4.4)
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Then f11(λ, µ) is an entire function of order 1
2 and type σ0 := (2π, 2π) that admits the

sampling representation

f11(λ, µ) =
∞∑

m,n=1

f11(λmn, µmn)
ω21(λ + µ)

(λ + µ − (λmn + µmn))ω′
21(λmn + µmn)

× θ21(λ − µ)
(λ − µ − (λmn − µmn))θ′

21(λmn − µmn)
, (4.5)

where the derivative of ω21 is with respect to λ + µ and that of θ21 is with respect to
λ − µ. The sampling series (4.5) converges absolutely on C

2 and uniformly on compact
subsets of C

2.

Proof. Since {Ψ11(x, t, λmn, µmn)}∞
m,n=1 is an orthogonal basis of H, then applying

Parseval’s identity to (4.4) implies

f11(λ, µ) =
∞∑

m,n

ˆ̄g11(m, n)
Ψ̂11(m, n)

‖Ψ11(x, t, λmn, µmn)‖2
H

, (4.6)

where
ˆ̄g11(m, n) =

∫ π

0

∫ π

0
ḡ(x, t)Ψ11(x, t, λmn, µmn) dxdt = f̄11(λmn, µmn) (4.7)

and

Ψ̂11(m, n) =
∫ π

0

∫ π

0
Ψ11(x, t, λ, µ)Ψ̄11(x, t, λmn, µmn) dxdt

=
∫ π

0
ϕ1(x, λ + µ)ϕ̄1(x, λmn + µmn) dx ·

∫ π

0
χ1(t, λ − µ)χ̄1(t, λmn − µmn) dt.

(4.8)

Let Λ = (λ, µ) ∈ C
2 and m, n ∈ Z

+ such that Λ 	= Λmn. Using integration by parts and
the fact that ϕ1(x, λ + µ), ϕ1(x, λmn + µmn) satisfy (3.1), we obtain

(λ + µ − (λmn + µmn))
∫ π

0
ϕ1(x, λ + µ)ϕ̄1(x, λmn + µmn) dx

= [ϕ1(x, λ + µ)ϕ′
1(x, λmn + µmn) − ϕ′

1(x, λ + µ)ϕ̄1(x, λmn + µmn)]π0 , (4.9)

where the derivatives in the right-hand side are with respect to x. Substituting from (3.9)
in (4.9) leads to

(λ + µ − (λmn + µmn))
∫ π

0
ϕ1(x, λ + µ)ϕ̄1(x, λmn + µmn) dx

= [ϕ1(π, λ + µ)ϕ′
1(π, λmn + µmn) − ϕ′

1(π, λ + µ)ϕ̄1(π, λmn + µmn)]. (4.10)

Since Ψ11(x, t, λmn, µmn) is an eigenfunction of (3.1)–(3.6), then ϕ1(x, λmn+µmn) satisfies
(3.3). We distinguish between two cases. First, if sinβ 	= 0, then substituting from (3.3)
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in (4.10), we obtain

(λ+µ−(λmn+µmn))
∫ π

0
ϕ1(x, λ+µ)ϕ̄1(x, λmn+µmn) dx =

ϕ̄1(π, λmn + µmn)
sin β

ω21(λ+µ).

(4.11)
If sinβ = 0, then cos β = 1 and substituting from (3.3) in (4.10) yields

(λ+µ−(λmn+µmn))
∫ π

0
ϕ1(x, λ+µ)ϕ̄1(x, λmn+µmn) dx = −ϕ′

1(π, λmn+µmn)ω21(λ+µ).

(4.12)
Similar computations for χ(t, λ, µ), χ(t, λmn, µmn) lead to

(λ−µ−(λmn −µmn))
∫ π

0
χ1(t, λ−µ)χ̄1(t, λmn −µmn) dt =

χ̄1(π, λmn − µmn)
sin δ

θ21(λ−µ),

(4.13)
if sin δ 	= 0, and

(λ+µ−(λmn−µmn))
∫ π

0
χ1(t, λ−µ)χ̄1(t, λmn−µmn) dt = −χ′

1(π, λmn−µmn)θ21(λ−µ),

(4.14)
otherwise. Now we prove that if sinβ 	= 0, then ϕ̄1(π, λmn + µmn) 	= 0. Indeed, let
sin β 	= 0 and ϕ̄1(π, λmn + µmn) = 0. Since Ψ11(x, t, λmn, µmn) is an eigenfunction, then
ϕ1(x, λmn+µmn) satisfies (3.3). Therefore, ϕ′

1(π, λmn+µmn) sin β = 0. Thus ϕ′
1(π, λmn+

µmn) = 0, implying that ϕ1(x, λmn +µmn) ≡ 0 on [0, π]. Hence Ψ11(x, t, Λmn) ≡ 0 on Ω0,
contradicting the fact that Ψ11(x, t, Λmn) is an eigenfunction. Hence ϕ1(π, λmn, µmn) 	= 0.
Similarly ϕ′

1(π, λmn + µmn) 	= 0 when sinβ = 0; χ1(π, λmn − µmn) 	= 0 if sin δ 	= 0 and
χ′

1(π, λmn − µmn) 	= 0 if sin δ = 0. To compute Ψ̂11(m, n)/‖Ψ11(x, t, λmn, µmn)‖2
H, we

start with the case sin β 	= 0 	= sin δ. From (4.11) and (4.13), we obtain∫ π

0
|ϕ1(x, λmn + µmn)|2 dx =

1
sin β

ϕ̄1(π, λmn + µmn)ω′
21(λmn + µmn), (4.15)∫ π

0
|χ1(x, λmn − µmn)|2 dt =

1
sin δ

χ̄1(π, λmn − µmn)θ′
21(λmn − µmn), (4.16)

where ω′
21(λmn +µmn) and θ′

21(λmn −µmn) are the derivatives of ω21(λ+µ) with respect
to λ + µ at λmn + µmn and of θ21(λ − µ) with respect to λ − µ at λmn − µmn. From
(4.11), (4.13), (4.15) and (4.16), we obtain, when β 	= 0 	= δ,

Ψ̂11(m, n)
‖Ψ11(x, t, λmn, µmn)‖2

H
=

ω21(λ + µ)
((λ + µ) − (λmn + µmn))ω′

21(λmn + µmn)

× θ21(λ, µ)
((λ − µ) − (λmn − µmn))θ′

21−(λmn − µmn)
. (4.17)

Similarly (4.17) holds for the other choices of β, δ. Since (λ, µ) ∈ C
2 and m, n are

arbitrary, provided that (λ, µ) 	= (λmn, µmn), the combination (4.6), (4.7) and (4.17) leads
to the desired sampling representation for f11(λ, µ) when (λ, µ) ∈ C

2, (λ, µ) 	= (λmn, µmn)
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for all m, n ∈ Z
+ and the convergence is pointwise. The proof in case (λ, µ) = (λmn, µmn)

is trivial. The proof of the absolute convergence on C
2 can be established as in § 2 above.

As for the proof of the uniform convergence on compact subsets of C
2, let M ⊂ C

2 be
compact and N ∈ Z

+. Define SN (Λ) = SN (λ, µ) to be

SN (λ, µ) :=
∣∣∣∣f11(λ, µ) −

∑
m,n�N

f11(λmn, µmn)
ω21(λ + µ)

(λ + µ − (λmn + µmn))ω′
21(λmn + µmn)

× θ21(λ − µ)
(λ + µ − (λmn − µmn))θ′

21(λmn − µmn)

∣∣∣∣, (λ, µ) ∈ M.

(4.18)

Using the Cauchy–Schwarz and Bessel’s inequalities we obtain

SN (λ, µ) � ‖Ψ11(x, t, λ, µ)‖H ·
( ∑

m,n>N

∣∣∣∣ ĝ(n, m)
‖Ψ11(x, t, λmn, µmn)‖H

∣∣∣∣
2 )1/2

, (λ, µ) ∈ M.

(4.19)
To prove uniform convergence on M , it is sufficient to show that ‖Ψ11(x, t, λ, µ)‖H is
bounded on M . Indeed,

‖Ψ11(x, t, λ, µ)‖2
H = ‖ϕ1(x, λ + µ)‖2

L2(0,π)‖χ1(t, λ − µ)‖2
L2(0,π), (λ, µ) ∈ M. (4.20)

Using a result of [12, p. 225] we can find positive constants C1(M) and C2(M) which
depend only on M such that

‖ϕ1(x, λ + µ)‖2
L2(0,π) � C1(M), ‖χ1(t, λ − µ)‖2

L2(0,π) � C2(M), (λ, µ) ∈ M. (4.21)

The last inequalities complete the proof of uniform convergence on M. From the uniform
convergence on compact subsets of C

2, f11(λ, µ) is entire. Now we prove that f11(λ, µ)
is of order 1

2 and type σ0. First, applying the Cauchy–Schwarz inequality to the integral
transform (4.4) we obtain

|f11(λ, µ)| � π max
(x,t)∈Ω0

|Ψ11(x, t, λ, µ)|‖g(·)‖H, (λ, µ) ∈ C
2. (4.22)

Using the method of variation of constants, we obtain

ϕ1(x, λ + µ) = sinα cos(
√

λ + µx) + cos α
sin(

√
λ + µx)√
λ + µ

+
1√

λ + µ

∫ x

0
sin(

√
λ + µ(x − ξ))ϕ1(ξ, λ + µ)q(ξ) dξ. (4.23)

Applying the same technique of [13, Chapter 5] (see also [25]), we have for large |λ| and
large |µ| the following asymptotic formula:

|ϕ1(x, λ + µ)| � |sin α||cos(
√

λ + µx)| + |cos α|
∣∣∣∣ sin(

√
λ + µx)√
λ + µ

∣∣∣∣ + O

(
exp(|

√
λ + µ|x)

|
√

λ + µ|

)
(4.24)
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uniformly for x ∈ [0, π]. Let R > 1 be a sufficiently large positive number such (4.24) is
satisfied for all (λ, µ) ∈ C

2, where |λ| � R, |µ| � R. Using the inequalities

|cos z| � e|z|, |sin z| � e|z|, |
√

λ + µ| �
√

|λ| +
√

|µ|, (4.25)

we can find a positive constant AR such that

|ϕ1(x, λ + µ)| � AR exp((
√

|λ| +
√

|µ|)π), |λ|, |µ| � R. (4.26)

Similarly, there is a positive constant BR which is independent of t, λ, µ, for which

max
0�t�π

|χ1(t, λ − µ)| � BR exp((
√

|λ| +
√

|µ|)π), |λ|, |µ| � R. (4.27)

Combining the last two inequalities together with (4.19), f11 eventually has order 1
2 and

type σ0, which suffices to accomplish the proof. �

Similar results hold for the transforms

fij(λ, µ) =
∫ π

0

∫ π

0
g(x, t)Ψij(x, t, λ, µ) dxdt, g(x, t) ∈ L2(Ω0), 1 � i, j � 2, i + j > 2.

(4.28)
In the following we discuss the other three cases. We consider the boundary-value prob-
lems:

−y′′(x) + q(x)y(x) = 0, U1(y) = U2(y) = 0; (4.29)

−z′′(t) + p(t)z(t) = 0, V1(z) = V2(z) = 0. (4.30)

The remaining three cases are when (4.29) has a non-trivial solution but (4.30) does not,
the converse situation and finally when both problems have non-trivial solutions. Let us
consider the first case. Thus for (λ, µ) ∈ C

2, µ = −λ problem (3.1)–(3.3) has a non-trivial
solution, ϕ0(x) say. Then, for such points, (3.5), (3.6) become

−z′′(t) + p(t)z(t) = 2λz(t), V1(z) = V2(z) = 0. (4.31)

From Sturm–Liouville’s theory (cf. [13,25]), problem (4.31) has a sequence of real eigen-
values {λn}∞

n=1, which is bounded below and has no finite limit points. Moreover, by
assumptions λn 	= 0 for all n. The sequence λn is the set of the solutions of

θ21(λ − µ) = θ21(2λ) or θ12(λ − µ) = θ12(2λ). (4.32)

In this situation system (3.1)–(3.6) will have a sequence of eigenvalues Λn = (λn,−λn)
and the corresponding eigenfunctions are

Ψ01(x, t, λn,−λn) := ϕ0(x)χ1(t, λn,−λn)

or Ψ02(x, t, λn,−λn) := ϕ0(x)χ2(t, λn,−λn).

}
(4.33)

In addition to this sequence we will have the sequence of eigenvalues Λmn = (λmn, µmn)
determined before as well as the corresponding eigenfunctions. The sampling result in
this case will be as follows.

https://doi.org/10.1017/S0013091504000100 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000100


270 M. H. Annaby

Theorem 4.2. Suppose that problem (4.29) has a non-trivial solution and problem
(4.30) has only the trivial solution. Then the two-variable integral transform

f11(λ, µ) =
∫ π

0

∫ π

0
g(x, t)Ψ11(x, t, λ, µ) dxdt, g(x, t) ∈ L2(Ω0). (4.34)

is an entire function of order 1
2 and type σ0. It admits the two-variable sampling expansion

f11(λ, µ) =
ω21(λ + µ)

(λ + µ)ω′
21(0)

∞∑
n=1

f11(λn,−λn)
θ21(λ − µ)

(λ + µ − 2λn)θ′
21(2λn)

+
∞∑

m,n=1

f11(λmn, µmn)
ω21(λ + µ)

(λ + µ − (λmn, µmn))ω′
21(λmn + µmn)

× θ21(λ − µ)
(λ − µ − (λmn − µmn))θ′

21(λmn − µmn)
.

(4.35)

The sampling series (4.35) converges absolutely on C
2 and uniformly on compact subsets

of C
2. Similar results hold for transforms (4.28).

Proof. Since the only difference between (4.35) and (4.5) is the first single-variable
sum of (4.35), we only indicate how to get this sum and the rest of the proof will be as
that of Theorem 4.1 above. Indeed, applying Parseval’s relation on (4.34), we get

f11(λ, µ) =
∞∑

n=1

ˆ̄g(n, n)
Ψ̂11(n, n)

‖Ψ11(x, t, λn,−λn)‖2
H

+
∞∑

m,n=1

ˆ̄g(m, n)
Ψ̂11(m, n)

‖Ψ11(x, t, λmn, µmn)‖2
H

,

(4.36)
where, as in Theorem 4.1,

ˆ̄g(n, n) = f̄11(λn,−λn), ˆ̄g(n, m) = f̄11(λmn, µmn), (4.37)

and
Ψ̂11(n, n) =

∫ π

0

∫ π

0
Ψ11(x, t, λ, µ)Ψ̄11(x, t, λn,−λn) dxdt, (4.38)

and Ψ̂11(m, n) is given in (4.8) above. As we have indicated the double term of (4.36) is
nothing but that of (4.35). It remains to compute the single-variable sum of (4.35). For
n ∈ Z

+, (λ, µ) ∈ C
2, we have

Ψ̂11(n, n) =
∫ π

0

∫ π

0
Ψ11(x, t, λ, µ)Ψ̄11(x, t, λn,−λn) dxdt

=
∫ π

0
ϕ1(x, λ + µ)ϕ̄1(x, 0, 0) dx

∫ π

0
χ1(t, λ − µ)χ̄1(t, λn,−λn) dt. (4.39)

and

‖Ψ11(x, t, λn,−λn)‖2
H = ‖ϕ1(x, 0, 0)‖2

L2(0,π)‖χ1(t, λn,−λn)‖2
L2(0,π). (4.40)
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Using the same technique employed in proving Theorem 4.1, we obtain

Ψ̂11(n, n)
‖Ψ11(x, t, λn,−λn)‖2

H
=

ω21(λ + µ)
(λ + µ)ω′

21(0)
θ21(λ − µ)

((λ − µ) − (2λn))θ′
21(2λn)

. (4.41)

�

It should be noted that although expansion (4.35) contains two series it can be written
as one sum. This might be done by rearranging the eigenvalues and the eigenfunctions
in one sequence and then applying Parseval’s relation with respect to all eigenfunctions.
The same for expansions (4.44) and (4.46) below. The second case is similar to the first,
but here problem (4.29) has only the trivial solution and problem (4.30) has a non-trivial
solution χ0(t). In this case for all Λ = (λ, µ) ∈ C

2, λ = µ, problem (3.4)–(3.6) has
a non-trivial solution, namely χ0(t). So, if λ = µ, (3.1)–(3.3) is the single-parameter
Sturm–Liouville problem

−y′′ + q(x)y = 2µy, U1(y) = U2(y) = 0. (4.42)

From Sturm–Liouville’s theory, (4.42) has a sequence of real eigenvalues {µn}∞
n=1, where

{µn} is bounded below with no finite limit points and µn 	= 0. Hence Λn = (µn, µn) is a
sequence of eigenvalues of the two-parameter system (3.1)–(3.6) with the eigenfunctions

Ψ10(x, t, µn, µn) := ϕ1(x, µn, µn)χ0(t) or Ψ20(x, t, µn, µn) := ϕ2(x, µn, µn)χ0(t).
(4.43)

Theorem 4.3. Assume that problem (4.29) has only the trivial solution and problem
(4.30) has a non-trivial solution. Let g(x, t) ∈ H and

f11(λ, µ) =
∫ π

0

∫ π

0
g(x, t)Ψ11(x, t, λ, µ) dxdt. (4.44)

Then f11(λ, µ) is entire of order 1
2 and type σ0 and it can be recovered via the sampling

series

f11(λ, µ) =
θ21(λ − µ)

(λ − µ)θ′
21(0)

∞∑
n=1

f11(µn, µn)
ω21(λ + µ)

(λ + µ − 2µn)ω′
21(2µn)

+
∞∑

m,n=1

f11(λmn, µmn)
ω21(λ + µ)

(λ + µ − (λmn, µmn))ω′
21(λmn + µmn)

× θ21(λ − µ)
(λ − µ − (λmn − µmn))θ′

21(λmn − µmn)
.

(4.45)

The sampling expansion (4.45) converges absolutely on C
2 and uniformly on compact

subsets of C
2. Similar results hold for (4.28).

It remains to discuss the situation when both (4.29) and (4.30) have non-trivial solu-
tions. In this case if λn, µn have the above meanings, the sampling theorem associated
with the system (3.1)–(3.6) will be the following.
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Theorem 4.4. Suppose that problem (4.29), (4.30) has non-trivial solutions. Then
the transform

f11(λ, µ) =
∫ π

0

∫ π

0
g(x, t)Ψ11(x, t, λ, µ) dxdt, g(x, t) ∈ H, (4.46)

is entire in Λ = (λ, µ) of order 1
2 and type σ0. It can be reconstructed via the interpolation

form

f11(λ, µ) = f11(0, 0)
ω21(λ + µ)

(λ + µ)ω′
21(0)

θ21(λ − µ)
(λ − µ)θ′

21(0)

+
ω21(λ + µ)

(λ + µ)ω′
21(0)

∞∑
n=1

f11(λn,−λn)
θ21(λ − µ)

(λ − µ − (2λn))θ′
21(2λn)

+
θ21(λ − µ)

(λ − µ)θ′
21(0)

∞∑
n=1

f11(µn, µn)
ω21(λ + µ)

(λ + µ − 2µn)ω′
21(2µn)

+
∞∑

m,n=1

f11(λmn, µmn)
ω21(λ + µ)

(λ + µ − (λmn + µmn))ω′
21(λmn + µmn)

× θ21(λ − µ)
(λ − µ − (λmn − µmn))θ′

21(λmn − µmn)
.

(4.47)

where {λn}∞
n=1 and {µn}∞

n=1 are the non-zero eigenvalues of problems (4.31) and (4.42),
respectively. The sampling representation (4.47) converges absolutely on C

2 and uni-
formly on compact subsets of C

2. Similar results hold for the transforms (4.28).

5. Examples

In this section we introduce three examples exhibiting the sampling theorems established
above. The first example illustrates Theorem 4.1, when zero is not an eigenvalue of the
Sturm–Liouville problems (4.31) and (4.42), the second example is devoted to the case
when zero is an eigenvalue of one problem only and the last example is when zero is an
eigenvalue of both.

Example 5.1. Consider the system

−y′′ = (λ + µ)y, y(0) = y(π) = 0, (5.1)

−z′′ = (λ − µ)z, z(0) = z(π) = 0. (5.2)

In the notation of the above section q(x) ≡ 0 ≡ p(t), α = β = γ = δ = 0. Therefore, in
the above notation

ϕ1(x, λ, µ) =
sin

√
λ + µx√

λ + µ
, ϕ2(x, λ, µ) =

sin
√

λ + µ(x − π)√
λ + µ

, (5.3)

(λ, µ) ∈ C
2, λ 	= −µ. If λ = −µ, then

ϕ1(x, λ, µ) = x, ϕ2(x, λ, µ) = x − π. (5.4)
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As for (5.2),

χ1(t, λ, µ) =
sin

√
λ − µt√

λ − µ
, χ2(t, λ, µ) =

sin
√

λ − µ(t − π)√
λ − µ

(5.5)

(λ, µ) ∈ C
2, λ 	= µ and

χ1(t, λ, µ) = t, ϕ2(t, λ, µ) = t − π (5.6)

otherwise. We first notice that there are no eigenvalues of the form Λ = (λ, µ) such that
λ = ±µ. Also, in the above notation,

ω21(λ+µ) = −ω12(λ+µ) =
sin

√
λ + µπ√

λ + µ
, θ21(λ−µ) = −θ12(λ−µ) =

sin
√

λ − µπ√
λ − µ

.

(5.7)
Hence the eigenvalues are the solutions of the system

λ + µ = n2, λ − µ = m2, λ 	= ±µ, n, m ∈ Z
+. (5.8)

Therefore, the eigenvalues of the system (5.1), (5.2) are

Λmn = (λmn, µmn) =
(

n2 + m2

2
,
n2 − m2

2

)
, n, m ∈ Z

+, (5.9)

and the corresponding sequence of eigenfunctions is {sin nx/n × sin mx/m}∞
m,n=1. If we

apply Theorem 4.1 to the transform

f(λ, µ) =
∫ π

0

∫ π

0
g(x, t)

sin
√

λ + µx√
λ + µ

sin
√

λ − µt√
λ − µ

dxdt, g(x, t) ∈ L2(Ω0), (5.10)

then we obtain the following sampling result, (λ, µ) ∈ C
2,

f(λ, µ) =
∞∑

n,m=1

f

(
n2 + m2

2
,
n2 − m2

2

)
2n2 sin π(

√
λ + µ − n)

π
√

λ + µ(λ + µ − n2)
2m2 sin π(

√
λ − µ − m)

π
√

λ − µ(λ − µ − m2)
.

(5.11)

Example 5.2. Consider the system

−y′′ = (λ + µ)y, y(0) = y(π) = 0, (5.12)

−z′′ = (λ − µ)z, z′(0) = z′(π) = 0. (5.13)

In this example q(x) ≡ 0 ≡ p(t) on [0, π] and α = β = 0, γ = δ = π/2. In the notation of
the previous section, ϕi(x, λ + µ) will be as in (5.3), (5.4) above and χi(t, λ − µ) will be

χ1(t, λ − µ) = cos
√

λ − µt, χ1(t, λ − µ) = cos
√

λ − µ(t − π), (5.14)

if λ 	= µ and χ1(t, λ − µ) = χ2(t, λ − µ) = 1 otherwise. Hence

ω21(λ + µ) = −ω12(λ + µ) = sin
√

λ + µπ/
√

λ + µ, λ 	= −µ,

θ21(λ − µ) = θ21(λ − µ) = −
√

λ − µ sin
√

λ − µπ, λ 	= µ.

}
(5.15)
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We notice that for all (λ, µ) ∈ C
2, λ = µ, (5.13) has a solution, namely χ0(t) = 1. In this

case Theorem 4.3 is applicable. To compute the eigenvalues, we first need to compute
the eigenvalues of the problem

−y′′ = 2λy, y(0) = y(π) = 0, (5.16)

which are denoted by {µn}∞
n=1 in Theorem 4.3 above. These eigenvalues are µn = n2/2,

n ∈ Z
+. The corresponding eigenfunctions are

ϕ1(x, µn, µn) =
sin nx

n
, n ∈ Z

+. (5.17)

Therefore, Λn = (µn, µn) = (n2/2, n2/2), n ∈ Z
+, are eigenvalues of the system (5.12),

(5.13) with the eigenfunctions

sin nx

n
χ0(t) = ϕ1(t, µn, µn)χ1(t, µn, µn) = Ψ11(x, t, µn, µn).

The rest of the eigenvalues can be determined from

ω12(λ + µ) =
sin

√
λ + µπ√

λ + µ
= 0, θ12(λ − µ) =

√
λ − µ sin

√
λ − µπ = 0, λ 	= ±µ.

(5.18)
Hence

Λmn =
(

n2 + m2

2
,
n2 − m2

2

)

are the rest of the eigenvalues of (5.12), (5.13) with the eigenfunctions Ψ11(x, t, λmn, µmn),
m, n ∈ Z

+. The sampling result of this case will be following. Let g(x, t) ∈ H and

f(λ, µ) =
∫ π

0

∫ π

0
g(x, t)

sin
√

λ + µx√
λ + µ

cos
√

λ − µt dxdt. (5.19)

Then f(λ, µ) admits the sampling series

f(λ, µ) =
sin π(

√
λ − µ)

π
√

λ − µ

∞∑
n,m=1

f

(
n2

2
,
n2

2

)
2n2 sin π(

√
λ + µ − n)

π
√

λ + µ(λ + µ − n2)

+
∞∑

n,m=1

f

(
n2 + m2

2
,
n2 − m2

2

)
2
√

λ − µ sin π(
√

λ − µ − m)
π(λ − µ − m2)

× 2n2 sin π(
√

λ + µ − n)
π
√

λ + µ(λ + µ − n2)
. (5.20)

The following example exhibits the last sampling result of the previous section.

Example 5.3. Consider the two-parameter system

−y′′(x) = (λ + µ)y(x), y′(0) = y′(π) = 0, (5.21)

−z′′(t) = (λ − µ)z(t), z′(0) = z′(π) = 0. (5.22)
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This case coincides with that considered in Theorem 4.4 above. In this example
χ1(t, λ − µ), χ2(t, λ − µ), θ12(λ − µ) and θ21(λ − µ) will be as in the previous exam-
ple, while

ϕ1(x, λ + µ) = cos
√

λ + µx, ϕ2(x, λ + µ) = cos
√

λ + µ(x − π) (5.23)

if λ 	= −µ, ϕ1(x, λ + µ) = ϕ1(x, λ + µ) = 1 otherwise and

ω12(λ + µ) = ω21(λ + µ) = −
√

λ + µ sin
√

λ + µπ, λ 	= −µ. (5.24)

The eigenvalues of system (5.21), (5.22) are the sequences

Λn =
(

n2

2
,
n2

2

)
, Λm =

(
m2

2
,
−m2

2

)
, Λmn = (λmn, µmn) =

(
n2 + m2

2
,
n2 − m2

2

)
(5.25)

n, m ∈ Z
+ and Λ0 = (0, 0). The corresponding sequences of eigenfunctions will be respec-

tively

ϕ1

(
x,

n2

2
,
n2

2

)
, χ1

(
t,

m2

2
,−m2

2

)
, ϕ1(t, λmn, µmn)χ1(t, λmn, µmn), (5.26)

in addition to the eigenfunction 1 corresponding to the eigenvalue Λ0 = (0, 0). In this
case the sampling expansion of the transform

f(λ, µ) =
∫ π

0

∫ π

0
g(x, t) cos

√
λ + µx cos

√
λ − µt dxdt, g(x, t) ∈ L2(Ω0), (5.27)

will be

f(λ, µ) = f(0, 0)
sin π

√
λ + µ sin π

√
λ − µ

π2
√

λ2 − µ2

+
sin π

√
λ − µ

π
√

λ − µ

∞∑
n=1

f

(
n2

2
,
n2

2

)
2
√

λ + µ sin π(
√

λ + µ − n)
π(λ + µ − n2)

+
sin π

√
λ + µ

π
√

λ + µ

∞∑
n=1

f

(
n2

2
,
−n2

2

)
2
√

λ − µ sin π(
√

λ − µ − n)
π(λ − µ − n2)

+
∞∑

n,m=1

f

(
n2 + m2

2
,
n2 − m2

2

)
2
√

λ + µ sin π(
√

λ + µ − n)
π(λ + µ − n2)

× 2
√

λ − µ sin π(
√

λ − µ − m)
π(λ − µ − m2)

. (5.28)

In the above examples the eigenvalues—the sampling points—are determined explicitly.
It is easy to derive sampling formulae where all eigenvalues cannot be computed explicitly.
The results obtained in this article may be extended in several directions. First, when
replacing the differential operator by either difference or integral ones as particular cases
of the theory developed in [6]. In particular the use of Green’s function in deriving the
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sampling forms. In another direction, the differential equations (3.1) and (3.4) might
be replaced by the general ones of [19–22, 35, 36]. The main issue in this setting is
to give concrete examples. Also, the problems when we have differential equations of
distinct orders defined on different intervals are interesting. Finally, the derivation of the
sampling theory associated with singular multiparameter eigenvalue problems is another
possible extension.

Acknowledgements. The author thanks the referee who suggested adding the ref-
erence [31] and for indicating that the multi-dimensional sampling theorem goes back to
Plancherel and Pólya [31, § 48], which seems to be the first derivation of the theorem.
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