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CARDINAL INTERPOLATION BY SYMMETRIC
EXPONENTIAL BOX SPLINES ON A THREE-DIRECTION

MESH

by T. N. T. GOODMAN and A. A. TAANI

(Received 9th January 1989)

We consider certain exponential box splines £ on a three-direction mesh whose exponents satisfy a symmetry
condition. It is shown, in particular, that given bounded data on the integer lattice in R2, there is a unique
bounded combination of integer translates of £ that interpolates the data. When all exponents are zero, this
reduces to a result of de Boor, Hollig and Riemenschneider in [2]. Unlike the proof in [2] we use only
elementary analysis and do not employ any computer calculations.

1980 Mathematics subject classification (1985 Revision): 41A05, 41A63.

1. Introduction

Let v be a positive integer and consider the elements of Euclidean space Rv as column
vectors. In [5] Ron defines exponential box splines (£-splines) as follows. Let Q be a
finite sequence, called a defining sequence, whose elements are of the form w = (xm, XJ),
where xmeRv-{0}, XaeR. We define Xn: = {xm:coe£1} which can be regarded as a
v x |n| matrix, and An: = {X^. co e fi} e R|n|. Then the £-spline E = £(Q| •) related to fi is a
distribution on Rv defined by the requirement:

j£(fl|x)/(x)dx= J exp(Ant)/(XnOdt, feC$(Rv). (1.1)
R" [0,1]'">

It is clear from (1.1) that if An is a zero sequence, then £(fl| •) reduces to the box
spline B{Xn\ •) based on the sequence Xn studied in [1, 4] and elsewhere.

We shall find it convenient to change definition (1.1) by making a translation of
coordinate system so that the origin is the centre of the support of £(fi| •). Thus we use
the definition:

j£(Q|x)/(x)dx= J txp (\at)f(Xat)dt, /eC?(IT). (1.2)
Rv [-1/2.1/2]1"1

The Fourier transform of £(fi I •) is given by:

£(Q|x)= n P M " ~ _ . , W m m), (1.3)

where x* denotes the transpose of x.
251
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A defining sequence fi is called symmetric if {(xm — 1J: co e fi} is a rearrangement of
Q. The £-spline £(fi[-) is called symmetric if fi is symmetric. In this case (1.3) clearly
shows that £(Q|x) = £(Q| — x) and hence

£(fi|x) = £(Q|-x). (1.4)

For any v x v non-singular matrix A we define

Then it follows from (1.3) that for x in Rv,

and so

£(i4n|y4x)|deM| = E(n|je). (1.5)

For a function 4> with compact support on Rv, denote by

S(<t>): = span {<!>(•-j):jeZ%

the space generated by integer translates of </>. So the elements of S(0) have the form

The cardinal interpolation problem for (j> can be stated as follows. For any 1 ^ p ̂  oo
and data sequence F = {f(k):keZv} in lp(Z

v), determine a coefficient sequence a =
{ } in /P(Z

V) such that

S/(x):= X

interpolates the data sequence F, i.e.,

A (1.6)

If such a coefficient sequence always exists and is unique we say the cardinal
interpolation problem is correct. It is shown in [2] that the cardinal interpolation
problem for <j) is correct if and only if the trigonometric polynomial

jeZ"
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does not vanish. In particular the cardinal interpolation problem for E(Sl\ •) is correct iff

(1.7)

does not vanish. This polynomial is called the discrete Fourier transform of £( •) (see
[3]). By applying the Poisson summation formula to (1.7) we see that:

E(x) = £ E{2nj-x). (1.8)
jsZ"

In Section 3 we consider the situation when v = 2, Q is symmetric and Xn comprises
at most three distinct vectors. After studying some symmetry properties of E we proceed
in Section 4 to show from (1.8) that E is strictly positive and hence the cardinal
interpolation problem for E is correct. When An is a zero sequence, this result reduces
to a result of de Boor, Hollig and Riemenschneider in [2]. Unlike the proof in [2] we
do not employ any computer calculations and the tensor product case (at most two
distinct vectors in Xa) does not require a separate proof. For clarity we prove the
univariate case (all vectors in Xn equal) separately in Section 2 but this result is not
used in later sections.

2. Univariate cardinal interpolation

Univariate cardinal interpolation with a symmetric £-spline is essentially a special
case of the result for a three-direction mesh which we shall discuss in the rest of the
paper. However we consider it separately in this section to illustrate the method in this
simple case when it is not obscured by the more complicated details of the bivariate
case.

Theorem 1. / / £2 = {(l,A1),...,(l,Ar)} is a symmetric defining sequence, then the
cardinal interpolation problem for E(Cl\ •) is correct.

Proof. We shall show that the discrete Fourier transform

£(*): = £ E(j)eiix, xeR

is strictly positive. Since E is periodic of In, it is sufficient to show that £ > 0 on
[ —7t,7t]. Furthermore E is an even function, by (1.4), and so it is enough to show that
E(x)>0 for 0^x^7t. Suppose that An has p zero elements and P. = {AeA:A>0}. Then
from (1.3) and (1.8),

E{x)=f,gj(x), O^X^TI , (2.1)
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where

lysmixml"^ ex + e-x-2cosx
(2.2)

We consider two cases

Case 1. p is even. Here gj^O for jeZ and go
>0-

Case 2. p is odd. Now |go|>|#i| a n d k,-| = |S;+i|> 7 = 1,2,3 Since ( - 1 ) ^ 0 for
jeZ we have

go+gi>0, £ 2 j +g 2 j + 1 = 0 , 7=1,2,3,....

Similarly

g-ij-i+g-tj-iZO, j = l,2,3,....

Thus from (2.1), £(x)>0, O^x^n.

3. Symmetric £-splines on a three-direction mesh

For the rest of this paper we are concerned with the case v = 2 and the situation
where Xn comprises only three distinct vectors: e1=(l,0), e2 = (0,l), e3=e1 + e2.

Thus the defining sequence ft has the form

n = {(euX\),...,(euii),(e2,kl),...,(e2,^),(e3,^),...,(e3,}?)}. (3.1)

We shall assume ft is symmetric. For i= 1,2,3, we define Pf: = {Aj: A.)>0} and let p,
denote the number of elements in {Ay.A.'j=O}. Then from (1.3) we have

£(ft | (u, v)) =£!(")£ W ( " + v), (3.2)

where for i= 1,2,3

We now deduce some symmetry properties, following the method of [2]. We first note
that if fl is obtained from ft (of (3.1)) by replacing ev and/or e2 and/or e3 by their
negative, then

E(fi| •) = £(£>! •)• (3.4)

For any permutation a in S3 (the symmetric group on three elements) we define
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<r(fi) = {(eo(1), A{),.. . , (eff(1), A,1), (ea{2), X\),..., {ea(2), >2), {ea(3), X\),..., (ea(3), X?)}. (3.5)

We now construct a homomorphism ot->Aa from S3 into the group of non-singular
2 x 2 matrices by defining for the transpositions (12), (13), (23):

"' n (M)

We note that for any a in S3 and 1 ^ i ̂  3,

Aaeie{ealt),-eali)}. (3.7)

It follows from (3.7), (3.5) and (3.4) that for any a in S3,

E(a(il)\-) = E(Aan\-), (3.8)

and so from (1.4) and (1.5),

E(n\x) = E(o(Q)\±Aax). (3.9)

From (3.9) and (1.7) we see that for a in S3,

2 (3.10)

4. Cardinal interpolation on a three-direction mesh

We continue with our notation of Section 3 and we now prove our main result:

Theorem 2. The cardinal interpolation problem for a symmetric E-spline on a three-
direction mesh is correct.

Proof. We shall show that for x in R2,

£(Q|x)>0. (4.1)

Since £(Q| ) is periodic of period 2n, it is sufficient to show (4.1) for x in [ — n,ri]2.
Now it is easily seen that

So from (3.10) it is sufficient to prove (4.1) for x in [0,7t]2. Now by (1.8), (3.2), and
(3.3), inequality (4.1) for x in [0,7i]2 is equivalent to
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T(»,v):= £ Gl(u)Gf(v)G3
k+l(u + v)>0, «, v e [0, *] , (4.2)

k.leZ

where for i = 1,2,3, j e Z,

It will be convenient to write, for i, j in Z,

Gu(u, v): = Gl(u)GJ(v)Gf+J(u + v), u, v e [0, fl. (4.4)

We divide the proof into eight cases depending on the parity of r, s and t, or
equivalently of pu p2 and p3

Case 1. r, s and t even. Here Gw^0 for /c, / in Z. Moreover Goo(">v)>0 unless
u = v = -J, and G_1-O(i,i)>0. Thus

T= X Gu>0.
fc.leZ

For the remaining cases we shall repeatedly use the facts that for i= 1,2,3,

l^lGi-iWl, Ogt^l , ;<0, (4.5)

with strict inequality unless the terms vanish.

Case 2. r odd, s and t even. We shall deduce some inequalities for Gtj from (4.5) and
(4.4). The appropriate regions of (i,j) are illustrated in Figure 1.

We see that

.i^O, k^O, />0 (region A), (4.6)

£0, k<0, /g0 (region B), (4.7)

^0 , fe^O, 2fc + /<0 (region C), (4.8)

^0, k<0, 2k + l>0 (region D). (4.9)

Next we show that (see region E)

G2*.2, + G2t + 1.2I_1 + G24 + 1,2l + G2lt+2,2I_1£0, / ^0 , k + 1^0. (4.10)

Now (4.10) is equivalent to
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FIGURE 1 Regions for Go.

From (4.4),

|Cw.2i(M,v)|-|C2t+l i2 /_,(u,v)|

(4.11)

Since for /gO, k + l^O, Glk + 2l{u + v) and Gl
2k(u) are decreasing functions of k and

Gi((v)-G2,_,(v)^0, to prove (4.1) it suffices to show that

(4.12)

is a decreasing function of k for fc^O. Now writing P1 = {2nXi,...,2nXn} and iG^u)!-
\Gl

k+,(«)|=(sinnu)"'f(k) we have
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u)<" M If + (k + u)2 (k + 1 + «)*• M Xf + (k +1 + u)2

- i i r i j

(k + «)" M A? + (k + u)2 \X2
n + (k + u)2 A2 + (k +1 + u)2J

. 1 + uV"-1 ,U A?

2fc + 2n+l A 1 1
(k + u)"' M ; ' " • • ' • ' • " • - • - +

1 1

which is a decreasing function of k for fc^O, w^O. Thus (4.12) is decreasing in k which
gives (4.11) and hence (4.10).

Similarly, we can show that

G2t+i.2i-i+G«.2l + G24,2,_1 + G2t_1,2l£0, / ^ l , k + 1^0 (region F). (4.13)

From (4.6)-(4.10) and (4.13) we can see that T^O in (4.2). Also we have strict
inequality in (4.10) for k = l = 0 unless u = v = ^, and strict inequality in (4.7) for k= — 1,
/ = 0, « = v = i Thus T>0 in (4.2).

Case 3. s odd, r and t even. This follows from Case 2 by symmetry.

Case 4. I odd, r and s even. We shall deduce some inequalities for GtJ from (4.5) and
(4.4). The appropriate regions of (i,j) are illustrated in Figure 2.

We see that
+ 1_, i ,£0, k>0, /<0 (region A), (4.14)

k<0, />0 (region B), (4.15)

k^O, /<0 (region C), (4.16)

k<0, 1^0 (region D). (4.17)

Following the derivation of (4.10) we can see that

0, k,/^0 (region E), (4.18)
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FIGURE 2 Regions for Gu.

_2,2/-i^0, k,l^0 (region F). (4.19)

From (4.14)-{4.19) we have T^O. Here and in the remaining cases the strict
inequality T>0 follows from considering appropriate choices of the above inequalities
for different values of u and v as in Case 2.

Case 5. r and s odd, t even. We shall deduce some inequalities for Gy. The
appropriate regions of (i,;') are illustrated in Figure 3.

We first claim that

(4.20)

For from (4.3) we have for i= 1,2,3
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FIGURE 3 Regions for G,v.

(4.21)

and hence from (4.4),

Thus

and so
j % Goo ~ ^U+Hj-l
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Now from (4.5) and (4.4) we have

fc>0, /<O (region A), (4.22)

k<0, />0 (region B), (4.23)

k>0, /<0 (region C), (4.24)

k<0, />0 (region D). (4.25)

Following the derivation of (4.10) we have

(4.26)

(4.27)

k,l>0 (region E), (4.28)

k,l<0 (region F). (4.29)

From (4.20), (4.22H4.29) we have 7^0 .

Case 6. r even, s and t odd. We shall deduce some inequalities for G(J. The
appropriate regions of (i, j) are illustrated in Figure 4.

We first show that

2.i+ L G-i,,^O. (4.30)

For from (4.3), (4.4) we have for u, ve[0, %],

/- ' ~^~ /- + 2J /-. = ^ ^i~, ^ 2-i TT~. i n r~i i i
& _ 1 0 G_j 0 | / " 1 C ] o 2 —u —v 1 + v | | " j |/ + v| |/— 1 +u + v|

1— v v v v ^ ~ v V v ' " ~ v

=2^ + TT^ + f T^v/+T^ t /+^ 7̂ TTv

o
= 5 - -

Similarly we see that

(4.31)
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FIGURE 4 Regions for Go,

Moreover from (4.5) and (4.4) we have

S0, M^O (region A),

^0, k,l<0 (region B),

k^O, 2k + l<0 (region C),

k<0, 2k + l^0 (region D),

while following the derivation of (4.10) gives

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)
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FIGURE 5 Regions for G,j.

^ 0 (regionE), (4.37)

^0 , k + l<0 (region F). (4.38)

From (4.30H4.38) we have T^O.

Case 7. s even, r and t odd. This follows from Case 6 by symmetry.

Case 8. r, s and t odd. We shall deduce some inequalities for Gy. The appropriate
regions of (i, j) are illustrated in Figure 5.

As in (4.30) we have

IG.^O, (4.39)
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and similarly

I G*.-i^0. (4.40)
1*1/1

From (4.4) and (4.3) we have

k,l>0

0<k<l

0<l<k

(region A),

(region B),

(region C).

(4.41)

(4.42)

(4.43)

Noting also that Gkl ^ 0 if k or / is zero and that (4.20) holds as in Case 5, we have
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