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Abstract

Let /„ be a sequence of nonnegative integers and let f(x) := ]Tn>o f«x" ^e ' t s generating
function. Assume f(x) has the following properties: it has radius of convergence r, 0 < r < 1,
with its only singularity on the circle of convergence at x = r and f(r) = s; y = f(x) satisfies
an analytic identity F(x, y) = 0 near (r, s); for some k > 2 FOj = 0 , 0 < j < k, FOk ^ 0
where F, j is the value at (r, s) of the /'* partial derivative with respect to x and the j ' h partial
derivative with respect to y of F. These assumptions form the basis of what we call the typical
and general cases. In both cases we show how to obtain an asymptotic expansion of /„. We apply
our technique to produce several terms in the asymptotic expansion of combinatorial sequences
for which previously only the first term was known.

1991 Mathematics subject classification (Amer. Math. Soc): primary 05 A 15; secondary 05 C
30.
Keywords and phrases: Generating function, analytic identity, Weierstrass Preparation Theorem,
fractional power series, asymptotic expansion, trees, number of trees.

1. Introduction

P61ya [8] developed a technique to use an analytic identity satisfied by the
generating function of a sequence (arising in combinatorics) to asymptotically
determine the terms in the sequence. This technique was further developed and
studied by many authors including [1, 3, 5, 6]. It involves the following two
situations:
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132 J. M. Plotkin and John W. Rosenthal [2]

Situation 1
Let /„ be a sequence of nonnegative integers arising in combinatorics. Let

f(x) := X!n>o f"x" ^ *ts generating function, viewed as a function of a
complex variable. Let r be its radius of convergence.

ASSUMPTION 1. The radius of convergence r satisfies 0 < r < 1 and x = r
is the only singularity of / on its circle of convergence.

ASSUMPTION 2. The function / ( r ) converges, say to s.

ASSUMPTION 3. There is a function F(x, y), which is analytic in a neigh-
borhood of (r, s), such that x close to and less than or equal to r implies
F(x, f(x)) = 0.

NOTATION. If G(x, v) is a function, then G,,; is the value at (r, s) of the /'*
partial derivatives with respect to x of the j t h partial derivative with respect to
vofG.

ASSUMPTION 4. For some k >2, F0J = 0 for 0 < j < k and F0Jc ^ 0.

In most cases in the literature k = 2 in Assumption 4 and furthermore

ASSUMPTION 5. That F 1 0 # 0.

DEFINITION. The typical case consists of Assumptions 1 through 5 with k = 2
in Assumption 4. The general case consists of Assumptions 1 through 4 and
Assumptions 6 through 9 (presented in Section 2).

REMARK. Assumptions 6 through 9 hold in the typical case.

Situation 2
Let /„ be a sequence of nonnegative integers arising in combinatorics. Let

f(x) be its generating function. Assume there is a sequence gn with generating
function g(x) such that the general case holds for gn and f(x) differs from a
polynomial in x and g(x) by a function with a radius of convergence greater
than that of g(x).

In this paper we are interested in obtaining in both situations not only an
asymptotic formula for /„ (as in the previously cited works) but also an asymp-
totic expansion of /„. In Section 2 we show how to obtain such an expansion
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[3] Asymptotic expansions from analytic identities 133

in the general case (of Situation 1) giving special emphasis to the typical case.
We also observe how the work used to obtain asymptotic expansions in Situ-
ation 1 can also often be used to obtain asymptotic expansions in Situation 2. In
Section 3 we apply these results to obtain the first few terms in the asymptotic
expansion of combinatorial sequences for which previously only the first term
was known. In particular we study several sequences that arise in [7], and in
counting various types of trees studied in [5] and [3]. We correct errors in many
of the constants obtained in [3].

2. Abstract discussion of the two situations

2.1. Situation 1 To obtain the asymptotic expansion we show: (1) how to
convert the analytic identity into a 'polynomial' identity; (2) how to use the
'polynomial' identity to obtain a fractional power series expansion of f(x) about
r; (3) how to use the fractional power series expansion to obtain an asymptotic
expansion of /„ in terms of (a**ft) 's, where k is a nonnegative integer and a and
b are rational numbers; and (4) how to convert this asymptotic expansion into
an asymptotic expansion in terms of powers of n.

Step 1 By the Weierstrass Preparation Theorem (see, for example, [4])
Assumption 4 implies that in a neighborhood of (r, s)

) = A(x,y)-P(x,y),

where A(x, y) is analytic, A(r, s) ^ 0, and

P(x, y) = (y- s)k + J^ Pj(x)(y - s)j

7=0

where the pt(x) are analytic and vanish at x = r. It may not be possible to
determine the polynomial P. Instead we can determine the partial derivatives
Pij. These and the partial derivatives Ajj are recursively obtained from the
Ftj's as follows:

By definition POj = 0 for j ^ k and Po,* = k\.
By the product rule

p=0 q=0
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So for j < k

F'<i = E E ( ' ) ( i ) AP*r»-PJ-< + E ( a

and hence

t«-E t (;) (i
(1)
And for j > k,

Hence, (replacing j — k by j)

By induction on j + /^ Formulae (1) and (2) express the J4,,/S and the f/j's in
terms of Fp,? 's for p < / and q < j + ik.

For each j from 0 to k — 1, />;(*) can be written as £,•>,-. P/,y(l — -^/r)',
where iy- is the order of the zero of pj (x) at x = r (or +oo if pj (x) is identically
zero).

An easy computation shows

(3) ptj = ~^ for 0 < j < k - 1 and / > iy-.

Also (as observed in [6]) for 0 < j < k — 1, «7 is the least / such that F , ; ^ 0.

Step 2 By a classical result (for example, see Walker [10, Chapter 4, Sec-
tion 3]), the 'polynomial' identity P{x, f(x)) = 0 for x close to and less than
or equal to r implies that f(x) can be expressed as a fractional power series
YALI

 ai0-—x/r)Si o r Y17=i 0;(1—•*/r)s\ where s, is an increasing sequence
of rational numbers, and at ^ 0. As f(r) converges, Si > 0.

We now observe how under the weak technical Assumptions 6, 7, 8, and 9
the algorithm in Walker can be used to express the a, 's and the s, 's in terms of
the pitj's of Step 1.
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ASSUMPTION 6. That io/k is not an integer.

ASSUMPTION 7. That /,• > *0(l - j/k) for 1 < j < k - 1.

In the typical case these assumptions hold as k = 2 and i0 — 1. As observed
in [6] Assumptions 6 and 7 imply Si = io/k and g(ai) = 0, where

g(a) = a" + J^ {Pij,iai • 1 < 7 < * - 1 and ij = sx(k - j)} + piofi

ASSUMPTION 8. That g(a) = 0 has only one solution for which a/ V(-Si) is
a positive real (where F is the classical gamma function).

We choose a\ to be this solution. Assumption 8 is used in Step 3.

ASSUMPTION 9. That ax is not a multiple root of g(a) = 0.

In the typical case as observed in Bender [1] g(a) = a2 + pio and p1>0 ^ 0
and, hence, Assumptions 8 and 9 hold.

Assumption 9 tells us that the r of Walker [10, p. 100] equals 1 and hence a,
and 5, for / > 2 can be determined by the technique suggested in Walker [10,
Section 3.3]. For simplicity we illustrate this in the typical case.

Say P(x, y) = (y - s)2 + p{x){y - s) + q(x), where

p(x) = J2 Ad - x/rY and q(x) =

The fractional power series of f(x) — s has the form

c,{\ - x/

Equating coefficients of the various powers of (1 — x/r)' in P(x, f(x)), we
obtain:

(4) 2 ̂ {biCj : i+j - m and j > 1 }+^{^ ,p 7 : i+j = m and j > 1} = 0

for m > 1 (using the half integer powers);

(5) (b0)
2 + qx = 0

(using the lowest integer power); and

(6) J2 \bibJ : i ' + J = m ~ ! } + J2 iCiCJ : i + J = m > i > 1 and y > 1}
PiCj :i + j=m, i > 1 and j > 1} + qm = 0
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for m > 1 (using the remaining integer powers).
By induction and (4), c, = —pt/2. So (6) gives

,p , : i+j =m, i > 1 and; > l}+qm = 0

and, hence, (replacing m — 1 by m)

b,bj : i + j = m, i > 1 and j > 1}

+ 1/4 J^{PiPj • ' + J = m + 1, i > 1 and j > 1} - ?M+i]/26o.

By (5), &o = —V—(?i- So using (7) by induction 6m may be expressed in terms
of the pi's and the qt 's for i <m + \.

REMARK. Even if one does not make Assumptions 6 through 9, it may still
be possible to use the techniques in Walker to express the coefficients of the
fractional power series of f(x) in terms of the pitj 's. (In [6] we showed how to
obtain the first noninteger power term and its coefficient.) The only difficulty
is that one may obtain several possible fractional power series. In this case one
needs some procedure to determine which of these is the correct one.

Step 3 Next we use the following special case of a theorem of Darboux
(see [9], for example).

THEOREM. Let fn be a sequence of nonnegative integers with generating
function f(x) satisfying Assumptions 1 and 2. If for x near r, f(x) is express-
ible as the fractional power series $Z,>o a(-(l — x/r)(a+ib), where a and b are
rational numbers and b > 0, then /„ has the asymptotic expansion

Using this theorem we can obtain an asymptotic expansion of /„ in terms of
the numbers ("+'*).

In the typical case we use this theorem for a = 0 and b = 1/2. In this case it
may be stated as follows:

THEOREM. Let fn be a sequence of nonnegative integers with generating
function f(x) satisfying Assumptions 1 and 2. If for x near r, f(x) is expressi-
ble as the fractional power series Xl,>o ^iO ~ x/r)'+l/2 + 5Z/>o C<(1 ~x/r)l'>
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then fn has the asymptotic expansion

Step 4 To obtain an asymptotic expansion of /„ in terms of powers of n it
remains to obtain such asymptotic expansions of ("*'*). This may be done by
using the following asymptotic expansion form of Stirling's Formula:

lnr(z) = (z - l/2)ln(z) - z

where B, is the t'h Bernouilli number.
Specifically we note

\n )
.

i + l) F ( - a )

and apply Stirling's Formula to F(« — a) and F(n + 1). For the typical case
(obtained with the assistance of MACSYMA):

/ 2 \ _ _3_ 25 105 1659 ^ (-1)" 1

n ) ~ +Sn + 128n2 +
 1024M3 + 32768«4 + "'"

15 385 4725 s (-1)- 3

128«2 ' 1024/13 ' ' ' ' ' n5'2

35 i78£
8« 128«2

= 63
8

(-D" 945

Conclusions in the typical case
In the typical case the four steps imply that /„ has the asymptotic expansion

J2 Jn1), where Ao = ^(2FhOr/FOi2) (as in [1])

and

= [{9(Fo,2)
3F2,o - mFo,2)2FUoFia - 9(F0,2)2(f1,,)2 + l8F0.2F0.3F1.0F,,,

+ 3Fo,2Fo,4(F1,o)2 - 5(Fo,2)
3(F1,o)2}r2 + 9(Fo,2)3F1,or]/[l2(Fo,2)4Ao]
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Each At may be expressed in terms of partial derivatives of F. These expressions
for Ai grow rapidly in size as i increases. They are not worthy of display and
should only be computed using computer algebra. Nonetheless the results
of such computations can be efficiently used with further computer algebra
assistance to determine several terms of the asymptotic expansion of particular
sequences of combinatorial interest. This is done throughout Section 3.

2.2. Situation 2 Say f(x) = Q(x, g(x))+h(x), where f(x) is the generating
function of a sequence /„, Q is a polynomial in both its variables, g(x) is the
generating function of a general case sequence gn, and h(x) has a radius of
convergence greater than r, the radius of convergence of g(x).

By Steps 1 and 2 for gn, g(x) has a fractional power series about x = r. In
many cases plugging this fractional power series in for g(x) in Q(x, g(x)) gives
a fractional power series which has some noninteger powers of (1 — x/r). As
h(x) is analytic &tx = r, applying Steps 3 and 4 to this new fractional power
series gives an asymptotic expansion of /„.

3. Some sequences of combinatorial interest

All sequences considered in this section are ones in the typical case for which
the first order term in the asymptotic expansion is already known.

3.1. Several sequences from [6] In [6] we introduced several sequences
including #„, un, and mn in a study of the expected complexity of an analytic
tableaux algorithm for the satisfiability problem of propositional calculus. That
paper shows that the generating functions satisfy the identities:

u(x) = 1 + 2XJJ(X)M(X) + X(M(JC))2; and

m(x) = 1 + 2x#(x)m(x) + 2x(u(x))2 + x(m(x))2.

It obtains the first order terms of an asymptotic expansion of each of these
sequences.

Also we observed that % = 2ncn, where cn is the n'h Catalan number. As
is well known, cn = (l/(2n + l))(2"n

+I) and, hence, asymptotic expansions
of cn and JJB can be determined by using the asymptotic expansion version of
Stirling's Formula. Alternately the same asymptotic expansions can be obtained
using Steps 2 through 4. Similarly asymptotic expansions of «„ and mn can be
obtained using these steps. With computer algebra we obtained.
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THEOREM 1. (a) #„ has the asymptotic expansion

g^-3/2 9 145 1155 36939

8^ + + + )128«2 1024«3 + 32768«4

(b) un has the asymptotic expansion

9^(1.465807536 - 2^778259 + 1L27984705
n n2-

182.6175746 4914.966960
+ 3 + j + . . . ) ;

(c) mn has the asymptotic expansion

^ ^ ( 2 . 0 2 0 8 7 0 2 3 9 + ^
n nA

194.4880010 3562.577082
+ -3 + 5 + . . . ) ,

n5 rr
where fi = ( -13 + W 2 ) / 5 2 9 .

It is interesting to see in each case how the higher order terms affect the
accuracy of estimates.

Precise
value

Approximations (rounded to nearest integer)
First Second Third Fourth Fifth
order order order order order

10 I 17199104 19156887 17001737 17218749 17197141 17199301

For |JB at n = 100 each of the first five orders of approximation increases the
accuracy by about two decimal places. (Intuitively we should expect this as the
coefficients obtained in the expansion are all roughly the same).

n
10

Precise
value
ofun

135733168

First
order

Approximations
Second
order

161622583 155561737

(rounded to nearest integer)
Third
order
167999099

Fourth Fifth
order order
188134843 242328155

Intuitively the accuracy is so poor because the coefficients increase so rapidly.
On the other hand by n — 70, the fifth order approximation is accurate to 4
places and is better than any of the first through fourth order approximations.

The numerical evidence for the accuracy of the approximations of mn is quite
similar to that for un.
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3.2. Trees P61ya [8] and Otter [5] studied the number of trees. (See also [1]).
Let bn be the number of planted unlabelled binary trees with n terminal nodes;

let tn be the number of unlabelled trees with n vertices; and let rn be the number
of rooted unlabelled trees with n vertices.

The above authors derived the following generating function identities:

b(x) = x + l/2((b(x))2 + b(x2)));

r(x) — x exp I Y^ r(x")/n J ; and
\n>l /

t(x) = r(x) - l/2((r(x))2 - r(x2)).

They also determined the radii of convergence of the generating functions and
the first order terms of asymptotic expansions. Using Steps 2 through 4 for bn,
Steps 1 through 4 for rn, and the procedure in Section 2.2 for tn, we obtained
with computer algebra:

THEOREM 2. (a) bn has the asymptotic expansion

^n-3/2(0.3187766259 + ° ^ ! Z ! ? Z + 0J682702316
n n1

where 0 = 0.4026975037.
(b) rn has the asymptotic expansion

1.476819367

-"/T 3/2(0.4399240126
0.04416990184 0.2216928060 0.8676554908

n
• + • • + •

and tn has the asymptotic expansion

p-"«"5/2(0.5349496061 +
0.4853877311 2.379745574

where p = 0.3383218569.

Here is some numerical evidence of the improvement in accuracy from the
use of higher order terms.

n
20

Precise
value
0SbH

293547

Approximations (rounded to nearest integer)
First
order
283376

Second Third
order order
292436 293254

Fourth
order
293418

n
18

Precise
value
ofrn

1721159

Approximations (rounded to nearest integer)
First
order
1708154

Second
order
1717682

Third
order
1720338

Fourth
order
1720916
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18

Precise
value
oftn

123867

Approximations (rounded to nearest integer)
First Second Third
order order order
115396 121213 122797

3.3. Special Types of Trees In [3] the authors study: Un, the number of noni-
somorphic identity rooted trees on n points; un, the number of free identity trees
on n points; //„, the number of nonisomorphic planted homeomorphically irre-
ducible trees on n points; hn, the number of free homeomorphically irreducible
trees of order n; Cn, the number of nonisomorphic planted blocky trees on n
points; and cn, the number of free blocky trees of order n. They use the gener-
ating function identities for U(x), u(x), H{x), h(x), C(x), and c(x) (formulae
(1), (2), (7), (8), (12), and (13) of [3]) to determine the radii of convergence of
the generating functions and the first order terms in asymptotic expansions. ((1),
(2), (7), and (8) are originally from [2].) Using Steps 1 through 4 for Un, Hn,
and Cn, and the procedure in Section 2.2 for un,hn, and cn, we obtained with
computer algebra:

THEOREM 3. (a) Un has the asymptotic expansion

^"(0 .3625364234 - P * 0 4 4 4 2 6 6 1 6 . 0-2410458974 _ H ^ « 3 8 +

and un has the asymptotic expansion

^---^(0.2993882875 - 2 ),
n n2-

where fi = 0.3972130969.
(b) Hn has the asymptotic expansion

„ V 2 0.1320316948 0.6099539181 2.983030203
^-"«-3/2(0.4213018529 H H -I h . . . ) ,

n nl nJ

and hn has the asymptotic expansion

n n 5/2,n*OAAA^n™ 1-863425043 11.23522366
0-"«-5/2(O.684447272O + — + + . . . ) ,

n no-
where 0 = 0.4567332096.

(c) Cn has the asymptotic expansion

y-«n^(0.3687229874-°-°2892358469 + °05"8f37958
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and cn has the asymptotic expansion

0.033901824744 0.3502928548+

[ 12]

y ( . 3 1 4 9 7 8 2 0 9 3 )
n nl

where y =0.2225111687.

REMARK. The above theorem shows that [3] incorrectly computed [i by about
1/2%, and incorrectly computed the coefficients of all first order terms.

Here is some numerical evidence of the improvement in accuracy from the
use of higher order terms.

n
20

Precise
value
oiUn

416848

Approximations (rounded to nearest integer)
First
order
423970

Second Third
order order
417863 417159

Fourth
order
416973

n
20

Precise
value
of«n

16104

Approximations (rounded to nearest integer)
First
order
17506

Second
order
16486

Third
order
16291

n
20

Precise
value
of//,,
30802

Approximations (rounded to nearest
First
order
30185

Second
order
30658

Third
order
30768

Fourth
order
30794

integer)

n
20

Precise
value
of*B

2988

Approximations
First
order
2452

Second
order
2786

(rounded to nearest
Third
order
2886

integer)

n
10

Precise
value
ofC
38982

Approximations
First
order
39191

Second
order
38883

(rounded
Third
order
38947

to nearest
Fourth
order
38973

integer)

n
10

Precise
value
ofcn

3424

Approximations
First
order
3348

Second
order
3312

(rounded
Third
order
3349

to nearest integer)
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With the exception of cn we see substantial improvement as the order of ap-
proximation is increased. For cn the following holds. By n — 20 the first
order approximation is larger than the precise value; by n = 30 the second
order approximation is a slight improvement on the first order approximation;
by n = 60 the second order approximation is a significant improvement on the
first order approximation; and in all these cases the third order approximation is
significantly better than the second order approximation.
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