# A TYPE OF QUASI-FROBENIUS RING 

Edmund H. Feller ${ }^{(1)}$<br>(received August 25, 1966)

1. Introduction. In [3], the author proved that a ring $R$ with identity is right noetherian and right injective if and only if $R$ is a direct sum of a finite number of uniform right ideals, which are completely primary in the sense of that paper. In this paper, we shall determine the structure of such rings in the case where the sum of the isomorphic uniform components are twosided ideals. The ring is found to be a direct sum of total matrix rings over local rings. The local rings are shown to be completely indecomposable, i.e., right and left artinian together with right and left uniform. This result reinforces Morita's suggestion [8, p.121] of a close connection between completely indecomposable systems and injective systems. Not all quasiFrobenius rings have this decomposition, as shown by an examination of an example of Nakayama. Theorem 2.8 shows this decomposition is unique, while Theorem 2.9 is the converse.

In the third section the essential properties of a local ring ( $R, M$ ) where $M$ is a principal right ideal, and $R$ is right injective, are investigated. This ring will be completely indecomposable, if M is also a principal left ideal.

The last section lists a few remaining problems.
2. Noetherian and injective X-rings. In this paper the ring $R$ will always have an identity. The definitions and notations of [3] will be used throughout this paper. We begin with a lemma which generalizes 6.3 of [ 3 , p.137].
2.1 LEMMA. Let $U$ and $V$ be nonzero right $R$ modules,

[^0]Canad. Math. Bull. vol. 10, no. 1, 1967.
where $U$ is injective and $V$ is uniform. If $\alpha$ is an $R$ monomorphism of $U$ into $V$, then $\alpha$ is an isomorphism.

Proof. We have $\alpha U \cong \mathrm{U}$ and $\alpha \mathrm{U} \subseteq \mathrm{V}$. Define $\beta: \alpha \mathrm{U} \rightarrow \mathrm{U}$ by $\beta(\alpha u)=u$. Since $U$ is injective, $\beta$ extends to $\beta^{*}: V \rightarrow U \rightarrow 0$, which is exact. Now $\beta^{*} \alpha=1$, the identity mapping on $U$. Thus $\mathrm{V}=\operatorname{Im} \alpha \oplus$ Ker $\beta^{*}$. Since $\operatorname{Im} \alpha \neq 0$ and $V$ is uniform, then Ker $\beta^{*}=0$. Thus $\beta^{*}$ is an isomorphism of $V$ onto $U$ with inverse $\alpha$. Hence $\alpha$ is an isomorphism.
2.2 DEFINITION. A ring $R$ is called an X-ring provided it satisfies the condition: Let $e_{i}, e_{j}$ be distinct primitive idempotents. If $e_{i} R \neq e_{j} R, a \in e_{i} R$, and $a^{r} \cap e_{j} R \neq 0$, then $a e_{j} R=0$.
2.3 THEOREM. If $R$ is a right noetherian, right injective $X$-ring, then $R$ is a direct sum of twosided ideals $A_{i}$, where the $A_{i}$ are right noetherian and right injective over $A_{i}$ and, in addition, $A_{i}$ is a total matrix ring over a local ring $(D, M)^{1}$, where $M$ is nil and $D$ is right noetherian.

Proof. From 6.4 of [3, p.137], we have that $R=e_{i} R \oplus \ldots \oplus e_{n} R$, where $e_{i} R$ is uniform and injective over R. Let $A_{1}$ be the direct sum of these uniform right ideals, which are isomorphic (as $R$ modules) to $e_{1} R$, and $A_{2}$ be the direct sum of the next set of isomorphic right ideals. We continue until $R=A_{1} \oplus A_{2} \oplus \ldots \oplus A_{r}$. To show that $A_{i}$ is a twosided ideal, we shall prove that $e_{j} R e_{i} R=0$, for $e_{i} R$ a member of $A_{i}$ and $e_{j} R$ a member of $A_{j}$, for $i \neq j$.

For arbitrary $a \in R$, we define the mapping $\alpha: e_{i} R \rightarrow e_{j} R$ by $\alpha\left(e_{i}\right)=e_{j} a e_{i}$. If Ker $\alpha=0$, then by $2.1, e_{i} R \cong e_{j} R$ which is impossible. Hence Ker $\alpha \neq 0$, and $e_{j} a_{i} a^{\prime}=0$ for some nonzero element $e_{i} a^{\prime} \in e_{i} R$. Thus $\left(e_{j}\right)^{j} \bigcap^{i} e_{i} R \neq 0$ for arbitrary

[^1]$a \in R$. Since $R$ is an $X$-ring, $\left(e_{j} a\right) e_{i} R=0$ for arbitrary $a \in R$. Hence, $e_{j} R e_{i} R=0$.

The fact that $R$ is noetherian and injective if and only if each $A_{i}$ is right noetherian and right injective over $A_{i}$ follows as in [3]. From prop. 5 and prop. 6 of [6, p.52], we have that each $A_{i}$ is a total matrix ring over the ring $D_{i}=e_{i} R e_{i}$, where $e_{i} R$ is one of the uniform components of $A_{i}$.

Now $D_{i}$ is local with maximal ideal $M_{i}=\left\{a \in D_{i} \mid a^{n}=0\right\}$ by [3, p.137]. ${ }^{1}$ Q.E.D.

Let $N_{i}=\left(M_{i}\right)_{n}$, the $n \times n$ matrices with elements in $M_{i}$. Then $N_{i}$ is the Wedderburn and Jacobson radical of $A_{i}$. Thus the Wedderburn and Jacobson radical of $R$ is $N_{1} \oplus \ldots \oplus N_{n}$ 。

Let us now look at the local ring $D_{i}$. Now $A_{i}$ will be right noetherian and right injective over $A_{i}$ if and only if $D_{i}$ is right noetherian and right injective over $D_{i}$. The injective property can easily be shown by using § 2 of [10]. Thus $\left(D_{i}, M_{i}\right)$ is a right injective and right noetherian ring, where the not nil elements are units. Hence, $D_{i} / M_{i}$ is a division ring and since $M_{i}$ is nilpotent and finitely generated, one can easily construct a composition series for $D_{i}$. Thus $D_{i}$ is right artinian. (This is the method of 5.5 in [5, p.94]). Since $D_{i}$ is indecomposable and right injective, it is then right uniform. Applying the important theorem 11.2 of Morita [8, p.122], we have that $D_{i}$ is completely indecomposable in the following sense.
2.4 DEFINITION ${ }^{2}$. A ring $R$ is termed completely in-

[^2]${ }^{2}$ See [2] for the definition for modules.
decomposable provided (1) $R$ is right and left noetherian and artinian (2) $R$ is right and left uniform.

We shall now write two theorems which characterize the local rings of the type $D_{i}$.
2.5 THEOREM. Let (R, M) be a local right Noetherian ring and $M$ be the nilideal; then $R$ is completely indecomposable if and only if $R$ is right injective.

Proof. Since $R$ is local, it is indecomposable. The proof now follows directly from theorem 11.2 of [8, p.122] and the preceding discussion.

The following also follows from [8, p.122].
2.6 THEOREM. Let $R$ be right noetherian and right artinian. Then $R$ is completely indecomposable if and only if (1) the ring $(R, M)$ is a local ring, where $M$ is the nil radical. (2) $R$ is right uniform and right injective.

Since $D_{i}$ is completely indecomposable, it is quasiFrobenius. By problem 2 on [1, p.402], then $A_{i}$ is quasiFrobenius. We have shown
2.7 DECOMPOSITION THEOREM. If $R$ is a right noetherian, right injective X -ring, then R is quasi-Frobenius and a direct sum of a finite number of two-sided ideals each of which is a total matrix ring over a completely indecomposable ring.

For 2.7 we have the following strong uniqueness theorem.
2.8. UNIQUENESS THEOREM. Let

$$
R=\oplus \sum_{i=1}^{n} A_{i}=\oplus \sum_{i=1}^{m} A_{i}^{\prime}
$$

be two decompositions of $R$ as in 2.7. Then $m=n$ and each $A_{i}$ is an $A_{j}^{\prime}$.

Proof. Since $A_{i}$ is a total matrix ring over a local ring with nil maximal ideal, then the only proper two sided ideals are
nil. Hence, the $A_{i}$ are indecomposable as two-sided ideals. The result now follows from 55.2 of [1, p.378].

For 2.7 we have the following converse which applies when $R$ is quasi-Frobenius.
2.9 CONVERSE THEOREM. Let $R$ be a ring which is right noetherian and artinian. If $R$ is the direct sum of twosided ideals $A_{i}$ each of which is the direct sum of the isomorphic indecomposable components, then $R$ is an X-ring.

Proof. If $e$ is a primitive idempotent in $A_{i}$, then $e R$. is indecomposable [1, p.369]. By the Krull-Schmidt Theorem [1, p.83], we have that $e R$ is isomorphic to each of the components of $A_{i}$. Thus, if $e$ and $f$ are primitive idemponents and $\mathrm{eR} \neq \mathrm{fR}$, then they must be in different two sided ideals. Therefore $e R f R=0$ and $R$ is an $X$-ring.

Thus if one constructs $R$ as a direct sum of total matrix rings over completely indecomposable rings, we have a quasiFrobenius X-ring. Note that in this case, ${ }^{1} \mathrm{E}_{\mathrm{ii}} \mathrm{R}$ has only one idempotent since $R$ has only one idempotent. Thus $E_{i i}$ is a primitive idempotent. ${ }^{2}$

Not every quasi-Frobenius ring will be an X -ring. Consider the example of Nakayama [9, p.624]. Let $R$ be the set of all matrices of the form
$\left[\begin{array}{llllll}a_{11} & a_{12} & c_{1} & 0 & 0 & 0 \\ a_{21} & a_{22} & c_{2} & 0 & 0 & 0 \\ 0 & 0 & b & 0 & 0 & 0 \\ 0 & 0 & 0 & b & d_{1} & d_{2} \\ 0 & 0 & 0 & 0 & a_{11} & a_{12} \\ 0 & 0 & 0 & 0 & a_{21} & a_{22}\end{array}\right]$

[^3]where the elements are in a field of characteristic 0 . Let $E_{i j}$ denote a matrix with 1 in the ( $\mathrm{i}, \mathrm{j}$ ) position and zero elsewhere. If $e_{i}=E_{11}+E_{55}, e_{2}=E_{22}+E_{66}$, and $e_{3}=E_{33}+E_{44}$. Then $R=e_{1} R \oplus e_{2} R \oplus e_{3} R$ is the decomposition of [3, p. 137]. Now $e_{1} R \cong e_{2} R \not \approx e_{3} R$. (Use Prop. 4 of $[6, p .51]$ to establish this). However, neither $e_{1} R \oplus e_{2} R$ nor $e_{3} R$ are two-sided ideals.
3. Local rings where $M$ is principal. In this section we shall discuss properties of a local ring ( $R, M$ ), where $M=p R$, a principal right ideal.
3.1 LEMMA. Let ( $\mathrm{R}, \mathrm{M}$ ) be a local ring. For nonzero $a, b \in M$ we have $a R=b R$ if and only if $a=b u$, where $u$ is a unit of $R$.

Proof. If $a R=b R$, then $a=b r$ and $b=a s$. Thus $a=$ asr. If $r$ or $s$ is in $N$, then the relation $a(1-s r)=0$ implies $a=0$. Thus $r$ and $s$ are units.
3.2 DEFINITION. A non unit $p$ of a ring $R$ is termed irreducible, provided $p=a b$ implies either $a$ or $b$ is a unit.
3.3 PROPOSITION. If ( $R, M$ ) is a local ring and $M=p R$, then p is irreducible.

Proof. Let $\mathrm{p}=\mathrm{ab}$. If b is not a unit, then by 3.1, $p R \subset a R$. This implies $a R=R$ and $a$ is a unit.
3.4 LEMMA. Let ( $R, M$ ) be a local ring. If $0 \neq a=q^{k} u$, where $u$ is a unit and $q \in M$, then this factorization is essentially unique.

Proof. If $a=q^{k} u=q^{m} v$ for $k>m$, then $q^{m}\left(1-q^{k-m} w\right)=0$. This implies $a=0$.
3.15 THEOREM. If ( $R, M$ ) is a local ring and $M=p R$, then every $a \in M$ has an essentially unique factorization $a=p^{n} u$, where $u$ is a unit, if and only if $\bigcap_{m=1}^{\infty} p^{m} R=0$.

Proof. Suppose $\bigcap_{m=1}^{\infty} p^{m} R=0$. If $0 \neq a \in M$, then
$a=p d$. If $d$ is not a unit, then $d=p e$ and $a=p^{2} e$. This process must end or a would be in $\bigcap_{m=1}^{\infty} p^{m} R=0$. The converse follows from 3.4.
3.6 COROLLARY. If $H$ is a proper right ideal of ( $R, M$ ), then $H=p^{n} R$ for some integer $n$ and thus $R$ is right noetherian. Thus if M is nil, it is nilpotent.

Proof. Let $n$ be the least positive integer such that $p^{n} u \in H$. Then $H \subseteq p^{n} R$. Since $p^{n} u \in H$, then $p^{n} \in H$ and $H=p^{n} R$.
3.7 PROPOSITION. Let ( $R, M$ ) be a local ring and $M=p R$. Then $\bigcap_{n=1}^{\infty} p^{n} R=0$ for each of the following conditions.
(a) M is nil.
(b) R is left noetherian.

Proof. The first condition is obvious. Suppose R is left noetherian. If $a=p b$ and if $b$ is not $a$ unit $R a \subset R b$ and $b=p d$. If $d$ is not a unit then $R b \subset R d$. This process must end by the left noetherian condition. Thus $a=p n$, and our result follows from 3.4.
3.8 PROPOSITION. Let ( $R, M$ ) be a local ring, where $M$ is a nil ideal and $M=p R$. Then for every right ideal $p^{k} R$, we have $\left(p^{k} R\right)^{l r}=p^{k} R$.

Proof. Let $\mathrm{p}^{\mathrm{n}}=0, \mathrm{p}^{\mathrm{n}-1} \neq 0$. Let $\mathrm{H}=\mathrm{p}^{\mathrm{k}} \mathrm{R}$. Then $\left(p^{k} R\right)^{1} \ni p^{n-k}$. Suppose $d>1$, then $p^{k-d} p^{n-k}=0$ implies $p^{n-d}=0$, a contradiction.
3.9 THEOREM. Let ( $R, M$ ) be a local ring and $M=p R$ be nil. Then $R$ is quasi-Frobenius if and only if $p R=R p$. In addition, R is completely indecomposable.

Proof. The fact that $R$ is quasi-Frobenius follows from the preceding discussion and the definition of a quasi-Frobenius
ring as given in [1]. If now $R$ is quasi-Frobenius, then $(R p)^{r l}=R p$. Now $(R p)^{r}=p^{n-1} R$, which is a two-sided ideal. ${ }^{1}$ Hence $\left(p^{n-1} R\right)^{1}=p R$ and $R p=p R$. The fact that $R$ is completely indecomposable follows since the ideals are linearly ordered by inclusion. This type of ring is referred to as a valuation ring in the literature.
3.10 THEOREM. Let ( $R, M$ ) be a local ring and $M=p R$ be nil. If $R$ is right noetherian and right injective, then it is completely indecomposable.

Proof. Since $R$ is right injective, then $(R p)^{r l}=R p$. From the proof of 3.9 we can conclude that $p R=R p$. Now apply theorem 3.9.

Not in all local right noetherian rings does $M=p R$ imply $M=R p$. Following Goldie [4], consider ( $R, M$ ) as the set of all elements of the form $a+x b$, with $x^{2}=0$, $a x=x \bar{a}$, where $\mathrm{a} \rightarrow \overline{\mathrm{a}}$ is an isomorphism of the coefficient field F , which is not an automorphism. Then $x R=M$, but $R x \neq x R$. Note that if the mapping is an automorphism, then $R$ is completely indecomposable.

Not every completely indecomposable ring ( $R, M$ ) has the property that $M=p R=R p$. See for example $3^{\prime} .2$ of [2, $p .357$ ].
4. Problems. We conclude this paper with a few problems.
4.1 Are the results in this paper and [3] true if one uses only a restricted chain condition as given in [4]?
4.2 For what class of finite groups are the group rings quasiFrobenius $X$ rings?
This is obviously true for a finite commutative group. For if $R$ is commutative in 2.7 , then $R$ is a direct sum of completely indecomposable rings which are two-sided ideals.
4.3 Determine the properties of completely indecomposable rings and matrix rings over completely indecomposable rings. See [2] and [8] for some properties.
${ }^{1}$ Here $p^{n}=0, p^{n-1} \neq 0$.
4.4 Determine the properties of modules over quasi-Frobenius $X$ rings.
4.5 Theorem 2.7 shows that the ring of endomorphisms of the uniform components is completely indecomposable. Is this true for arbitrary uniform and injective modules with chain conditions?

## REFERENCES

1. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras. Interscience Publ. (1962).
2. E.H. Feller, The lattice of submodules of a module over a noncommutative ring. Trans. Amer. Math. Soc. 81 (1956) pages 342-357.
3. E.H. Feller, Noetherian modules and noetherian injective rings. Tohoku Math. Jr., Vol. 17 (1965), pages 130-138.
4. A. W. Goldie, Semi-prime rings with maximum condition. Proc. London Math. Soc., 8 (1958), pages 589-608.
5. I. N. Herstein, Topics in ring theory. Math lecture notes, U. of Chicago (1965).
6. N. Jacobson, Structure of rings. Amer. Math. Soc. Colloq. Publ. Vol. 37 (1956).
7. J. Lambek, On the ring of quotients of a noetherian ring. Canad. Math. Bull. vol. 8, no. 3, April (1965), pages 279-290.
8. K. Morita, Duality for modules and its applications to the theory of rings with minimum conditions. Science reports of the Tokya Kyoiku Daigaku, Vol. 6, No. 150 (1958), pages 83-142.
9. T. Nakayama, On Frobenius algebras I. Ann. of Math. 40 (1939), pages 611-633.
10. L. Levy, Torsion free and divisible modules over nonintegral domains. Canad. Jr. of Math. Vol. 15 (1963), pages 132-151.

University of Wisconsin-Milwaukee


[^0]:    ${ }^{1}$ Research supported by the N.S.F. under grant GP - 4453.

[^1]:    ${ }^{1}$ The symbol ( $D, M$ ) will denote a local ring $D$ with maximal right ideal equal to $M$.

[^2]:    ${ }^{1}$ That each $A_{i}$ is a total matrix ring over a local ring also follows from Lambek [7, p. 285].

[^3]:    ${ }^{1}$ See next example for notation $E_{i i}$ 。
    ${ }^{2}$ This also follows from 54.9 of [1, p.372].

