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Extending the reach of Lagrangian analysis in
turbulence
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The hypothesis in the classical Kolmogorov picture of turbulence with perhaps the most
far-reaching consequences is that of universality, the notion that small-scale turbulence
dynamics are independent of the way the turbulence was generated. The assumption
of universality can be evaluated by comparing measurements taken in many kinds of
flows. However, up to now the range of flows that can be used to study universality
from a Lagrangian viewpoint has been highly constrained, because large-scale Eulerian
inhomogeneity manifests as Lagrangian non-stationarity. The recent work of Viggiano
et al. (J. Fluid Mech., vol. 918, 2021, A25) significantly extends this range by showing how
the dynamics along Lagrangian trajectories can be continuously renormalised using local
Eulerian scales, at least in flows whose development is self-similar. They demonstrate their
results on a turbulent jet, a classical flow that is well studied from the Eulerian perspective,
though not in a Lagrangian sense. Their work provides an exciting roadmap for expanding
the scope of Lagrangian analysis of turbulent flows.
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1. Introduction

Turbulence remains one of the most challenging problems in physics and engineering,
largely owing to its vast complexity. Grasping the full multi-scale structure of its violently
fluctuating but not fully random dynamical properties is daunting. Thus, it has proved
useful to examine turbulence from as many perspectives as possible. Such perspectives
can take many forms. We can take a statistical approach to turbulence in the spirit
of Kolmogorov (Frisch 1996), for example, or instead consider it as the outcome of
the interaction of dynamically generated coherent structures (Hussain 1986). We can
measure the spatial structure of turbulence in an Eulerian approach, or instead consider
the spatiotemporal dynamics of fluid elements from a Lagrangian perspective. Finally,
we can also study turbulence generated in different ways and in different geometries, to
try to tease out common features that are independent of the driving forces or boundary
conditions. This last aspect is often underappreciated, but its importance for understanding
turbulence should not be discounted; before we can agree on what turbulence is, we need
to be sure we are all studying the same phenomenon.
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Comparing measurements taken in different kinds of turbulent flows is necessary for
assessing the hypothesis of universality, namely the notion (as introduced by Kolmogorov
1941) that, at least at small scales and at high Reynolds numbers, the statistical properties
of all turbulent flows are the same. Although it does not have the same clear practical utility
as the other Kolmogorov hypotheses and cannot directly be used to predict scaling laws,
the assumption of universality has far-reaching consequences. Any hope of developing
a single theory or model of turbulence ultimately rests on universality. Like the vast
majority of empirical work in turbulence, universality has primarily been investigated
from an Eulerian perspective. Comparisons of various turbulence properties such as the
Kolmogorov constant in the energy spectrum (Sreenivasan 1995) or the scaling exponents
of the Eulerian velocity structure functions (Arnèodo et al. 1996) across many different
kinds of turbulent flows largely appear to support universality, at least within measurement
and statistical uncertainty. More subtle investigations, however, have suggested that
universality is not perfect, and that instead, the structure of the large scales may indeed
affect the small-scale turbulence properties (Blum et al. 2011).

We might expect to see stronger signatures of the possible breakdown of universality
if we take a Lagrangian viewpoint and consider the properties of turbulence along the
trajectories of fluid elements. In doing so, we gain information not just on the structure
of the flow field but also on how fluid elements sample it; this additional facet builds
in dynamics in an essential way. It is reasonable to conjecture that distinctions in the
dynamical process of energy passing from large to small scales in different flows may be
more evident by explicitly incorporating such dynamics into our thinking. As a practical
matter, however, taking a Lagrangian approach introduces its own challenges, and to
date the range of flows that have been investigated from a Lagrangian standpoint has
been highly restricted. Compendia of Lagrangian statistics are limited to a few types of
low-mean-flow experimental set-ups and direct numerical simulations of homogeneous
isotropic turbulence in periodic boxes (Arnèodo et al. 2008).

One of the primary reasons for these limitations is the difficulty in dealing with
inhomogeneity or spatial development of the flow field, both of which necessarily imply
a lack of statistical stationarity along trajectories. As a fluid element moves downstream
in a turbulent jet, for example, it samples a flow for which the scales are ever-changing
owing simply to the development of the large scales and not to the turbulence dynamics.
This may seem an insurmountable problem. But now, drawing on old but largely untested
ideas from Batchelor (1957), Viggiano et al. (2021) has given us a roadmap for how we
might extend Lagrangian analyses to a large new class of turbulent flows: those that are
inhomogeneous but self-similar, including jets, wakes, mixing layers and so forth. And
along the way, Viggiano et al. (2021) also give us some of the first precise measurements
of several key Lagrangian turbulence quantities in such flows.

2. Overview

Batchelor (1957) specifically considered how one might modify Taylor’s celebrated
theory of turbulent diffusion (Taylor 1922) to handle free shear flows. Taylor linked
the displacement of fluid elements leaving a point source to the Lagrangian two-point
correlation function (or equivalently, and perhaps more saliently from the standpoint of
small-scale turbulence dynamics, the second-order Lagrangian structure function). Both
the short- and long-time limiting behaviour of turbulent diffusion from this point source
can then be captured knowing only the velocity variance and the Lagrangian correlation
time, with no need for any further details of the turbulence. Taylor’s theory, however,
requires that the Lagrangian dynamics be stationary; if the properties of the velocity field
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change along trajectories, then his arguments do not hold. Stationarity in turn requires
statistical homogeneity, so that as fluid elements move away from their source, they keep
sampling realisations of the same velocity field. Unfortunately, despite the ubiquity of
homogeneous flows in academic studies of turbulence, a vast range of realistic flows
(including many where one might want to use Taylor’s theory) are not homogeneous.

Batchelor’s insight was to conjecture that the problems introduced by inhomogeneity
are not necessarily insurmountable, as long as the flow field that the fluid elements
experience as they move along their trajectories changes in a known and predictable way.
In that case, velocity and time can be continually renormalised along the trajectories
so that the (modified) random process representing the fluid-element velocity becomes
stationary. Batchelor (1957) reasoned that turbulent free shear flows such as jets, wakes
and mixing layers are ideal cases where this renormalisation process can be accomplished,
for two reasons. First, such flows typically have a significant mean velocity, meaning
that fluid elements are dominantly advected downstream in a predictable way. And
second, they develop self-similarly (Pope 2000), so that the turbulent fluctuations at any
downstream location can be mapped on to those at any other location by a known rescaling.
Appealingly, one only needs to know the Eulerian properties of the flow, such as the local
velocity variance and correlation time, which are well characterised, to implement this
rescaling.

Elegant though these ideas are, they have been subjected to very little direct testing
(as is unfortunately common for Lagrangian theories, given the historical challenges
associated with Lagrangian measurements (Yeung 2002; Toschi & Bodenschatz 2009)),
and therefore, as discussed above, the variety of flows used for Lagrangian studies remains
highly circumscribed. To address this lack of validation, Viggiano et al. (2021) made
measurements using Lagrangian particle tracking in a turbulent round jet so that they
could directly evaluate how well Batchelor’s proposed renormalisation performed in a real
setting. At the same time, they generalised his work: whereas Batchelor (1957) assumed
the known self-similar development of a round jet, Viggiano et al. (2021) simply used the
directly measured Eulerian properties. Although this renormalisation was not perfect in the
near field of the jet, it worked very well in the far field, where both Lagrangian structure
functions and correlation functions computed for tracer particles moving through small
spatial regions at different downstream locations collapsed after velocity and time were
renormalised.

Viggiano et al. (2021) were not only able to test Batchelor’s ideas, but given the
success of the renormalisation procedure, they were also able to add measurements
in this inhomogeneous flow environment to the compendium of Lagrangian turbulence
knowledge, just as data from turbulent jets have long been used in Eulerian studies
(Sreenivasan 1995; Arnèodo et al. 1996). In particular, they measured C0, the Lagrangian
structure function scaling constant, which is a key parameter in models of turbulent
transport (Sawford 1991). Although they found C0 values of the same order of magnitude
as in previous studies, the range of reported values is still too large to rule out a systematic
dependence on the large-scale features of the flow (and therefore a lack of universality).
Viggiano et al. (2021) also explored the Lagrangian acceleration in the jet, though their
measurements were affected by the finite size of their tracer particles.

3. Future

The results of Viggiano et al. (2021) give us a framework for how to incorporate a
whole new class of flows into what we can analyse from a Lagrangian vantage point.
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This represents an important step forward; without comparing the properties of turbulence
generated in different ways, there is no way to assess our foundational assumptions
of turbulent universality. And because Lagrangian analysis incorporates the multipoint,
multiscale dynamics of turbulence in an essential way, there is reason to believe
that violations of universality may be more apparent in a Lagrangian context, further
underscoring the value of this work. Additional measurements of Lagrangian quantities
such as C0 and the acceleration variance scaling constant a0 in a variety of flows are
certainly needed. The values reported by Viggiano et al. (2021) are consistent with, though
different in detail, from what has been found in other, more homogeneous flows. It remains
to be seen how much of the discrepancy can be ascribed to measurement challenges and
how much is due to differences in the flows themselves.

More broadly, the results of Viggiano et al. (2021) also represent another promising step
in the longstanding quest to link the Eulerian and Lagrangian descriptions of turbulence
(Borgas 1993; Chevillard et al. 2003; Biferale et al. 2004). Doing so has proved to be very
challenging; yet, if we actually understood turbulence, it is something we ought to be able
to do. Viggiano et al. (2021) have now shown us how to rescale the Lagrangian evolution
with Eulerian values in self-similarly developing flows; it will be interesting to try similar
ideas in more generally inhomogeneous cases.
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