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Abstract. The differential equations describing stellar oscillations are transformed into an algebraic 
eigenvalue problem. Frequencies of adiabatic oscillations are obtained as the eigenvalues of a banded real 
symmetric matrix. We employ the Cowling-approximation, i.e. neglect the Eulerian perturbation of the 
gravitational potential, and, in order to preserve selfadjointness, require that the Eulerian pressure 
perturbation vanishes at the outer boundary. For a solar model, comparison of first results with results 
obtained from a Henyey method shows that the matrix method is convenient, accurate, and fast. 

1. Introduction 

Stellar oscillations can be described as solutions of linear equations which are obtained 
from a perturbation of the equations of the internal constitution of stars. The Henyey 
method (Henyey etal., 1964) which has been employed in most cases to solve these 
equations, requires an explicit first guess at the eigenfrequency, which then is improved 
by iteration. However, it often turns out that the desired eigenvalue is not found, inspite 
of a rather close guess. In the present contribution we therefore use a different method. 
We transform the system of equations (Section 2A) into an algebraic eigenvalue problem 
(Section 2B). Castor (1971) has described such a method for radial oscillations. Here 
we consider the general non-radial case; but unlike Sobouti (1977), who expanded the 
solutions in terms of complete sets of basis functions, and then obtained the algebraic 
eigenvalue problem via the Rayleigh—Ritz variational scheme, we employ here only the 
usual expansion into spherical harmonics and use a difference scheme for the radial part. 
Since we restrict ourselves to the adiabatic case, our matrix will be real and symmetric. 
A special consideration will be devoted to the choice of boundary conditions 
(Section 2C), which must not be in conflict with the self-adjointness, i.e. energy-
conservation, of the system. 

Standard routines can be employed to obtain all n eigenvalues of a n2 matrix. 
Although these also use iteration techniques, they do not in general depend on explicit 
first guesses, and, in addition, are extremely rapid, in particular if- as in our case - the 
matrix has a band structure. We report first results in Section 3, and compare them to 
results obtained with the Henyey method. 
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2. The Eigenvalue Problem 

A. D I F F E R E N T I A L EQUATIONS 

We consider Lagrangian perturbations bp,bp..., and Eulerian perturbations p, , /> , . . . , 
both proportional to exp(zco?). Adiabatic oscillations of small amplitude are described 
by 

^ = V a d ^ (1) 

and by the conservation of momentum and mass, 

w2br=-^VP0+-VPl, (2) 
Po Po 

bp 

Po 
1-br (3) 

(e.g. Ledoux and Walraven, 1958), where T0,P0... are equilibrium quantities, and the 
Eulerian perturbation, <£,, of the gravitational potential has been neglected (Cowling, 
1941). The latter approximation was found to change the frequencies of low order radial 
^-modes by up to 3 %, while the effect on radial modes with periods around 5 min was 
only ~ 0 . 2 % (Knolker, 1978). We anticipate that the non-radial oscillations, in 
particular at large /, will be affected still less (e.g. Cox, 1980, p. 248). 

Equations (1) and (3) are supplemented by the equation of state 

p&tT aT4 p0lT 
p = + ^ T = R ' ( 4 ) 

p. 3 pp. 

where 01 is the gas constant, p. the mean molecular weight, a the radiation density 
constant, and /Jthe ratio gas pressure/total pressure. We expand the unknown functions 
in terms of spherical harmonics, Yl"(9, cp), linearize (4), eliminate the horizontal 
components of the displacement, br, and the perturbations of density and temperature, 
and introduce a non-dimensional radial displacement, x = br/r0, (Lagrangian) pressure 
perturbation, p = bp/P0, and frequency, a = co(4nG~p0)~

i/2. The resulting two 
equations for x and p are written in such a way that the equilibrium quantities, c,-, of 
Baker and Kippenhahn (1962, Equations (27)) can be used (we have, in addition, 
c2o = c3p0/p0y. 

1 Ax / / ( / + 1 ) \ / , , / ( / + 1 ) \ 
= 3 - - ^ — ^ )x+ (r-c4±~^)p, (5) 

c4 dlnP0 \ c3o
z ) \ c3(T / 
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— = - C3^ + 4 r - - c20 U + c4 — - l p , (6) 
dlnP0 V c3a

2 J \ c3a
2 J 

where T= c5 - c6/c2 = r ,~ \ and r , = (d lnP0/d lnp0)ad. 

B. TRANSFORMATION TO AN ALGEBRAIC EIGENVALUE PROBLEM 

In order to solve Equations (5) and (6), we have so far used a Henyey type code, 
originally written by Baker and Kippenhahn (1962), and extended to the non-radial case 
by KnOlker (1978). In the present contribution the equations are however transformed 
into the problem of finding the eigenvalues of a real symmetric matrix. We first introduce 
a new variable 

y = x'/c4-3x- Fp, (7) 

where the prime denotes a derivative with respect to ln.P0. We eliminate p from (5) 
and (6) and obtain 

o2x = -Ax" +Bx' + Cx+ ( 1 - r )y+ — , (8) 

c3r\ rj c3r 

a2
y =

 l{t^± (C4y - x' + (3c4 - / » , (9) 
c3r 

where 

A = (c3c4r) ] , 

B=A(F/r+c'4/c4 + 3c4- 1), 

c=™(c20r-4r-3r/r+3). c3r 

The next step is the transformation 

x = au , y = a y/l(l + l)v , (10) 

where the condition a'/a = B/2A would delete the w'-term in the differential equation 
for u. Here we use instead a' /a = (B + A')/2A. This ensures that the symmetry of our 
matrix will be conseved at the same time. The resulting equations for u and v can then 
be written in the form 

a2u = -{{{Au)" +Au") + Du + \{{Gv)' + Gv') + Fv, (11) 

a2v = Ev-\{{Gu)' + Gu') + Fu, (12) 

where 

D = C + A" /I + Ba'/a-Aa"/a , 
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£ = c4/(/+i)/(c3r), 

F= G(3c4-r-a'/a)+ G'/2, 

G = y/(/+i)/(c3r). 

We now introduce a 'staggered mesh' (e.g. Williams, 1969): We consider the values vt 

of v at equidistant levels of ln.P0, and the values ut + 1 /2 at intermediate levels, and replace 
the derivatives by centered differences. The unknowns are then arranged into a vector 
z = (vu ui/2, v2, u5/2...), and Equations (11) and (12) are combined into the system 

<r2z = Nz , (13) 

where the special combinations of the derivatives appearing in (11) and (12) guarantee 
the symmetry of the matrix N. In order to limit the bandwidth of N to 5, we have replaced 
(M-+1/2 by (Fi+ivl+1 + F,v,)/2 and «,. by (w, + 1 /2 + u,_l/2)/2 and all coefficients 
Al + 1/2. Gj+ i/2- • • are eliminated by the proper arithmetic means of such quantities at 
neighbouring levels. Errors arising from these operations are only of order h2, where 
h = (Info), + , - (lni^),-, consistent with the difference scheme used. - As an alternative 
we have arranged the unknowns w,- and vt at all levels into an eigenvector. Direct use 
of (11) and (12), again with a scheme of centered differences, then also yields a problem 
of type (13) with a symmetric matrix, but in this case the bandwidth is 7. 

C. BOUNDARY CONDITIONS 

We place the outer boundary for our oscillating star at a level where the optical depth 
is small (T = xB = 2.5 x 10~4). The equilibrium atmosphere outside this level is adapted 
to the atmosphere of Vernazza et al. (1976), and P0 and p0 are finite at T = xB. The 
'zero-'boundary conditions, used by Chandrasekhar (1964) and Unno et al. (1979, 
p. 85), are therefore not satisfied. In order to keep the problem self-adjoint we require 
that the expression px + p0$, vanishes at the boundary. Due to the neglect of $, 
this means that the Eulerian perturbation, /?,, of the pressure vanishes. In terms 
of the variables u and v this condition is Au' = Gv- Au(r + a'/a - 3c4). Using 
Equations (10) and (11) we can calculate the expression 

[(ll)u* + (12>*- ( l l )* M - (12 )*u ]d ln / ,
0 , 

where the asterisk denotes the complex conjugate, and thus show that 

(a2-a*2) (uu*+ vv*) din P0=[u(Au'-Gv)*-u*{Au'-Gv)yo. (14) 

This expression vanishes at the inner boundary (i), where we require u = 0, and at the 
outer boundary (o), due to the above condition and the reality of A, G ... . 

From Equations (7) and (9) we see that, at the outer boundary, 

2 /(/ + 1) , x /(/ + I K 
a2y = - (x + c4p) = - — px = 0 . 

C 3 Cz"0 
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Hence, if a1 # 0, we have y = 0 and, therefore, v = 0. The variable vl can thus be 
dropped from the list of our unknowns. At the same time, we find from (9) that 
x' = (3c4 - r)x at the outer boundary, and, by (10), u' = bu, where b = 3c4 - T- a'/a. 
In the form (u3/2 - ul/2)/h = b(u3/2 + «1/2)/2, this condition is used in order to 
eliminate «1/2 from Equation (11) for w3/2. The outer boundary condition is thus 
incorporated into the first line of our matrix, and the symmetry is preserved. 

In the present contribution we exclude from our model the central region of the 
Sun. We set u = 0 at, say, r = 0.2 rQ, and count our levels so that UN+ 1 /2 = 0. We 
drop this variable from the list of our unknowns. Hence, the eigenvector is 
z = (w3/2, v2,... «JV- i/2> VNX a n d the s i z e °f o u r matrix is [2(N- l)]2. 

After the evaluation of z, all operations described in this section can be reversed in 
order to recover the variables x and p at all levels. We normalize the solution such that 
x = 1 at the outer boundary. 

The condition u' = bu can also be incorporated into the direct difference scheme. An 
asymmetry is then obtained in the first line of the matrix of bandwidth 7, and a Jacobian 
transformation, leaving the eigenvalues unchanged, must be applied to the vector z in 
order to restore the symmetry (e.g. Acton, 1970, p. 316). 

Instead of the condition px = 0 at the outer boundary, Ando and Osaki (1975) have 
employed the condition of complete reflexion of the stellar oscillations at the surface. 
This is possible only for those frequencies which fall into the range of evanescent 
atmospheric waves. In the case of radial pulsations (/ = 0), and frequencies small 
compared to the atmospheric cut-off, the condition has the form (Baker and Kippen-
hahn, 1965) 

p= - (4 + 3<r2)x, 

or 

o2u = -Au' + A\ 3c4 - 4Ic4 \u . (15) 

The surface term on the right-hand side of (14) is then -{a1 - a*2)uu*. In combination 
with the left-hand side this means that the eigenvalue must be real. This must not, 
however, be understood as a proof of selfadjointness since, by assumption, we have 
restricted ourselves to the frequencies of evanescent waves in the atmosphere. 

Equation (15) can be incorporated into the algebraic system (13). The ensuing 
asymmetry of the matrix N again can be removed by a Jacobian transformation. 

3. Results 

We report here only a few results in order to demonstrate how the method outlined in 
the preceding section works. For the equilibrium we use a model computed with a stellar 
envelope program similar to that of Baker and Temesvary (1966), with Tefr = 5770 K, 
and extending in radius down to r = 0.2 rQ. BOhm-Vitense's (1958) formulation of the 
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DISPLACEMENT EIGENVECTORS FOR L - 0 
R/RSUN 

0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.9 

8 H 1 1 J 1—i 1-

5° 

o 
en 

• d 
hi 

(a) BOUNDARY CONDITION : EULERIRN PERT. OF P-0 

14 13 12 11 10 

LOG P 
9 

DISPLACEMENT EIGENVECTORS FOR L 

0.2 0.3 0.4 0.5 0.6 0.7 0.6 
I I I I l _ L 

R/RSUN 

11 10 9 

LOG P 

Fig. 2. Displacement eigenfunctions, &r/r0, for the first five radial pulsations: (a) zero Eulerian pressure 
perturbation, (b) complete reflexion at the outer boundary. 

https://doi.org/10.1017/S025292110009566X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110009566X


F
R
E
Q
U
E
N
C
Y
 
S
P
L
I
T
T
I
N
G
 
F
O
R
 L
 -
 0
 

F
R
E
Q
U
E
N
C
Y
 
S
P
L
I
T
T
I
N
G
 
F
O
R
 L
 =
 0
 

o
 

B
O
U
N
D
A
R
Y
 
C
O
N
D
I
T
I
O
N
:
 

E
U
L
E
R
I
A
N
 
P
E
R
T
.
 
OF

-
 P
 -
 0
 

•Z
t%

".
'"

>,
 

o 
x 3

 

A
 

L
 

h 
&

 
£>

 
£.

 
l 

O
 0

 
, 

Bi
 

D
u

 8
;h

*s
o

o
o

° 

«
D

 

(a
) 

20
 

IN
D

E
X

 

—
r- 30
 

B
O
U
N
D
A
R
Y
 
C
O
N
D
I
T
I
O
N
:
 

BA
KE
R
 
J
 K
IP
PE
NH
fl
HN
 1
9
6
5
 

0 
o 

« 
o 

» 
» 

»
o

S
x

x
X

x
x

x
x 

K
 v

 X
 

8 

o 
x 

x 
g

x
+

+
+

+
+

-
+ 

it
 

D
o 

ii 
U

 

(b
) 

20
 

IN
D

E
X

 

Fi
g.

 3
. 

F
re

qu
en

cy
 d

if
fe

re
nc

es
, 

zl
v,

 b
et

w
ee

n 
tw

o 
co

ns
ec

ut
iv

e 
ra

di
al

 p
ul

sa
ti

on
 e

ig
en

fr
eq

ue
nc

ie
s:

 (
a)

 z
er

o 
E

ui
er

ia
n 

pr
es

su
re

 p
er

tu
rb

at
io

n,
 (

b)
 c

om
pl

et
e 

re
fl

ex
io

n 
at

 t
he

 
ou

te
r 

bo
un

da
ry

. 
T

he
 v

ar
io

us
 s

ym
bo

ls
 m

ar
k 

th
e 

ca
se

s 
of

 2
69

, 
33

6,
 3

84
, 4

48
, 

53
7,

 a
nd

 6
71

 g
ri

d 
po

in
ts

, 
fr

om
 b

el
ow

 i
n 

th
is

 o
rd

er
; 

th
e 

ho
ri

zo
nt

al
 l

in
e 

at
 1

50
 u

H
z 

is
 

th
e 

as
ym

pt
ot

ic
 v

al
ue

 (
2 

j 
c_

1  d
r)

_
1
. 

https://doi.org/10.1017/S025292110009566X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110009566X


A CONVENIENT METHOD TO OBTAIN STELLAR EIGENFREQUENCIES 339 

mixing length theory is used, with a = mixing length/scale height = 1. For the opacity 
we use the tables of Cox and Tabor (1976), and the abundances of H, He, and heavier 
elements are specified by X = 0.7, Y = 0.28, and Z = 0.02. 

Eigenfrequencies, <x>, of radial pulsations (/ = 0), are shown in Figures la, b, up to 
the 34th mode. The two choices of boundary conditions discussed above virtually lead 
to the same frequencies, although the corresponding eigenvectors, depicted in 
Figures 2a, b, exhibit substantial differences near the outer boundary. The results 
obtained from the Henyey and matrix methods differ at high frequencies only. The 
reason is probably the intrinsic error of the finite difference scheme: The matrix method, 
applied to N = 336 and N = 671, produces frequency differences of the same order as 
those shown for the two methods in Figure 1. The frequencies found by the matrix 
method have been used as first guesses for the Henyey-frequencies shown in Figure 1. 
In three cases (Figure lb, modes 13 to 15) the iteration was still unsuccessful. This 
illustrates our point that the first guesses for the Henyey method must be very close 
indeed. 

The displacement eigenvectors shown in Figures 2a, b are normalized to 1 at the outer 
boundary. This obscures somewhat the close similarity of the cases a and b in the deeper 
part: all the radial nodes lie at the same levels. The small hump at log.P0 = 5.4 is caused 
by a numerical differentiation of the temperature gradient V which we need in order to 
evaluate the coefficient D of Equation (11) above; V has a sharp maximum at this level, 
cf. e.g. Figure 2 of Ando and Osaki (1975). We hope to smooth the hump through the 
use of analytical derivatives for all coefficients needed in the program. 

The convergence of the eigenfrequencies with increasing number, N, of grid points is 
demonstrated in Figures 3a, b. The frequency splitting, A v, between two neighbouring 
modes converges rapidly for the lower modes, and more slowly for the higher ones. In 
the range arround the 5-min oscillations (modes 20 to 25, say) the difference in Av 
between the cases N = 537 and N = 671 is less than 0.5 uHz. We made however no 
effort to adjust our equilibrium model so that the observed value for A v around 136 uHz 
(Grecef al., 1980) would be obtained. Our Av values lie consistently higher, as does the 
asymptotic value ( 2 | c _ 1 d r ) _ 1 , represented by the horizontal line at 150 uHz in 
Figures 3 a, b. 

First results of a non-radial case, / = 100, are shown in Figure 4. The frequencies of 
the first 13 />-modes were computed using both the matrix and the Henyey methods. For 
comparison, the frequencies computed by Ando and Osaki (1975) agree very well with 
our results. In the intermediate range (modes 5 to 8), where we obtain slightly different 
frequencies from the two methods, their results lie almost exactly in the middle between 
our two values. 

We hope to report results for more /-values, and also to show eigenvectors for 
non-radial oscillations in the near future. In particular, we hope that our method permits 
a convenient access to the eigenfrequencies of g-modes as well. To this end, we plan 
to replace our present equilibrium envelope by a complete stellar model. 
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EIGENEREQUENCIES FOR L - 100 

• HENYEY-METHOD, 
• MATRIX-METHOD, 

GD PTS: 671 
0D PTS: 671 

BOUNDARY CONDITION : EULER.PERT. OF P-0 

5 6 7 8 9 10 

EIGENVALUE-INDEX 
12 13 14 15 

Fig. 4. Eigenfrequencies, co, of the first 13 non-radial pulsations for / = 100, computed with the Henyey 
and matrix methods, with the condition of zero Eulerian pressure perturbation at the outer boundary. 
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