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We numerically study the influence of a soluble surfactant on the microjetting mode of
the liquid-liquid flow focusing configuration. The surfactant adsorbs on the interface next
to the feeding capillary and accumulates in front of the emitted jet, significantly lowering
the surface tension there. The resulting Marangoni stress substantially alters the balance
of the tangential stresses at the interface but does not modify the interface velocity. The
global stability analysis at the minimum flow rate stability limit shows that the Marangoni
stress collaborates with soluto-capillarity to stabilize the microjetting mode. Our analysis
unveils the noticeable effect of the Marangoni stress associated with the surface tension
perturbation. Surfactant diffusion and desorption hardly affect the stability limit. Transient
numerical simulations show how subcritical and supercritical base flows respond to a
spatially localized initial perturbation. Our parametric study indicates that the minimum
flow rate ratio depends on the adsorption constant and the surfactant concentration through
the product of these two variables. The surfactant stabilizing effect increases with the
outer stream flow rate. We show that surfactants not only stabilize the microemulsion
resulting from the jet breakup in hydrodynamic focusing, but also allow for the reduction
of droplet size. Our findings advance the fundamental understanding of the complex role of
surfactants in tip streaming via hydrodynamic focusing. In particular, our results contradict
the common assumption that adding surfactant favours tip streaming simply because it
reduces the meniscus tip surface tension.
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1. Introduction

Surfactants produce many beneficial effects, such as stabilizing emulsions and foams
by hindering the coalescence of droplets and bubbles (Rosen 2004) or keeping the
desired wetting conditions in various microfluidic applications (Baret 2012). The major
mechanical effect of a surfactant monolayer is probably the so-called soluto-capillarity
effect, i.e. the local reduction of the capillary pressure due to the accumulation of
surfactant molecules at an interface point. When the surfactant surface concentration
is not homogeneous over the interface, the surface tension gradient causes Marangoni
stress, which also plays a fundamental role in many hydrodynamic processes (Anna
2016). Marangoni stress becomes relevant in interfacial microflows, characterized by high
surface-to-volume ratios.

It is worth noting that, although surface rheology (Langevin 2014; Zell et al. 2014)
plays a secondary role in our analysis, this effect can also become important when large
velocity gradients arise in viscous surfactant monolayers. This occurs, for instance, in the
tip streaming of a surfactant-loaded drop driven by an extensional flow (Herrada et al.
2022). Surface viscous stresses also affect the linear stability (Li & Manikantan 2024) and
nonlinear breakup (Martinez-Calvo & Sevilla 2020; Wee et al. 2020) of jets. For instance,
they cause the exponential thinning of the liquid thread right before the breakup of a
jet flooded by surfactant (Martinez-Calvo & Sevilla 2020) or in the limit of zero Péclet
number (Wee et al. 2020).

Tiny fluid entities such as drops, bubbles, emulsions and capsules possess enormous
relevance for a great variety of technological applications in very diverse fields, including
medicine, bioengineering, industrial engineering and pharmaceutical and food industries.
Several microfluidic techniques have been proposed to produce those entities (Christopher
& Anna 2007). The tip streaming (Montanero & Gafidn-Calvo 2020) phenomenon has
been preferred for this purpose on many occasions due to its valuable capability for
fabricating quasi-monodisperse collections of drops, bubbles and capsules with sizes much
smaller than any characteristic length of the microfluidic device. Tip streaming occurs
under relatively rare conditions because it results from a delicate balance between the
forces driving and opposing the flow (Montanero & Gafidn-Calvo 2020).

In liquid-liquid hydrodynamic focusing (Gafidn-Calvo & Riesco-Chueca 2006;
Gaian-Calvo et al. 2007), tip streaming is achieved by transferring energy from an outer
continuous stream to the inner dispersed phase when crossing a discharge (focusing)
orifice, nozzle or tube. The outer phase moves much faster than the inner one, resulting in
a hydrostatic pressure drop and viscous drag. These forces collaborate in gently shaping a
steady converging ‘fluid nozzle’ (the tapering fluid meniscus). In the microjetting mode,
the meniscus tip emits a much thinner jet than the tube that feeds the dispersed phase
and the discharge orifice. The jet breaks into droplets downstream due to the capillary
instability (Rayleigh 1878; Tomotika 1935), giving rise to a relatively monodisperse
microemulsion.

Several microfluidic configurations have been proposed to implement the hydrodynamic
focusing principle in liquid-liquid systems. Salient examples are selective withdrawal
(Cohen et al. 2001) and confined selective withdrawal (He et al. 2019), where the
focusing phenomenon is caused by a cylindrical tube located in front of a liquid
film and meniscus, respectively. The coflowing configuration (Suryo & Basaran 2006;
Marin, Campo-Cortés & Gordillo 2009; Rubio-Rubio, Sevilla & Gordillo 2013; Gordillo,
Sevilla & Campo-Cortés 2014) can produce a similar effect without a focusing orifice.
Gafidn-Calvo & Riesco-Chueca (2006) studied the steady microjetting regime arising
when a liquid stream is flow focused with an outer liquid current crossing a cylindrical
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orifice. Cabezas et al. (2021) have recently analysed numerically and experimentally the
liquid-liquid flow focusing in a converging—diverging nozzle.

In most microjetting realizations, the jet’s kinetic energy per unit volume pjvj2 /2 (pj
and v; are the jet’s density and velocity, respectively) is essentially independent of the
injected disperse-phase flow rate Q;. This implies that the jet diameter d; ~ (Q;/ vj)l/ 2

scales approximately as Qi1 /2 In principle, the jet diameter can be indefinitely reduced
by lowering the injected flow rate Q;. However, the flow inevitably becomes unstable at
a minimum value of Q;, which sets a minimum value of the jet diameter and, therefore,
of the droplets resulting from its breakup (Montanero & Gafidn-Calvo 2020). This occurs
not only in the liquid-liquid flow focusing analysed in the present work, but also in the
microjetting modes of gravitational jets (Rubio-Rubio et al. 2013), gaseous flow focusing
(Cruz-Mazo et al. 2017), confined selective withdrawal (Evangelio, Campo-Cortés &
Gordillo 2016; Lépez et al. 2022) and electrospray (Ponce-Torres et al. 2018). The only
exception is probably the microjetting produced by a uniaxial extensional flow under
specific conditions (Rubio et al. 2024). Understanding the mechanisms responsible for this
minimum flow rate stability limit is of great relevance both at fundamental and practical
levels.

Soluble surfactants are expected to affect the stability of the tip streaming produced by
flow focusing and the outcome of that flow. Surfactant molecules dissolved in the disperse
phase are convected from a reservoir towards the interface, which essentially behaves as a
sink of surfactant molecules due to the adsorption process. The focusing stream drags
the surface elements toward the tip of the tapering meniscus, accumulating surfactant
molecules in that region. The surface tension reduction in the meniscus tip is expected
to enhance the tip streaming.

Large surfactant concentrations are required to produce a significant effect due to the
relatively small residence time of a surface element in the tapering meniscus. Lopez et al.
(2022) observed experimentally that surfactants dissolved in the inner liquid of confined
selective withdrawal at higher concentrations than the critical micelle concentration
significantly reduced the minimum flow rate for tip streaming and the droplet diameter.
The surfactant monolayer stabilized the meniscus and promoted the transition from
microdripping to microjetting.

The surfactant effects have also been studied in suspended droplets (De Bruijn 1993;
Eggleton, Tsai & Stebe 2001; Herrada et al. 2022) and bubbles (Booty & Siegel 2005)
subject to extensional and shear flows, two-dimensional flow focusing (Anna, Bontoux
& Stone 2003; Lee, Walker & Anna 2011; Moyle, Walker & Anna 2012) and selective
withdrawal (Cohen 2004). Numerical simulations show how adding a surfactant to the
inner dispersed phase produces a narrow tip streaming thread in extensional flow (Wang,
Siegel & Booty 2014) and flow focusing (Wrobel et al. 2018). Lytra, Vlachomitrou &
Pelekasis (2024) have recently proposed a finite element method to study the steady
two-phase core—annular flow in a flow focusing device. Their model neglects bulk
surfactant transport for certain specific parameter conditions. A local spatial stability
analysis of the base flow was conducted to study the growth of interface oscillations in
the downstream region.

Local stability analysis is not an accurate method to predict the parameter conditions
for the instability of steady jetting via tip streaming due to the complex spatial structure of
this flow. Global stability analysis (Theofilis 2011) has emerged as a valuable tool for this
purpose. It unveils the mechanisms responsible for the instability by identifying the critical
small amplitude (linear) perturbation destabilizing the steady base flow. Characteristics of
the critical mode, such as the resulting interface perturbation, allow one to determine the
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region where instability originates and how it leads to the atomization mode adopted by
the system following the microjetting regime destabilization.

In the absence of surfactant, Lopez et al. (2022) showed that the microjetting regime
produced with confined selective withdrawal becomes unstable at the minimum flow
rate stability limit due to the growth of an oscillatory perturbation (a supercritical Hopf
bifurcation) affecting the tapering meniscus. The global stability analysis accurately
predicted the critical flow rate ratio, the appearance of the microdripping mode and
the droplet emission frequency in that mode. The global stability of flow focusing
in a converging—diverging nozzle (Cabezas et al. 2021) showed the existence of a
parameter island within which microjetting is stable under small amplitude perturbations.
Oscillatory and non-oscillatory instabilities delimit this island. The unstable perturbations
can originate in the tapering meniscus or beyond the discharge orifice, depending on the
values of the viscosity and flow rate ratios.

This paper will extend our previous numerical stability analysis (Cabezas et al. 2021)
to describe the surfactant influence on the microjetting mode produced by flow focusing.
This extension involves all the potentially relevant effects: the surfactant diffusion in the
inner-phase bulk, the adsorption—desorption kinetics, the transport of surfactant molecules
over the interface and the resulting soluto-capillarity and Marangoni convection. We will
study how the surfactant monolayer alters the base (steady) flow in the microjetting regime
for a reference realistic parameter configuration. We will analyse the surfactant effect on
the microjetting stability for that configuration. A novel aspect of this analysis will be the
study of the surfactant influence on the microjetting stability through the separate effect
on the base flow and the perturbations. Transient numerical simulations will show how
subcritical and supercritical base flows respond to an initial perturbation. Finally, we will
determine the influence of the surfactant parameters on the stability limit.

The paper is organized as follows. The problem is formulated in § 2. Section 3 presents
the governing equations and briefly describes the numerical method. Sections 4 and 5
analyse the influence of the surfactant on the base flow and its stability for a reference case,
respectively. Transient numerical simulations for that reference case are shown in § 6. The
parametric study is shown in § 7. The paper closes with concluding remarks in § 8.

2. Formulation of the problem
2.1. Microjetting in liquid-liquid flow focusing

This paper analyses the effect of a soluble surfactant on the stability of the liquid—liquid
hydrodynamic focusing configuration sketched in figure 1, commonly referred to as flow
focusing. In this axisymmetric configuration, a liquid of density p; and viscosity u; is
injected at a constant flow rate Q; across a cylindrical feeding capillary of radius Re.
This liquid flows surrounded by an outer liquid current of density p, and viscosity w,,
immiscible with the former. The outer current is injected at a constant flow rate Q, across
a converging nozzle concentric with the inner one. The inner and outer phases coflow
through the nozzle, which ends in a tube with diameter D. The surface tension without
surfactant is p,. As explained below, we will use this value as the characteristic surface
tension 7.

Under certain parameter conditions, the system adopts the microjetting mode of tip
streaming (Montanero & Gafidan-Calvo 2020). In this mode, a jet with a diameter much
smaller than 2R, and D is emitted from the tip of the fluid meniscus attached to the
feeding capillary. The jet and the outer stream coflow through the discharge tube (figure 1).
The jet is expected to break up into droplets beyond the fluid domain considered in our
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Figure 1. Sketch of the fluid configuration.

analysis. The stability of microjetting in a similar flow focusing configuration was studied
by Cabezas et al. (2021) both experimentally and numerically. The results of the global
stability analysis were in good agreement with the experiments.

The geometry considered in the present work is the same as that analysed by Cabezas
et al. (2021) except that it incorporates a discharge cylindrical tube (marked with a
red line in figure 1) not considered in that work. In this way, the inner and outer
streams do not slow down beyond the nozzle neck. Perturbations growing in the tube
are convected downstream. This eliminates the unstable modes associated with the jet
(absolute instability) (Huerre & Monkewitz 1990) and allows one to focus on the meniscus
stability. It is known that tip streaming instability originates in the tapering meniscus
in most relevant realizations (Montanero & Gafian-Calvo 2020). Therefore, the stability
limit for the present configuration is not expected to differ significantly from that of
the geometrical configuration analysed by Cabezas et al. (2021). As shown in § 4, the
flow fully develops near the tube entrance. For this reason, the spectrum of eigenvalues
characterizing the linear dynamics becomes practically insensitive to the tube length for
relatively small values of this parameter.

The geometry studied in this work can be regarded as a hybrid between flow focusing
and confined selective withdrawal (He et al. 2019), where the focusing effect is produced
by a cylindrical tube located in front of the feeding capillary. There are, however,
noticeable differences between these two configurations. The shape of the focusing
element (either an orifice or a tube) significantly affects the microjetting stability (Lépez
et al. 2022).

2.2. The surfactant

This paper examines the effect of a surfactant dissolved in the inner phase on the
microjetting stability. The surfactant transport across the bulk is described in terms of

the diffusion coefficient @i. In particular, the diffusion flux normal to the interface is

A ~ OC
Jp = —Di—, (2.1)
on

where ¢ is the bulk surfactant concentration, # is the direction normal to the interface and
d¢/0n is evaluated at the interface (the interface sublayer). The diffuse layer also depends
on the ionic strength of ionic surfactants, such as sodium dodecyl sulphate (SDS). This
effect is not considered in our analysis.

We adopt the kinetic model for the adsorption/desorption flux

A

T = Ta— Ja, ja=kacs<l_ X ) Ja = kal, (2.2a—c)

o0
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where j is the net sorptlon flux, ja and jd are the adsorption and desorption fluxes,
respectively, kq and kg are the adsorption and desorption constants, respectively, ¢ is
the bulk surfactant concentration ¢ evaluated at the interface, [ is the surfactagt surface
concentration (the surface coverage, measured in mols per unit area) and [y is the
maximum packing density.

The surfactant molecules absorbed on the interface are transported by convection
and diffusion. The surfactant surface diffusion is determined by the surface diffusion
coefficient D, which typically takes values similar to those of the bulk diffusion

coefficient ﬁi (Tricot 1997).

We assume that the transfer of surfactant between the sublayer next to the interface and
the interface occurs only in the form of monomers. This implies that ¢ is the volumetric
concentration of monomers even if the surfactant concentration exceeds the critical micelle
concentration ¢, and, therefore, there are micelles in the inner liquid. Since the micelles
do not contribute to ¢s, values of ¢ exceeding the critical micelle concentration correspond
to higher experimental values of the surfactant concentration. We will consider surfactant
concentrations larger than ¢.,;,.. However, these concentrations will be sufficiently small
for the dynamical effects of the micelles to be negligible.

The surfactant is convected throughout the incompressible inner liquid phase. For this
reason, the surfactant concentration in the feeding capillary is approximately the same
as that in the reservoir, ¢o. The bulk diffusion coefficient D; corresponds to very high
values of the Péclet number in most experiments. This implies that the bulk surfactant
concentration is almost uniform in the inner phase, except within a thin diffusive layer of

thickness /AlD next to the interface. .

As shown in §4, ;lD /RC ~ 1073 for the values of D;, IAca and IAQC of the reference case
studied in §§4-6. The disparity between the thickness of the diffusive layer next to the
interface and the relevant dimensions of the problem poses a major challenge to the
numerical simulation. This challenge can be circumvented by assuming the approximation
Cs ~ Coo, Which leads to accurate results under certain conditions (Lytra et al. 2024).
As explained in § 3, we resolve the surfactant mass boundary layer by using a spatial
discretization based on Chebyshev spectral collocation points (Khorrami 1989).

The effect of the surface concentration I” on the surface tension 7y is described by the
Langmuir equation of state (Tricot 1997)

I'o

R r
P = s+ [ooReTln (1 - —) : 2.3)

where IAQg is the gas constant and 7 is the temperature. This equation can be derived from
(2.2a—c) and the Gibbs isotherm (Chang & Franses 1995). The surface tension variation
over the interface gives rise to the local soluto-capillarity effect and Marangoni stress.

As mentioned in the Introduction, we do not consider surface rheology effects. The
effects of the shear uf and dilatational ug surface viscosities can be quantified in terms of
the superficial Ohnesorge numbers Ohf’2 = ,uf’z(,oi?cfeg)_ 1/2 which measure the relative
importance of the surface viscous stresses and the capillary pressure. Ponce-Torres et al.
(2020) concluded that the SDS viscosities are at most of the order of 10~7 Pa - s - m. Then,
the Ohnesorge numbers are at most of the order of 1072 in our problem, which indicates
that SDS surface viscosities can be neglected.
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2.3. Dimensionless numbers
We choose the feeding capillary radius R., the visco-capillary velocity vy, = P./u; and

the capillary pressure P, /R, as the characteristic quantities, where y. is a characteristic
value of the surface tension, whose choice will be discussed below.

In the absence of surfactants, the problem can be formulated in terms of the density and
viscosity ratios, p = p,/p; and & = W,/ Mi, the Ohnesorge and capillary numbers

1/2

- - U

oh=(—t—) =—FE _ ad ca=5, (2.4a.b)
Pivy uRe (piveRe) 172 Ye

and the flow rate ratio Q = Q;/Q,. Here, U =40,/ (nbz) is the mean velocity in the
nozzle neck. The capillary number is the ratio of the characteristic viscous stress p,U/R,

to the capillary pressure P, /IA?C.

When a soluble surfactant is added to the disperse phase, the following dimensionless
numbers are considered as well: the bulk and surface Péclet numbers Pe = IAQCUV M /@i
and Pes; = IAQCU), w/ D;, the dimensionless adsorption and desorption constants k, =
l}aécmcf?c/ (foo vyu) and kg = /AchA?c/ vyu, the Marangoni (elasticity) number Ma =
fooRg T /7. and the reservoir surfactant concentration coo = Coo/Ceme-

There are two natural choices for the characteristic surface tension: (i) the value 7
corresponding to the surfactant-free case and (ii) the equilibrium value y,, corresponding
to reservoir concentration Coo. As shown in §4, surfactant molecules are convected
downstream by the interface, which results in values of the meniscus surface tension much
larger than ﬁeq. For this reason, we consider y, in the definition of the dimensionless
numbers.

For a fixed geometry, the set of dimensionless numbers governing the problem is {p,
u, Oh;, Ca, Q; Pe, Pes, ky, kg, Ma, cx}. In a typical experimental run, the microfluidic
device, the fluids and the surfactant are fixed. For this reason, the variables Ca and Q
can be regarded as the control parameters. To determine the stability limit, one selects the
outer flow rate O, and progressively decreases the inner flow rate Q; until its minimum
value Q;in for microjetting is reached. The experiment is usually repeated for several
values of Q,. Therefore, the goal is to determine the dimensionless minimum flow rate
Omin = Qimin/ Qo as a function of Ca. In the presence of a surfactant, the function Qy,;;, =
Onmin(Ca) must be obtained for different values of ¢y, (see § 7).

3. Governing equations and numerical method

This paper analyses numerically the stability of liquid-liquid flow focusing in a converging
nozzle when a surfactant is dissolved in the inner phase. For this purpose, we consider the
full hydrodynamic equations, including inertia, without any approximations relative to
the surfactant transport. The dimensionless Navier—Stokes equations for the axisymmetric
velocity v® (r, z; 1) and pressure p(k)(r, z; ) fields are

(ru®), + rw® =0, 3.1)

3 Ju®
p% (Ohy) ™ (_Bt + u®u® 4w ®y® ) = —p® 4o @O 1 @® /), 4 u®),

(3.2)
997 A23-7
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[ aw®
% (Ohy) 2 <—8t + uw® L@y ® ) — 0 ke (0 0 s By
3.3)

where 7 is the time, r (z) is the radial (axial) coordinate, u® (w®)) is the radial (axial)
velocity component and Jy, is the Kronecker delta. In the above equations and henceforth,
the superscripts k = i and o refer to the inner and outer phases, respectively. In addition,
the subscripts » and z denote the partial derivatives with respect to the corresponding
coordinates. The action of the gravitational field has been neglected due to the smallness
of the fluid configuration.

The velocity field is continuous at the interface, i.e.

o = @, (3.4)

at r = F(z, t), where F(z, t) is the distance of an interface element to the symmetry axis
(figure 2). The kinematic compatibility at the interface yields

— + Fw? — 4 =0, (3.5)
The equilibrium of normal stresses on that surface leads to

_p(i) + -L-rgi) = yK —p(o) —+ 7:,50), (36)

where ¥ = p /7y, is the normalized surface tension

FF,—1—F?
==, (3.7

F(1 + F2)3/2

is the local mean curvature and
(i) 20l — F,on” + ul”) + F2wi]
7,” = 5 , (3.8)
1+ F?
(0) (0) (0) 2. (0)

r,ﬁ") _ 2uluy” — Fo(wy” +uz ) + Fow; ]’ (3.9)

2
1+ F?
are the inner and outer normal viscous stresses, respectively. The equilibrium of tangential
stresses yields
10 4 Mo = £ (3.10)
where ‘r,(’) is the inner tangential viscous stress, ¢ is the Marangoni stress and t,(o) is the
outer tangential viscous stress given by the expressions

o) = (1= FHW + 1)+ 2F,u —wl), (3.11)
™=y, (1 + FH/2, (3.12)
7? = ul(1 = F2Y W 4+ ul?) + 2F, (! — w?)]. (3.13)

As mentioned in § 2, the viscous surface stresses have been neglected in (3.6) and (3.10).
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Figure 2. Sketch of the computational domain.

The surfactant volumetric concentration (measured in terms of the critical micelle
concentration) ¢ (r, 7) is calculated from the conservation equation (Craster, Matar &
Papageorgiou 2009; Kalogirou & Blyth 2019)

@
% +uPc® 4 w(’)cgl) = Pe ' [(rcD), /r + Cé’z)]. (3.14)
We assume that monomers are at equilibrium with micelles at concentrations exceeding
the critical micelle concentration. Therefore, the net flux of micelle formation/destruction
vanishes. o A
The net sorption flux J = JR./(vy,I'x) at the interface is calculated as (2.2a—c)
(Craster et al. 2009; He et al. 2015; Kalogirou & Blyth 2019)

T=To—Tin Ta=kecP(A =T, Jy=kal, (3.15a—c)

where J, = jaiec/ (vy MIA’OO) and J; = jdiec / (vwfoo) are the dimensionless adsorption
and desorption fluxes, respectively, c§’) is the surfactant concentration evaluated at the

interface and I = I / I is the dimensionless surfactant surface concentration. The net
sorption flux equals the surfactant diffused from/to the bulk Jp; i.e.

@) (i)
F — Ly
J=Jp=279 | (3.16)

Pe,/l—l—FZ2 -
r=

This equation couples surfactant transport across the bulk and over the interface.
The surfactant surface concentration I” satisfies the advection—diffusion equation
(Craster et al. 2009)

ar 1
—+ V- (Iv)+Tk(w-n) = —Vilr+J, (3.17)
ot Pe;

where v; = ;v = vt is the (two-dimensional) surface velocity, ¢ is the tangential unit
vector, Iy = | — nn is the tensor that projects any vector on that surface, | is the identity
tensor, n is the unit outward normal vector and V is the tangential intrinsic gradient along
the free surface parametrized with the intrinsic coordinate s. The above equation can be
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re-written as

ar or duy N dF/ds N dr + Fe(oem 1 [d’r N dr dF/ds 7
-— — v —U kwen)=—|\—5+— ,
ot ds F ds ° Pe, \ ds? ds F
(3.18)
) o F @ @ — Fyw® dA A
b= LT S : (3.19a—c)

= - Ven—= ——= —_— = =75
(1+F2)1/2 A+FH127 ds (1 +FH/2

where A is any scalar quantity.

The dependence of the surface tension y upon the surfactant surface concentration I is
calculated from the Langmuir equation of state (2.3) (Tricot 1997), which in dimensionless
form is

y =1+ Malog(l — I'). (3.20)

The hydrodynamic equations are integrated within the numerical domain sketched in
figure 2. We prescribe a parabolic velocity distribution at the inlet section of the feeding
capillary, while a uniform velocity profile is imposed at the inlet section of the outer
tube. This approximately corresponds to many flow focusing experiments in which a short
nozzle is connected to a large tank to drive the outer fluid. Conversely, the inner feeding
capillary is usually very long in terms of its diameter.

We consider the no-slip boundary condition at the solid walls and the outflow conditions
ugk) = wgk) = F, = 0 at the right-hand end of the computational domain (F, = 0 only
holds at the interface). The anchorage condition of the triple contact line, F =1, is
imposed at the edge of the feeding capillary. The reservoir surfactant concentration ¢
is imposed at the inlet section of the feeding capillary. The numerical integration of (3.17)
is performed considering zero surfactant diffusive flux at the triple contact line and the

outlet section. We consider the standard regularity conditions u? = wgi) = cgi) = 0 at the
symmetry axis.
In the global stability analysis, we assume the temporal dependence

U(r,z:1) = Up(r,2) +8U(r,2) e +cc.  (|8U| < Up),
F(z 1) = Fo(x) +8F(@) e +cc.  (I6F| < Fo), (321
I =@ +r@e ™ +cc (I8 < 1),

where U(r, z; t) represents the velocity, pressure and bulk surfactant concentration fields,
while Up(r,z) and SU(r, z) stand for the base flow (steady) solution and the spatial
dependence of the eigenmode, respectively. In addition, Fy(z) and [p(z) represent the
base flow solution for F(z) and I"(z), respectively, while §F and §I" are the corresponding
perturbation amplitudes. The perturbation evolves according to the eigenfrequency w =
w; + iw;, where w, and w; are the oscillation frequency and growth rate, respectively.
The flow asymptotic linear stability (Theofilis 2011) is determined by the eigenfrequency
0* = o} +iw] of the dominant mode (that with the largest growth rate). Microjetting
realizations with } < 0, o} = 0 and @} > 0 correspond to stable, marginally stable and
unstable flows, respectively.

As observed in (3.21), we restrict ourselves to axisymmetric perturbations, which are
known to be dominant in experiments. In fact, non-axisymmetric instability appears
only for sufficiently large aerodynamic Weber numbers We= p,(U — vj)zdj /7e defined
in terms of the mean jet and outer stream velocities, v; and U, and the jet diameter d;.
This instability cannot occur in our configuration. The low value of the Reynolds number
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Figure 3. Detail of the grid used in the simulations.

ensures that the flow adopts the Poiseuille solution practically at the entrance of the
discharge tube (figure 7), and the aerodynamic Weber number equals 0.054.

The governing equations are integrated with a variant of the numerical method proposed
by Herrada & Montanero (2016) and Herrada (2023). This method, as applied to
liquid-liquid flow focusing without surfactant, was explained in detail by Cabezas et al.
(2021). As mentioned in § 2, the major difficulty associated with a soluble surfactant is
the existence of a very thin diffusive boundary layer next to the interface for the small
diffusion coefficients of most surfactants. However, using Chebyshev spectral collocation
points to discretize the radial direction accumulates the grid points next to the interface
(Herrada & Montanero 2016), facilitating the resolution of this layer (figure 3).

The inner and outer fluid domains were mapped onto two quadrangular domains through
a non-singular mapping. The shape functions were obtained as a part of the solution
by using a quasi-elliptic transformation (Dimakopoulos & Tsamopoulos 2003). Some
additional boundary conditions for the shape functions were needed to close the problem.
All the derivatives appearing in the governing equations were expressed in terms of the
spatial coordinates (y, &) resulting from the mapping. These equations were discretized in
the (mapped) radial direction with né( = nf, = 50 Chebyshev spectral collocation points
(Khorrami 1989) in the inner and outer domains. We used fourth-order finite differences

with ng) = né:o) = 4501 equally spaced points to discretize the (mapped) axial direction in

the inner and outer phases.

The Matlab EIGS function was applied to find the eigenfrequencies around a reference
value @. This process was repeated for several values of @ to obtain part of the
eigenfrequency spectrum. We conducted a grid sensitivity analysis to ensure the grid size
did not affect the results. We verified that the surfactant surface density, interface velocity
and critical eigenfrequency differed by less than 1 % when the number of grid points was
increased by 50 %.

We also conducted transient (direct) numerical simulations to show the response of the
microjetting mode to an initial perturbation. The numerical method is essentially the same
as that used in the stability analysis. We used the spatial discretization of the mapped
numerical domain described above. The time domain was discretized with second-order
backward finite differences. The time step At = 0.5 was constant. We verified that
reducing the time step did not significantly change the results.
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The rest of this paper is organized as follows. Section 4 describes the base flow for
a reference case characterized by realistic values of the governing parameters. Section 5
analyses the stabilizing effect of the surfactant monolayer in that case by comparing the
results with and without surfactant. Section 6 shows transient numerical simulations in the
presence of the surfactant for the reference case too. § 7 explores the system’s response
when the surfactant parameters are changed. Finally, concluding remarks are presented in

§ 8.

4. Base flow of the reference case

As the reference case, we consider the configuration characterized by the following
realistic parameters. The nozzle shape and the feeding capillary position are the same
as those in the experiments of Cabezas et al. (2021). The capillary radius is IAQC = 0.1 mm.
In terms of this characteristic length, the relevant lengths in the simulations are
L, =11.4,z, =3.8and D = 2 (figure 2). We consider the physical properties very similar

to those of the water—oil system studied by Moyle e al. (2012): p; = 998 kg m~3,
po = 830kgm™3, u; = 1.33 mPa-s, i, = 53.1 mPa-s and p,, = 62 mN m~'. We consider
the surfactant properties reported by Liang et al. (2022) for SDS in a water-nOctane
system: Di=79%x10710 m? s7!, Dy=79x%x 10710 m? 5!, [\, =3.13 pwmol m~2,
Ry =8.314J (Kmol)™', k, =825 x 105 ms~" kg = 1.35~" and &xne = 8.3 mol m=>.
The corresponding values of the dimensionless numbers are o = 0.83, u =40,
Oh; = 0.0169, Pe = 5.89 x 10°%, Peg = 5.89 x 105, k, = 4.71 x 107%, kg = 2.79 x 1076
and Ma = 0.117. All the results were calculated for these values unless otherwise
specified.

The condition ¢ > 1 (a concentration larger than the critical micelle concentration) is
necessary to observe a significant surfactant effect in the experiments (Moyle et al. 2012;
Lopez et al. 2022). For this reason, we consider the surfactant concentration co, = 1.47.
As explained below, this concentration is sufficiently small for the Langmuir equation to
provide reliable interfacial tension values. We select the capillary number Ca = 0.349, a
similar value to those of the experiments of Cabezas et al. (2021).

The results presented in this section correspond to the marginally stable (w; = 0) case
obtained for Q = 0.005. These results are compared with those of the unstable (w; > 0)
base flow without surfactant obtained for the same values of the governing parameters.

Figure 4 shows the surfactant volumetric concentration for the reference case. Due to
the small value of the diffusion coefficient, a thin mass boundary layer separates the
stream coming from the feeding capillary from the recirculating cells that occupy the
tapering meniscus. The surfactant is convected across a narrow annular streamtube next to
the interface. The surfactant molecules adsorb onto the interface according to the kinetic
model (3.15a—c). Adsorption occurs mostly next to the feeding capillary (figure 5), where
the adsorption flux is higher (the interface is empty), the interface area is larger and the
surface velocity is smaller.

The liquid flowing next to the interface is slightly emptied of surfactant downstream.
Flow recirculation convects this small surfactant depletion throughout the tapering
meniscus (figure 4). Overall, the surfactant volumetric concentration is relatively constant
in the fluid domain (1.33 < D < 1.47), including the sublayer next to the interface. This
behaviour was also described by Lytra et al. (2024) for a similar configuration.

As mentioned above, the volumetric surfactant concentration evaluated at the free
surface, c(()ls), practically takes the upstream value c~,. This can be anticipated from a simple
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Figure 4. Surfactant volumetric concentration co)(r z) for Ca = 0.349, Q = 0.005 and ¢, = 1.47. The lines
are the streamlines.

scaling analysis. Consider the surfactant boundary layer next to the interface. According to

(3.15a—c), the variation Ac(()i) of surfactant concentration across that layer can be estimated
as
(@)
~_1/Ac k,
Pe 0 ,_Ra (t)

, 4.1
b 0,0 4.1)

where Pe = 9 ,JA?C /ﬁ,- is the Péclet number defined in terms of the characteristic velocity
A ~ _1/2 . . .
v, in the surfactant boundary layer, Ap ~ Pe /% is the (dimensionless) boundary layer

thickness (Levich 1962), I~<a = lAca /vy and vy = 0,/ Uy . The order of magnitude of the

ratio Ac(()i) /c(()’) is

O
A N
‘0 ka2 42)

(1) v
Cos A

The Schmidt number Sc= u;/ p,D is of the order of 103, which implies that Ap is
much smaller than the characteristic viscous diffusion length. For this reason, we can
assume that vy ~ v} ~ 1072 (figure 5). This implies that Pe ~ 10°, Ap ~ 10-3-102

and Ac® /c(()ls) 10_2—10_ , which is consistent with the numerical results. We conclude
that convection ensures C(()ls) > Coo throughout the inner fluid domain. This constitutes an
advantage numerically because it makes discretization errors in the boundary layer less
relevant.

As mentioned above, adsorption occurs mostly next to the feeding capillary. However,
a sharp reduction of the interface radius occurs in the meniscus tip. The reduction of the
interface area considerably increases the surfactant surface concentration there (figure 5).
The increase in the surfactant surface concentration leads to a significant decrease in the
surface tension (figure 5).

The residence time of the interface element in the meniscus tip takes relatively small
values due to the higher surface velocities there. This effect hinders surfactant desorption,
which is almost negligible throughout the interface (figure 5) even though the surfactant
surface density approaches the maximum packing density in the meniscus tip (figure 5).

The surfactant concentration co, = 1.47 leads to the surface coverage I, = 0.997
at equilibrium, which would render the Langmuir model inaccurate. However, the
surfactant molecules are convected downstream in the present dynamical problem, which
significantly reduces the surface coverage and allows one to use the Langmuir equation
of state safely even for concentrations higher than the critical micelle concentration.
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Figure 5. Interface location Fy(z) (a), adsorption flux jé’ (z), desorption flux JOd (z) (b), surface concentration
T(2) (o), surface tension yy(z) (d) and surface velocity vj(z) (e) for Ca = 0.349, Q = 0.005, and coo = 1.47.
The red dashed lines indicate the interface location and velocity without surfactant. Here, z, is the axial
coordinate of the capillary exit.

In fact, coo = 1.47 leads to surface tension reduction in our simulation smaller than 30 %
(figure 5), much smaller than that at equilibrium for the same concentration (Liang et al.
2022).

The Marangoni stress in the meniscus tip acts against the viscous drag exerted by the
outer flow. This substantially alters the balance of the tangential stresses at the interface.
Specifically, the viscous drag exerted by the outer stream increases in the presence of
surfactant (figure 6). However, the momentum transfer to the inner phase is slightly
smaller. As explained in § 5, the decrease in the inner-phase flow rate dragged by the
outer current stabilizes the flow. The increase in the viscous drag exerted by the external
stream entails an increase in the pressure drop driving the outer phase.
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Figure 6. Interface location Fy(z) and tangential stress at the interface: outer viscous stress rf(;’), inner viscous

stress rtg) and Marangoni stress ré”". The results were calculated for Ca = 0.349, Q = 0.005 and ¢, = 0 (@)

and 1.47 (b).

The surface velocity vy is of the order of the mean velocity in the nozzle neck,
which implies that vy ~ Ca/u ~ 1072, as shown below. Interestingly, the Marangoni
stress magnitude is insufficient to reduce the surface velocity. Figures 5 and 6 show
that Marangoni stress tries to immobilize the interface in the meniscus tip, where the
surface tension gradient takes higher values. However, the flow practically develops at
the entrance of the nozzle neck due to the large viscosity forces (figure 7). The value of
vy downstream is fixed by the Hagen—Poiseuille parabolic profiles, which are unaffected
by the surfactant. Therefore, vs(z) takes practically the same value with and without
surfactant. This behaviour substantially differs from that observed in open flows, where
the Marangoni stress reduces the interface velocity and, therefore, the intensity of the
inner flow (Frumkin & Levich 1947; Herrada et al. 2022).

The jet radius R;, the pressure gradient K and the interface velocity vy in the discharge
tube are approximately given by the fully developed flow formulae

R-=( Q )1/2, (4.3)
/ 1+ 0+ J/T+0u

K = —8Cap™[2 4+ w(Q + p —2) +2(n — Dy/1 + Qnul, (4.4)
and
vy = 2Cap 2 (1 — 1+ /1 + Q). (4.5)

The values of R; and vy evaluated at the outlet of the numerical domain are 0.04859
and 0.01747, respectively, while the corresponding analytical predictions (4.3)—(4.5) are

0.04879 and 0.01749. Equation (4.3) shows that the jet diameter d; scales as Qg/ % for
Q0 < 1 and Qu « 1. Itis worth mentioning that the condition Qu < 1 does not verify in
our simulations even though Q « 1. For instance, Qu = 0.2 and 0.5 at the stability limit
with and without surfactant, respectively.

As mentioned above, the surfactant accumulates in the meniscus tip interface. The
surfactant effect is localized in that region. For this reason, the base flows with and
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Figure 7. Axial velocity profile, wg ) and w(()"), at the nozzle sections z — z, = 3.6, 4.2, 5.6 and 7.6. The results
were calculated for Ca = 0.349, O = 0.005 and coc = 1.47. The inset shows the nozzle sections corresponding
to the velocity profiles.

without surfactant are similar on the scale given by the feeding capillary radius (figure 8).
In particular, the surfactant monolayer does not significantly alter the interface location
Fo(z). The surfactant slightly reduces the recirculation cell size, making the stagnation
point in the meniscus tip move upstream (figure 9). However, the surfactant hardly affects
the upstream stagnation point location. This indicates that the stabilization caused by the
surfactant (see § 5) is not related to the penetration of the recirculation cell into the feeding
capillary, a destabilizing mechanism in gaseous flow focusing (Montanero & Gafidn-Calvo
2020).

As explained in § 5, the instability originates in the meniscus—jet transition region.
The decrease in capillary pressure caused by the surfactant monolayer in that region
considerably reduces the pressure force opposing the flow (figure 9). This partially
explains why the surfactant stabilizes the flow. We will return to this in § 5.

5. Linear stability analysis of the reference case

This section analyses the linear stability of the reference case considered in the previous
section. We explain how the surfactant monolayer stabilizes the flow by studying its effect
on the perturbations and the base flow separately.

As explained in §2, the set of dimensionless parameters characterizing the present
problem are

{p, 1, Oh;, Ca, Q; Pe, Pey, kg, kg, Ma, coo}. 6.

The subset
{Pl} = {Pe’ Pes,ka,kd,Ma7 COO}a (52)

accounts for the surfactant effect. The linearized equations governing the perturbations
depend on both {P;} and the base flow @( around which those equations are linearized.
As shown in § 5, the surfactant monolayer affects the base flow @q. This means that the
perturbations 6@ depend on {/P;} through (i) the dependence of the linearized equations
on {P;} and (ii) the dependence of the base flow @( on those parameters. In this sense,
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10

Figure 8. Streamlines for Ca = 0.349, Q = 0.005 and c¢o, = 0 (a) and 1.47 (b). The colour indicates the
velocity magnitude in terms of the mean velocity in the discharge tube U.
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Figure 9. Interface location Fy(z), (a) hydrostatic pressure pg ) (b) and velocity vg) (c) at the symmetry axis.
The results were calculated for Ca = 0.349, Q = 0.005 and ¢, = 0 and 1.47. The dashed vertical lines indicate
the position of the stagnation points. The dotted line indicates the pressure drop (4.4) corresponding to fully

developed flow with constant surface tension.
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Figure 10. Spectrum of eigenvalues around @ = 0.6 for Ca = 0.349 and Q = 0.005. The stars are the results
when neither soluto-capillarity nor Marangoni stress is considered. The triangles are the results obtained only
considering soluto-capillarity. The squares are the results obtained only considering Marangoni stress. The
circles correspond to the results when the two effects are considered. The arrows indicate the displacement
of the critical mode eigenvalue due to soluto-capillarity and Marangoni stress. The values of Ca and Q
approximately correspond to marginal stability (max{w;} = 0) in the presence of surfactant. The eigenvalues
have been made dimensionless with the inertio-capillary time #;. = (,o,-ieﬁ / V%) 172,

8P obeys the formal relationship §@ = F({P;}, Po({P;})). We start our analysis by
considering in § 5.1 the combined influence of these two factors. Section 5.2 examines
the effect of the surfactant on the perturbations exclusively (for a given base flow). Finally,
we discuss the secondary role of the base flow in § 5.3.

5.1. Surfactant effect on the perturbations and base flow

The surfactant influence on the system stability through both the perturbations and the
base flow can be studied by comparing the results with and without surfactant. In other
words, we compare the solutions for coc = 0 and co, = 1.47. Figure 10 shows the spectrum
of eigenvalues in these two cases. The values for y = 1 (without soluto-capillarity)
and ™¢ = 0 (without Marangoni stress) correspond to coo = 0, while the values for
y #1 and t™¢ £0 correspond to coo = 1.47. The addition of surfactant stabilizes
the microjetting mode of flow focusing, significantly reducing the critical growth rate.
The eigenfrequencies of the subdominant modes are hardly affected by the surfactant
monolayer. This means that the major effect of the surfactant monolayer on the system’s
linear dynamics occurs precisely through the critical eigenmode. This effect significantly
affects the stability limit. The minimum flow rate ratio in the absence of surfactant
Omin = 0.0125 decreases to 0.005 when the surfactant is added.

A supercritical oscillatory Hopf bifurcation (w} # 0) causes the flow instability, as in
most tip streaming configurations (Montanero & Gafidn-Calvo 2020). The presence of
the surfactant monolayer does not alter this result. The critical perturbation oscillation
is linked to the presence of the jet. The jet convects capillary modes, translating into
an oscillatory behaviour in the Eulerian frame of reference. As in other tip streaming
configurations, w} is commensurate with the inverse of the inertio-capillary time based on
the meniscus size.

The importance of soluto-capillarity and Marangoni stress has been assessed separately
by ‘turning off” the corresponding terms in the interface boundary conditions (3.6) and
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Figure 11. Interface location Fy(z) (a) and perturbation of the interface location, 8 F(z), (b) for Ca = 0.349 and
Coo = 0 and 1.47. The results correspond to the minimum flow rate ratios Q = 0.0125 and 0.005 corresponding
to coo = 0 and 1.47, respectively. The values of Re[§F] are normalized by dividing them by the absolute values
of the corresponding minimum values.

(3.10). When both soluto-capillarity (y # 1) and Marangoni stress (¢ # 0) are present,
QOmin decreases from 0.0125 to 0.005. If the dependence y (1) is retained in (3.6) but the
term t™¢ is set to 0 in (3.10), Oyin decreases from 0.0125 to 0.0075. This means that the
two factors significantly contribute to the microjetting stabilization. As expected, there is
a correspondence between the magnitude of the decrease in the minimum flow rate due
to those factors and the corresponding decrease in the critical growth rate (figure 10): the
larger the decrease in Q,,i, associated with either soluto-capillarity or Marangoni stress,
the larger the corresponding decrease in ;.

The surfactant monolayer not only affects the minimum flow rate ratio but also
influences the shape of the interface deformation caused by the critical eigenmode.
Figure 11 compares 8 F(z) for coo = 0 and 1.47 at the corresponding stability limit. The jet
diameter is larger without surfactant because the flow rate ratio is larger in that case. The
surfactant monolayer increases the interface deformation in the meniscus—jet transition
region. This deformation expands upstream and downstream in the absence of surfactant.

5.2. Surfactant effect on the perturbations

In the previous section, we analysed the influence of the surfactant on the microjetting
stability through its effect on both the perturbations and the base flow. Now, we exclusively
examine the surfactant effect on the perturbations, i.e. for a given base flow. Specifically,
we consider the marginally stable base flow for co, = 1.47 and study the perturbations
around this base flow with and without the surfactant effect only on the perturbations (not
on the base flow).

In the presence of a surfactant monolayer, the perturbation produces a variation
8y (z) e71¥" 4 c.c. of the surface tension with respect to its value yy(z) in the base flow.
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This variation is the distinct feature of the perturbations suffered by a surfactant-loaded
interface. For this reason, we analyse its effect on the spectrum of eigenfrequencies. The
amplitude §y can be calculated from the linearization of (3.20) as §y = —Maé I .
The linearized equation for the balance of normal stresses at the interface reads
—8p + 87 = yodk + 8p, — 8p'? + 87, (5.3)
where sp®, §p(@), 31’,?) and 5:,50) are the perturbations of the hydrostatic pressure and
normal viscous stresses, yo(z) is the surface tension in the base flow and

1 FoFo, + FoF>. — 3F2F.F,
Sk — SF 4 040z 080, 010z 0zz

2 Z
N Fo2(1 + FL)52
2 | g
Fy + FoFg,
sl
R+ R

is the curvature perturbation. The surface tension perturbation §y enters into (5.3) through
the capillary pressure perturbation 8p, = 8y ko, where k( is the curvature (3.7) in the base
flow.

The linearized equation for the balance of tangential stresses is

stV 4 sTMe = 57, (5.5)

54

where (St,(i) and 81’,(0) are the perturbations of the tangential viscous stresses, and

vo:Foz

J1+FG,

is the Marangoni stress perturbation. The surface tension perturbation §y enters into (5.6)
through the contribution 8¢ = —§y,(1 + F, 8Z) 172 to the Marangoni stress perturbation.

As mentioned above, the presence of a surfactant monolayer affects the perturbations
(excluding the effect on the base flow) through the terms 6p,, and § tf”“ in (5.3) and (5.6),
respectively. These terms are proportional to surface tension perturbation §y, which is the
distinct characteristic of a surfactant-covered interface. We analyse the influence of these
terms on the microjetting stability in figure 12.

Firstly, we consider the eigenfrequencies calculated by setting 8¢ = 0 to assess the
effect of p, . As observed, this term hardly alters the eigenfrequencies of the subdominant
modes and slightly reduces the growth rate of the critical perturbation. Secondly, we
consider the eigenfrequencies for dp, = 0 to determine the effect of § tMe The term
8tMa hardly alters the eigenfrequencies of the subdominant perturbations but considerably
decreases the growth rate of the critical eigenmode. Lastly, figure 12 also shows the
combined effect of these two terms, which leads to the marginal stability of the base flow.

The decrease in ] for stMa £ 0 and dp, #0 (figure 12) is similar to that produced for
y #1 and Ma # 0 (figure 10), i.e. when the surfactant effect on both the perturbations
and the base flow is considered. This suggests that the change in the base flow alone caused
by the surfactant plays a secondary role. The main conclusion of the analysis of figure 12 is
that the Marangoni stress 87/ caused by the surface tension perturbation 8y is the major
stabilizing mechanism in the perturbations.

The results in the Appendix show how the capillary pressure perturbation ép,, and the
Marangoni stress perturbation §7 drive the inner liquid from one of the sides of the
perturbation neck towards the neck. This is a stabilizing effect because it opposes the neck
thinning.

997 A23-20

stMa = stMe _ §F, (5.6)


https://doi.org/10.1017/jfm.2024.804

https://doi.org/10.1017/jfm.2024.804 Published online by Cambridge University Press

Global stability analysis of hydrodynamic focusing

T T T T T
005+ 3p,#0,8t}=0 -
3p, =0, stMa = ()
8p, =0, 8T = () w srlt=3p,=0
0 & A 8p,#0, 8T =07
1% m| Spyzo,&ﬁ’[“¢0_
o o 0 82 0 8p,#0, 8tMa =0
—0.05 | a 2 s o
o s ©
8 ]
o q
o
—0.10 | .
0 ) o
n 1 n 1 n 1 n
0.4 0.5 0.6 0.7 0.8
a)r

Figure 12. Spectrum of eigenvalues around @ = 0.6 for Ca = 0.349 and Q = 0.005. The stars are the results
when neither of the terms proportional to §y is considered. The triangles are the results obtained only
considering 8p,,. The squares are the results obtained only considering 8tMa. The circles correspond to
the results when the two terms are considered. The eigenvalues have been made dimensionless with the

inertio-capillary time #;, = (p,»iiz / y*)l/ 2,

5.3. Effect of the surfactant on the base flow

We close our stability analysis by studying the influence of the surfactant on the
microjetting stability through its effect only on the base flow. To this end, we compare the
eigenfrequencies obtained in the absence of surfactant (co, = 0) with those calculated for
¢oo = 1.47 but 8p,, = §tM% = 0. The latter corresponds to the base flow with surfactant
but without the surfactant effect on the perturbation.

Figure 13 shows that the surfactant monolayer slightly decreases the frequencies of
the subdominant perturbations. The growth (damping) rates remain practically constant.
This effect is almost the same as that observed when the surfactant influence on
the perturbations and the base flow was considered (figure 10), which confirms that
subdominant eigenmodes are only affected through the change of the base flow. The
critical mode growth rate decreases when the base flow for ¢y, = 1.47 is considered.
However, this decrease is much smaller than that produced by the Marangoni stress §7M¢
associated with the perturbed surface tension §y (figure 12).

The results presented in § 4 allow us to discuss the relatively minor role played by the
base flow in the minimum flow rate instability. This instability can be explained in terms
of mass conservation. Suppose all the parameters characterizing the problem are fixed
except for the flow rate ratio Q (i.e. the inner flow rate Q;). For sufficiently small values
of this parameter, the flow rate dragged by the outer viscous stream becomes practically
independent of Q. The dragged flow rate must be replaced through the feeding capillary.
This sets a minimum value of Q (Q;) below which the steady microjetting regime cannot
be sustained. The Marangoni stress collaborates with inner viscous stress to balance the
outer viscous stress at the interface (figure 11), reducing the dragged flow rate. This allows
one to reduce the value of Q (Q;) while preserving mass conservation.

The stabilizing effect of the surfactant through the base flow can also be explained as
follows. As shown in figure 11, the instability originates in the meniscus—jet transition
region. The fluid particles experience an adverse pressure gradient (dp,o/ds > 0) when
moving next to the interface due to the increase in the capillary pressure p,o = yoko
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Figure 13. Spectrum of eigenvalues around @ = 0.6 for Ca = 0.349 and Q = 0.005. The squares are the
results without surfactant. The diamonds are the results for 8p, = §t% = 0 (with surfactant but without its
effect on the perturbation). The eigenvalues have been made dimensionless with the inertio-capillary time
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Figure 14. Interface location Fp(z) and surface gradient of the capillary pressure dp,,o/ds along the interface.
The results were calculated for Ca = 0.349, Q = 0.005 and c¢o, = 0 and 1.47. The dotted vertical lines indicate
the position at the symmetry axis of the stagnation points.

downstream (s is the interface intrinsic coordinate) (figure 14). The resulting force
opposing the flow in the meniscus tip constitutes another destabilizing mechanism. The
surfactant monolayer considerably reduces the capillary pressure in that region (figure 9)
and, consequently, the adverse pressure gradient (figure 14). This effect stabilizes the flow.

6. Transient simulations close to the stability limit

This subsection analyses the temporal evolution of a small amplitude perturbation
introduced into the base flow close to that of the reference case. We deformed the free
surface (the velocity and pressure fields were not perturbed) at t = 0. The deformation
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Figure 15. Evolution of the free surface displacement, F(z,t) — Fo(z), at the meniscus tip (z —z, = 3.2,
Fo(z) = 0.07) calculated from the transient simulation for Ca = 0.349, Q = 0.0063 and ¢, = 1.47 (symbols).
The solid line is the global stability analysis prediction (3.21) (ap = 0.0029, #p = —2.7, w; = —0.0107 and

o, = 0.519). The blue and black arrows in the inset show the location of the initial perturbation and the
analysed interface point, respectively. The time has been made dimensionless with the inertio-capillary time

tie = (PR3 Jy)'/2.

was given by the function
F(z,0) — Fo(z) = fe~G07/aZ, 6.1)

where 8 indicates the maximum deformation amplitude, while zg and Az are the location
and width, respectively. The perturbation amplitude and width are small (8 =5 x 10~*
and Az = 0.5). The perturbation is introduced next to the feeding capillary (zo — z, =
0.2).

The free surface displacement F'(z, t) — Fo(z) at the meniscus tip is shown in figure 15.
The parameter conditions correspond to a linearly stable flow relatively close to the
stability limit (w; = —0.0107). The perturbation (6.1) triggers a train of capillary
waves propagating downstream. The interface deformation in the meniscus tip becomes
noticeable at times of the order of the inertio-capillary time ¢, = (,oiIA%g / y*)l/ 2. The
perturbation produces an interface oscillation in the meniscus tip much larger than the
deformation given by (6.1). In this sense, the base flow behaves as a signal amplifier.
However, viscosity slowly dampens the perturbation in this quasi-marginally stable base
flow. For sufficiently large ¢, the contribution of subdominant eigenmodes becomes
negligible, and the dominant mode essentially governs the system’s linear dynamics. The
comparison with the prediction

F — Fy = ag e cos[w, (1 — to)], 6.2)

of the global stability analysis shows excellent agreement (figure 15). Here, ag and #y are
fitting parameters, and w; and w, are the damping rate and frequency of the dominant
mode.
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(F-Fy/p

Figure 16. Free surface displacement, F(z,f) — Fo(z), at t = 133 (in terms of the inertio-capillary time)
calculated from the transient simulation for Ca = 0.349, Q = 0.0063 and ¢, = 1.47 (symbols). The solid
line is the deformation (3.21) corresponding to the dominant mode (fp = —2.7 and @ = 0.519 — 0.0107i). The
inset shows the base flow interface location.

The interface deformation at + = 133 is shown in figure 16. The comparison with the
deformation

F — Fy = Re[§F e~ i@t=10)], (6.3)

caused by the dominant mode shows remarkable agreement as well. Here, §F and
® = w, + iw; are the deformation amplitude and eigenfrequency of the dominant mode,
respectively. The interface deformation is much larger than the initial perturbation given
by (6.1) despite the long time (in terms of the inertio-capillary time) lapsed from ¢ = 0.
The maximum interface deformation is reached in the discharge tube due to the strong
convective nature of the flow.

The results presented in this section illustrate the usefulness of the global stability
analysis. The transient simulations took 20 times longer than the global stability analysis

for the same grid. The reduced spatial resolution (né( = n;’( = 30, ng) = néo) = 3601) of
the transient simulation explains the slight discrepancies with respect to the global stability
analysis predictions.

7. Parametric study

This section analyses the surfactant stabilizing effect when a relevant parameter changes.
Specifically, we calculate the minimum flow rate ratio Q,,i, as a function of that parameter,
while the values of the rest are those defined in § 4.

We have verified that the minimum flow rate is hardly affected by the diffusion
coefficient, even if this parameter increases by two orders of magnitude. Specifically,
Omin = 0.005 and 0.0052 for Pe = 5.89 x 10° and 5.89 x 10, respectively. This occurs
due to the strong surfactant convection, which renders the surfactant volumetric
concentration practically constant in the fluid domain, including the sublayer next to
the interface (see §4). We take advantage of this fact and conduct the rest of the
parametric study for Pe = 5.89 x 10*, which allows us to reduce the number of grid points
considerably.
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Figure 17. Value of Q,,;, as a function of ¢, (a) and k, (b). The values of the rest of the parameters are those
specified in § 4.

Surfactant desorption is so small that it has a negligible effect on the flow stability. We
have verified that the minimum flow rate does not significantly change when the desorption
constant is increased by one order of magnitude with respect to the SDS value.

7.1. Influence of the surfactant concentration and the adsorption constant

We analyse the influence of the surfactant concentration cs, and adsorption constant k,

in figure 17. As observed in figure 5, coo = 1.47 and k, = 4.71 X 10~* lead to surfactant
surface concentrations relatively close to the maximum packing density in the meniscus
tip and the emitted jet. Increasing co, and k, above those values hinders the numerical
method convergence and may render the Langmuir equation of state inaccurate. For this
reason, we restrict our analysis to ¢, < 1.47 and k, < 4.71 x 1074

As expected, the minimum flow rate ratio decreases as the surfactant concentration and
adsorption constant increase (figure 17). We find approximately linear dependencies of
Omin ON ¢ and k, within the intervals of those parameters analysed. There is a relatively
small effect on the flow stability for, say, coo < 0.5 (Coo S 0.5¢0mc). This agrees with
experimental results, which indicate that the surfactant concentration must exceed by far
the critical micelle concentration to produce noticeable effects (Moyle et al. 2012; Lépez
et al. 2022).

Figure 18 shows the minimum flow rate ratio O, as a function of csok,. The circles
are the results obtained for k, = 4.71 x 10~* and surfactant concentrations ¢ in the
interval [0, 1.47]. The triangles are the results obtained for ¢, = 1.47 and adsorption
constants k, in the interval [0,4.71 x 10~*]. Convection ensures that the volumetric
surfactant concentration at the interface approximately equals c. Therefore, J, >~
kscoo(1 — I'), which means that the amount of surfactant absorbed on the interface is
directly proportional to k,c~. For this reason, the microjetting stability depends on ceo
and k, through the product k,c (figure 18).

Figure 19 shows the excellent agreement between the simulation results and the
prediction (4.3) for the jet radius R;. The symbols correspond to both stable and unstable
base flows with and without surfactant. The surfactant monolayer does not affect the jet
radius, which approximately scales as Q'/2.

7.2. Influence of the capillary number

This section closes by analysing the role of the capillary number (figure 20). We do
not consider capillary numbers larger than 0.35 because the numerical method fails to
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Figure 18. Value of Q,,;, as a function of k,cx. The circles are the results obtained for k, = 4.71 x 1074
and surfactant concentrations ¢, in the interval [0, 1.47]. The triangles are the results obtained for coo = 1.47
and adsorption constants k, in the interval [0, 4.71 x 10~4]. The values of the rest of the parameters are those
specified in § 4.
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Figure 19. Jetradius R; as a function of the flow rate ratio Q for the simulations in figure 18. The symbols are
the simulation results, while the solid line is the prediction (4.3).

converge to the solution in the presence of the surfactant. This probably occurs because the
value I' = 1 is exceeded at some interface point during the simulations. As expected, Qyin
decreases as Ca increases both with and without surfactant. For a given microfluidic device
and liquid-liquid system, the increase in capillary number is produced by an increase in
the outer flow rate. One may wonder whether the decrease in the flow rate ratio Qi is
only due to the increase of O, or, conversely, because Q; decreases as well. The flow rate
ratio Qi can be calculated as a function of the inner flow rate as

4100

2= ca . (7.1)
D2y,

Qmin =
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Figure 20. Value of Oy, as a function of Ca with (solid symbols) and without (open symbols) surfactant.
The dashed lines are the isolines of Q;. The values of the rest of the parameters are those specified in § 4.
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Figure 21. Residence time 7 (open symbols) and surfactant carried by the jet per unit length, 27 Fo, [, at the
numerical domain exit (solid symbols) as a function of Ca. The residence time has been made dimensionless
using the adsorption characteristic time 7, = I'no/(kqCoo); i€ £F = t,(Repti/ D) /14

Figure 20 shows three isolines of Q; for the values of u,, D and ¥, mentioned § 4.
Increasing the capillary number (the outer flow rate) decreases the critical inner flow rate.
This behaviour differs from that of gaseous flow focusing, in which the minimum inner
flow rate hardly depends on the driving force intensity for sufficiently large values of that
quantity (Acero et al. 2012).

The interface velocity increases with the capillary number (4.5), which entails the
reduction of the residence time

Ly—ze 24172
t = f % dz, (7.2)
Z

e Yo

of the interface element in the numerical domain. Figure 21 shows the residence time and
the surfactant transported by the jet per unit length, 2wFo. ., where Fo, and I, are
the jet radius and surfactant surface concentration evaluated at the numerical domain exit,
respectively. The decrease in the residence time reduces the amount of surfactant carried
by the jet.

As mentioned in § 4, the interface element area drastically decreases in the meniscus
tip, which increases the surfactant surface concentration. This effect is more noticeable as

Ca increases due to the decrease in Oy, (and therefore R;) (figure 20). In fact, I~ F
997 A23-27


https://doi.org/10.1017/jfm.2024.804

https://doi.org/10.1017/jfm.2024.804 Published online by Cambridge University Press

M. Rubio, M.G. Cabezas, J.M. Montanero and M.A. Herrada

T T T T T T T T T
0.84 | " .
- o 4

0.82 F L }

0.80 |- i ]
Yoe r ]
0.78 . 4

076 F i
- . -4
074 - -

0.15 0.20 0.25 0.30 0.35
Ca

Figure 22. Jet surface tension yg,. at the numerical domain exit as a function of Ca.

(I" = 1) at the meniscus tip for Ca = 0.349 (figure 5) even though the residence time
in terms of the adsorption characteristic time, 7, = foo / (IAcano), is much smaller than
unity (figure 21). The competition between the residence time and surface contraction
explains the non-monotonic dependency of the jet surface tension (surfactant surface
concentration) on the capillary number (figure 22).

The surfactant stabilizing effect increases with the capillary number. Specifically, the
relative reduction of Q,,i, for coo = 1.47 monotonically increases with Ca (figure 20). This
contrasts the non-monotonic dependency of the jet surface tension on the capillary number
discussed above (figure 22). For Ca < 0.3, the surfactant stabilizing effect increases with
Ca (figure 20) even though the jet surface tension increases with Ca (figure 21). This
contradicts the common assumption that adding surfactant favours tip streaming simply
because it reduces the meniscus tip surface tension.

8. Conclusions

We have numerically analysed the effect of a soluble surfactant on the microjetting mode
of the liquid-liquid flow focusing configuration. The surfactant is convected across a
very narrow annular streamtube next to the interface and adsorbs on the interface next to
the feeding capillary. Convection renders the surfactant concentration relatively constant
throughout the fluid domain. The increase in the surfactant surface concentration in front
of the emitted jet significantly reduces the surface tension there. The resulting Marangoni
stress in the meniscus tip substantially alters the balance of the tangential stresses at the
interface but does not reduce the interface velocity. For this reason, the base flows with
and without surfactant are similar on the scale given by the feeding capillary radius. The
surfactant significantly reduces the meniscus tip capillary pressure opposing the flow.
The global stability analysis at the minimum flow rate stability limit shows that
both the Marangoni stress and soluto-capillarity in the meniscus tip contribute to flow
stabilization. Our analysis allows us to distinguish the surfactant stabilizing effect through
the perturbations and the base flow. The surface tension perturbation caused by the critical
mode induces both pressure-driven and Marangoni flows that oppose the growth of that
mode, which explains the major stabilizing effect of the surfactant monolayer. In addition,
the accumulation of surfactant in the meniscus tip reduces the adverse capillary pressure
gradient in the base flow, which may contribute to stabilizing the microjetting mode.
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Surfactant diffusion and desorption hardly affect the stability limit. Noticeable effects
are observed only for concentrations well above the critical micelle concentration. Due to
the surfactant convection, the concentration at the interface is approximately the same as
that in the liquid reservoir cs.. This explains why the minimum flow rate ratio depends on
the adsorption constant k, and the surfactant concentration ¢, through the product k,co.
The stabilizing effect of the surfactant monolayer increases with the capillary number
(the outer flow rate). Interestingly, the magnitude of the surfactant stabilizing effect can
increase even when the jet surface tension increases.

We have theoretically demonstrated that surfactants can considerably stabilize the
microjetting mode of liquid-liquid flow focusing. This stabilization entails significantly
reducing the minimum jet diameter obtained with this technique. Therefore, using
surfactants in hydrodynamic focusing not only stabilizes the microemulsion resulting
from the jet breakup but also reduces the droplet size. The surfactant monolayer hardly
influences the non-critical (subdominant) linear eigenmodes but significantly alters the
critical one. This mode perturbs the surface tension distribution over the interface,
producing a Marangoni stress that contributes to stabilizing the flow.

In our simulations, the surfactant was added to the inner phase. We do not expect
significant differences when the surfactant is dissolved in the outer fluid. The scaling
analysis in §4 also applies to that case. The fact that the outer viscosity is larger than
the inner one does not alter the conclusion: the surfactant concentration on the outer side
of the interface practically equals that of the liquid reservoir. Therefore, the surfactant
transfer from the outer liquid to the interface is essentially the same as when the surfactant
is present in the inner phase. It is natural to hypothesize that the base flow and its response
to perturbations are practically the same when the surfactant is dissolved in the inner and
outer fluids.
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Appendix. Separate effects of soluto-capillarity and Marangoni stress on the
perturbations

In the presence of the surfactant, the perturbation amplitude §F of the interface location
peaks at the meniscus-to-jet transition, as shown by the black line in figure 23. This
suggests that the instability originates in that region. For this reason, we pay attention
to the effects of soluto-capillarity and Marangoni stresses there.

In the presence of a surfactant monolayer, the surface tension variation §y produces an
extra capillary pressure variation 8p, = 8y ko that does not exist when the surface tension
is constant (see §5.2). This variation drives the inner liquid from regions with higher
values of ép,, to those with lower values of this quantity (figure 23). The analysis of ép,,
alone is inconclusive. The real and imaginary parts of 6F and dp, show that ép, drives
the inner liquid from the right side of the perturbation neck (i.e. where Re[§F] and Im[§F]
are minimum) towards the neck. This is a stabilizing effect because it opposes the neck
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Figure 23. Interface location Fy(z), (a,b) perturbation of the interface location §F(z) and perturbation of
the capillary pressure dp, (c,d). The results correspond to the critical mode for Ca = 0.349, Q = 0.005
and coo = 1.470. The values of §F (8p,) are normalized by dividing them by the absolute value of the
minimum (maximum) value, respectively. The minimum values of Re[6F] and Im[§F] are —0.880 x 105
and —0.548 x 1072, respectively, while the maximum values of Re[8p] and Im[8p] are 0.163 x 10~2 and
0.171 x 1072, respectively. The dotted line indicates the maximum of dpy . The arrows indicate the direction of
the flow associated with ép,,.
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Figure 24. Interface location F(z) (a,b), perturbation of the interface location 6 F(z) and perturbation of the
surface tension 8y (c,d). The results correspond to the critical mode for Ca = 0.349, Q = 0.005 and ¢ =
1.470. The values of §F and dy are normalized by dividing them by the absolute value of the corresponding
minimum value. The minimum values of Re[§ F] and Im[§ F], Re[6p] and Im[§p] are —0.880 x 1075, —0.548 x
1073, —0.119 x 10~* and —0.104 x 10~*, respectively. The dotted line indicates the minimum of 8y. The
arrows indicate the direction of flow associated with 8§71,
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thinning. However, the opposite effect is observed on the left side of the neck. These
results, combined with those in figure 12, suggest that the flow towards the perturbation
neck stabilizes the base flow.

The surface tension variation 8y also produces a Marangoni stress §tM4 = —§y,(1 +
F(Z)Z)l/ 2, as explained in § 5.2. This stress drives the inner liquid from regions with lower
surface tension (smaller values of §y) to those with higher values of this quantity (larger
values of §y ). One expects the Marangoni stress to dampen the perturbation if it drives the
liquid towards the neck of the interface perturbation § F'(z), opposing the neck thinning.

Figure 24 shows the flow induced by the Marangoni stress perturbation §7M¢. The
real parts of 6F and §y show that the Marangoni stress drives the inner liquid from
the right side of the perturbation neck towards the neck (figure 24a,c). However, the
opposite effect is observed on the left side of the neck. The imaginary parts of §F and
8y show a destabilizing effect because the Marangoni stress drags the inner phase from
the perturbation neck (figure 24b,d). Therefore, it is unclear from figure 24 whether
the Marangoni convection caused by 61 (z) plays a stabilizing or destabilizing role.
Nevertheless, these results combined with those in figure 12 indicate that the reverse flow
towards the perturbation neck dragged by 87M¢ during part of the oscillation causes a
net stabilizing effect. This effect resembles the stabilizing mechanism responsible for the
end-pinching escape of a surfactant-laden liquid thread (Kamat et al. 2020).

REFERENCES

ACERO, A.J., FERRERA, C., MONTANERO, J.M. & GANAN-CALVO, A.M. 2012 Focusing liquid microjets
with nozzles. J. Micromech. Microengng 22, 065011.

ANNA, S.L. 2016 Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48, 285-309.

ANNA, S.L., BONTOUX, N. & STONE, H.A. 2003 Formation of dispersions using flow focusing in
microchannels. Appl. Phys. Lett. 82, 364-366.

BARET, J.-C. 2012 Surfactants in droplet-based microfluidics. Lab on a Chip 12, 422-433.

BooTy, M.R. & SIEGEL, M. 2005 Steady deformation and tip-streaming of a slender bubble with surfactant
in an extensional flow. J. Fluid Mech. 544, 243-275.

CABEZAS, M.G., RUBIO, M., REBOLLO-MUNOZ, N., HERRADA, M.A. & MONTANERO, J.M. 2021 Global
stability analysis of axisymmetric liquid-liquid flow focusing. J. Fluid Mech. 909, A10.

CHANG, C.-H. & FRANSES, E.I. 1995 Adsorption dynamics of surfactants at the air/water interface: a critical
review of mathematical models, data, and mechanisms. Colloids Surf. A 100, 1-45.

CHRISTOPHER, G.F. & ANNA, S.L. 2007 Microfluidic methods for generating continuous droplet streams.
J. Phys. D: Appl. Phys. 40, R319-R336.

COHEN, I. 2004 Scaling and transition structure dependence on the fluid viscosity ratio in the selective
withdrawal transition. Phys. Rev. E 70, 026302.

COHEN, I., L1, H., HOUGLAND, J.L., MRKSICH, M. & NAGEL, S.R. 2001 Using selective withdrawal to
coat microparticles. Science 292, 265-267.

CRASTER, R.V., MATAR, O.K. & PAPAGEORGIOU, D.T. 2009 Breakup of surfactant-laden jets above the
critical micelle concentration. J. Fluid Mech. 629, 195-219.

CRUZ-MAZO, F., HERRADA, M.A., GANAN-CALVO, A.M. & MONTANERO, J.M. 2017 Global stability of
axisymmetric flow focusing. J. Fluid Mech. 832, 329-344.

DE BRUDIN, R.A. 1993 Tipstreaming of drops in simple shear flows. Chem. Engng Sci. 48, 277-284.

DIMAKOPOULOS, Y. & TSAMOPOULOS, J. 2003 A quasi-elliptic transformation for moving boundary
problems with large anisotropic deformations. J. Comput. Phys. 192, 494-522.

EGGLETON, C.D., TsAlL, T.-M. & STEBE, K.J. 2001 Tip streaming from a drop in the presence of surfactants.
Phys. Rev. Lett. 87, 048302.

EVANGELIO, A., CAMPO-CORTES, F. & GORDILLO, J.M. 2016 Simple and double microemulsions via the
capillary breakup of highly stretched liquid jets. J. Fluid Mech. 804, 550-577.

FRUMKIN, A. & LEVICH, V. 1947 On surfactants an interfacial motion (in Russian). Zhur. Fiz. Khim. 21,
1183.

GANAN-CALVO, A.M., GONZALEZ-PRIETO, R., RIESCO-CHUECA, P., HERRADA, M.A. & FLORES-
MOSQUERA, M. 2007 Focusing capillary jets close to the continuum limit. Nat. Phys. 3, 737-742.

997 A23-31


https://doi.org/10.1017/jfm.2024.804

https://doi.org/10.1017/jfm.2024.804 Published online by Cambridge University Press

M. Rubio, M.G. Cabezas, J.M. Montanero and M.A. Herrada

GANAN-CALVO, A.M. & RIESCO-CHUECA, P. 2006 Jetting-dripping transition of a liquid jet in a lower
viscosity co-flowing immiscible liquid: the minimum flow rate in flow focusing. J. Fluid Mech. 553, 75-84.

GORDILLO, J.M., SEVILLA, A. & CAMPO-CORTES, F. 2014 Global stability of stretched jets: conditions for
the generation of monodisperse micro-emulsions using coflows. J. Fluid Mech. 738, 335-357.

HE, K., CAMPO-CORTES, F., GORAL, M., LOPEZ-LEON, T. & GORDILLO, J.M. 2019 Micron-sized double
emulsions and nematic shells generated via tip streaming. Phys. Rev. Fluids 4, 124201.

HE, Y., YAZHGUR, P., SALONEN, A. & LANGEVIN, D. 2015 Adsorption—desorption kinetics of surfactants
at liquid surfaces. Adv. Colloid Interface Sci. 222, 377-384.

HERRADA, M.A. 2023 This method has recently been termed JAM (Jacobian Analytical Method). Examples
of JAM codes can be found at https://github.com/miguelherrada/JAM.

HERRADA, M.A. & MONTANERO, J.M. 2016 A numerical method to study the dynamics of capillary fluid
systems. J. Comput. Phys. 306, 137-147.

HERRADA, M.A., PONCE-TORRES, A., RUBIO, M., EGGERS, J. & MONTANERO, J.M. 2022 Stability and
tip streaming of a surfactant-loaded drop in an extensional flow. influence of surface viscosity. J. Fluid
Mech. 934, A26.

HUERRE, P. & MONKEWITZ, P.A. 1990 Local and global instabilites in spatially developing flows. Annu. Rev.
Fluid Mech. 22, 473-537.

KALOGIROU, A. & BLYTH, M.G. 2019 The role of soluble surfactants in the linear stability of two-layer flow
in a channel. J. Fluid Mech. 873, 18-48.

KAMAT, P.M., WAGONER, B.W., CASTREJON-PITA, A.A., CASTREJON-PITA, J.R., ANTHONY, C.R. &
BASARAN, O.A. 2020 Surfactant-driven escape from endpinching during contraction of nearly inviscid
filaments. J. Fluid Mech. 899, A28.

KHORRAMI, M.R. 1989 Application of spectral collocation techniques to the stability of swirling flows.
J. Comput. Phys. 81, 206-229.

LANGEVIN, D. 2014 Rheology of adsorbed surfactant monolayers at fluid surfaces. Annu. Rev. Fluid Mech.
46, 4765.

LEE, W., WALKER, L.M. & ANNA, S.L. 2011 Competition between viscoelasticity and surfactant dynamics
in flow focusing microfluidics. Macromol. Mater. Engng 296, 203-213.

LEVICH, V.G. 1962 Physicochemical Hydrodynamics. Prentice-Hall.

L1, J. & MANIKANTAN, H. 2024 Stability and thinning of liquid jets in the presence of soluble surfactants.
J. Chem. Phys. 160, 024902.

LIANG, X., L1, M., WANG, K. & LU0, G. 2022 Determination of time-evolving interfacial tension and
ionic surfactant adsorption kinetics in microfluidic droplet formation process. J. Colloid Interface Sci. 617,
106-117.

LOPEZ, M., CABEZAS, M.G., MONTANERO, J.M. & HERRADA, M.A. 2022 On the hydrodynamic focusing
for producing microemulsions via tip streaming. J. Fluid Mech. 934, A47.

LYTRA, A., VLACHOMITROU, M. & PELEKASIS, N. 2024 Numerical study of the steady core-annular flow
in a focusing geometry in the presence of soluble surfactants. Intl J. Multiphase Flow 170, 104652.

MARIN, A.G., CAMPO-CORTES, F. & GORDILLO, J.M. 2009 Generation of micron-sized drops and bubbles
through viscous coflows. Colloids Surf. A: Physicochem. Engng Aspects 344, 2-7.

MARTINEZ-CALVO, A. & SEVILLA, A. 2020 Universal thinning of liquid filaments under dominant surface
forces. Phys. Rev. Lett. 125, 114502.

MONTANERO, J.M. & GANAN-CALVO, A.M. 2020 Dripping, jetting and tip streaming. Rep. Prog. Phys. 83,
097001.

MOYLE, T.M., WALKER, L.M. & ANNA, S.L. 2012 Predicting conditions for microscale surfactant mediated
tipstreaming. Phys. Fluids 24, 082110.

PONCE-TORRES, A., REBOLLO-MUNOZ, N., HERRADA, M.A., GANAN-CALVO, A.M. & MONTANERO,
J.M. 2018 The steady cone-jet mode of electrospraying close to the minimum volume stability limit.
J. Fluid Mech. 857, 142-172.

PONCE-TORRES, A., RUBIO, M., HERRADA, M.A., EGGERS, J. & MONTANERO, J.M. 2020 Influence of
the surface viscous stress on the pinch-off of free surfaces loaded with nearly-inviscid surfactants. Sci. Rep.
10, 16065.

RAYLEIGH, LORD 1878 On the instability of jets. Proc. Lond. Math. Soc. s1-10, 4—13.

ROSEN, M.J. 2004 Surfactants and Interfacial Phenomena. John Wiley and Sons.

RUBIO, M., MONTANERO, J.M., EGGERS, J. & HERRADA, M.A. 2024 Stable production of fluid jets with
vanishing diameters via tip streaming. J. Fluid Mech. 984, A4.

RUBIO-RUBIO, M., SEVILLA, A. & GORDILLO, J.M. 2013 On the thinnest steady threads obtained by
gravitational stretching of capillary jets. J. Fluid Mech. 729, 471-483.

SURYO, R. & BASARAN, O.A. 2006 Tip streaming from a liquid drop forming from a tube in a co-flowing
outer fluid. Phys. Fluids 18, 082102.

997 A23-32


https://github.com/miguelherrada/JAM
https://doi.org/10.1017/jfm.2024.804

https://doi.org/10.1017/jfm.2024.804 Published online by Cambridge University Press

Global stability analysis of hydrodynamic focusing

THEOFILIS, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319-352.

TOMOTIKA, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous
fluid. Proc. R. Soc. Lond. 150, 322-337.

TRICOT, Y.-M. 1997 Surfactants: static and dynamic surface tension. In Liquid Film Coating, vol. 1,
pp- 100-136. Chapman and Hall.

WANG, Q., SIEGEL, M. & BooTY, M.R. 2014 Numerical simulation of drop and bubble dynamics with
soluble surfactant. Phys. Fluids 26, 052102.

WEE, H., WAGONER, B.W., KAMAT, P.M. & BASARAN, O.A. 2020 Effects of surface viscosity on breakup
of viscous threads. Phys. Rev. Lett. 124, 204501.

WROBEL, J.K., BoOoTY, M.R., SIEGEL, M. & WANG, Q. 2018 Simulation of surfactant-mediated
tipstreaming in a flow-focusing geometry. Phys. Rev. Fluids 3, 114003.

ZELL, Z.A., NOWBAHAR, A., MANSARD, V., LEAL, L.G., DESHMUKH, S.S., MECCA, J.M., TUCKER,
C.J. & SQUIRES, T.M. 2014 Surface shear inviscidity of soluble surfactants. Proc. Natl Acad. Sci. 111,
3677-3682.

997 A23-33


https://doi.org/10.1017/jfm.2024.804

	1 Introduction
	2 Formulation of the problem
	2.1 Microjetting in liquid--liquid flow focusing
	2.2 The surfactant
	2.3 Dimensionless numbers

	3 Governing equations and numerical method
	4 Base flow of the reference case
	5 Linear stability analysis of the reference case
	5.1 Surfactant effect on the perturbations and base flow
	5.2 Surfactant effect on the perturbations
	5.3 Effect of the surfactant on the base flow

	6 Transient simulations close to the stability limit
	7 Parametric study
	7.1 Influence of the surfactant concentration and the adsorption constant
	7.2 Influence of the capillary number

	8 Conclusions
	A Appendix. Separate effects of soluto-capillarity and Marangoni stress on the perturbations
	References

