CONGRUENCES ON A BISIMPLE ω-SEMIGROUP

by W. D. MUNN and N. R. REILLY

(Received 10 August, 1965)

In a semigroup S the set E of idempotents is partially ordered by the rule that $e \leq f$ if and only if $ef = e = fe$. We say that S is an ω-semigroup if $E = \{e_i: i = 0, 1, 2, \ldots\}$, where

$$e_0 > e_1 > e_2 > \ldots.$$

Bisimple ω-semigroups have been classified in [10]. From a group G and an endomorphism α of G a bisimple ω-semigroup $S(G, \alpha)$ can be constructed by a process described below in § 1; moreover, any bisimple ω-semigroup is isomorphic to one of this type.

The present paper is concerned with congruences on $S = S(G, \alpha)$ and with homomorphic images of S. It is shown that a congruence ρ on S is either an idempotent-separating congruence or a group congruence (that is, S/ρ is a group). The idempotent-separating congruences are in a natural one-to-one correspondence with the α-admissible normal subgroups of G and the maximal such congruence is just Green's equivalence, H. We determine the nature of each of the quotient semigroups S/H, $S/(\sigma \cap H)$, S/σ and $S/(\sigma \vee H)$, where σ denotes the minimum group congruence on S. The structure of S/σ (the maximum group homomorphic image of S) is described in terms of the direct α-limit of G.

Finally, a sufficient condition is given for the lattice of congruences on S to be modular.

1. Throughout this paper we shall adhere to the following convention: N will denote the set of all non-negative integers, G will denote a group and α will denote an endomorphism of G. We shall use the symbol 1 for the identity of G; from the context this will always be distinguishable from the integer 1.

The bicyclic semigroup [1, p. 43] will be denoted by B. It can be considered as the set $N \times N$ endowed with the multiplication

$$(m, n)(p, q) = (m+p-r, n+q-r),$$

where $r = \min\{n, p\}$. This can be generalised as follows. Let $S(G, \alpha)$ denote the set of all ordered triples $(m; g; n)$, where $m, n \in N$ and $g \in G$. Define a multiplication on $S(G, \alpha)$ by the rule that

$$(m; g; n)(p; h; q) = (m+p-r; g^a h^a; n+q-r),$$

where $r = \min\{n, p\}$. We interpret α^0 as the identity automorphism of G. Then, as was shown in [10], $S(G, \alpha)$ is a bisimple ω-semigroup and any bisimple ω-semigroup is isomorphic to a semigroup of the type $S(G, \alpha)$. The bicyclic semigroup is obtained by taking $G = \{1\}$. For each n in N, write

$$e_n = (n; 1; n).$$

The elements e_n are the idempotents of $S(G, \alpha)$ and we have that

$$e_0 > e_1 > e_2 > \ldots.$$
It is almost immediate that \(S(G, \alpha) \) is an inverse semigroup \([1, \S 1.9]\) with identity \(e_0 \) and that \((m; g; n)^{-1} = (n; g^{-1}; m)\).

From (1) it is also easy to show that the equivalence \(\mathcal{H} \) \([1, \S 2.1]\) is given by

\[((m; g; n), (p; h; q)) \in \mathcal{H} \iff m = p \quad \text{and} \quad n = q; \]

this result will be used frequently. In particular, the group of units of \(S(G, \alpha) \) (the \(\mathcal{H} \)-class containing \(e_0 \)) is the subset

\[U = \{(0; g; 0) : g \in G\}. \]

Proofs that are of a straightforward computational nature (using, for example, the law of multiplication (1)) will often be omitted.

Let \(\rho \) be an equivalence on a set \(S \). We denote the \(\rho \)-class of \(S \) containing the element \(x \) of \(S \) by \(xp \). Now let \(S \) be a semigroup. Then \(\rho \) is a congruence if and only if

\[(x, y) \in \rho \Rightarrow (ax, ay) \in \rho \quad \text{and} \quad (xa, ya) \in \rho \]

for all \(a \) in \(S \). The basic properties of congruences are described in \([1, \S 1.5]\). In particular, if \(\rho \) and \(\tau \) are congruences on \(S \) then the congruences \(\rho \cap \tau \) and \(\rho \cup \tau \) have an obvious set-theoretic meaning within \(S \times S \) and the set of all congruences on \(S \) forms a lattice with respect to inclusion in \(S \times S \).

If \(\rho \subseteq \tau \) then we can define a congruence \(\tau/\rho \) on \(S/\rho \) by the rule that

\[(xp, yp) \in \tau/\rho \iff (x, y) \in \tau; \]

furthermore, \((S/\rho)/(\tau/\rho) \cong S/\tau\). Conversely, if \(\tau^* \) is any congruence on \(S/\rho \) then there exists a congruence \(\tau \) on \(S \) containing \(\rho \) and such that \(\tau^* = \tau/\rho \).

We call a congruence \(\rho \) on \(S \) a group congruence if \(S/\rho \) is a group. From the preceding paragraph we see that if \(\tau \) is any congruence on \(S \) containing a group congruence then \(\tau \) is itself a group congruence. The following result provides a characterisation of the minimum group congruence \(\sigma \) on an inverse semigroup \([7, \text{Theorem } 1]\).

Lemma 1.1. Let \(S \) be an inverse semigroup and let a relation \(\sigma \) be defined on \(S \) by the rule that \((x, y) \in \sigma \) if and only if \(ex = ey \) for some idempotent \(e \) in \(S \) (or, equivalently, if and only if \(xf = yf \) for some idempotent \(f \)). Then \(\sigma \) is a group congruence on \(S \). Furthermore, a congruence \(\rho \) on \(S \) is a group congruence if and only if \(\sigma \subseteq \rho \).

A congruence \(\lambda \) on a semigroup \(S \) is said to be idempotent-separating if no two distinct idempotents of \(S \) lie in the same \(\lambda \)-class. Clearly, if \(S \) has more than one idempotent, then an idempotent-separating congruence cannot also be a group congruence. Howie \([3]\) has shown that on an inverse semigroup \(S \) there exists a maximum idempotent-separating congruence \(\mu \); thus a congruence \(\lambda \) on \(S \) is idempotent-separating if and only if \(\lambda \subseteq \mu \). Moreover, \(\mu \) can be characterised as the largest congruence contained in \(\mathcal{H} \). (See also \([6]\).) Hence if \(\mathcal{H} \) itself is a congruence then \(\mathcal{H} = \mu \). This is the case for a bisimple \(\omega \)-semigroup, as we now show.

Lemma 1.2. Let \(S = S(G, \alpha) \). Then \(\mathcal{H} \) is a congruence on \(S \) and \(S/\mathcal{H} \cong B \).
Proof. The mapping \(\theta \) of \(S \) onto \(B \) defined by \((m; g; n)\theta = (m, n)\) is a homomorphism. Further, \((m; g; n), (p; h; q)) \in \mathcal{H}\) if and only if \((m, n) = (p, q)\); hence \(\theta \circ \theta^{-1} = \mathcal{H} \) and the result follows.

Remark. More generally, if \(S \) is an inverse semigroup whose semilattice of idempotents \(E \) is such that each principal ideal of \(E \) is well-ordered under the converse of the natural ordering, then \(\mathcal{H} \) is a congruence on \(S \) [8, Theorem 3.2].

We now establish a fundamental property of congruences on a bisimple \(\omega \)-semigroup.

Theorem 1.3. A congruence on \(S(G, \alpha) \) is either an idempotent-separating congruence or a group congruence.

Proof. Let \(S = S(G, \alpha) \) and let \(\rho \) be a congruence on \(S \). Suppose that \(\rho \) is not idempotent-separating. Then \((e_m, e_{m+k}) \in \rho \) for some \(m, k \) in \(N \), with \(k > 0 \). We shall show that all the idempotents of \(S \) are \(\rho \)-equivalent. First let \(x = (0; 1; m) \). Then \(xe_mx^{-1} = e_0 \) and \(xe_{m+k}x^{-1} = e_k \). Hence \((e_0, e_k) \in \rho \). Since \(e_0e_1 = e_1 \) and \(e_1e_1 = e_k \) it follows that \((e_1, e_k) \in \rho \). Thus \((e_0, e_1) \in \rho \). Now suppose that we have shown that \((e_0, e_n) \in \rho \) for some positive integer \(n \). Let \(y = (n; 1; 0) \). Then \(ye_0y^{-1} = e_0 \) and \(ye_1y^{-1} = e_{n+1} \), from which we deduce that \((e_n, e_{n+1}) \in \rho \). Hence \((e_0, e_{n+1}) \in \rho \). Thus, by induction on \(n \), all the idempotents of \(S \) lie in the same \(\rho \)-class, \(I \), say. Let \(a \in S \). Then \(I \cdot ap = (aa^{-1}) \cdot ap \subseteq ap \); also \(a^{-1} \cdot ap \subseteq (a^{-1}a) \cdot I \). Hence \(S/\rho \) is a group. This completes the proof.

Let \(\Lambda \) denote the lattice of congruences on \(S(G, \alpha) \). Then this theorem shows that \(\Lambda \) is the disjoint union of the sublattices \(\Lambda_{FS} = \{ \lambda \in \Lambda : \lambda \subseteq \mathcal{H} \} \) and \(\Lambda_{G} = \{ \lambda \in \Lambda : \sigma \subseteq \lambda \} \) consisting of all idempotent-separating congruences and of all group congruences respectively.

2. For any congruence \(\lambda \) on \(S = S(G, \alpha) \) we define a subset \(A_\lambda \) of \(G \) as follows:

\[
A_\lambda = \{ g \in G : ((0; g; 0), e_0) \in \lambda \}.
\]

Note that \(A_\lambda = A_\lambda \cap \mathcal{H} \), since the \(\mathcal{H} \)-class containing \(e_0 \) is \(U = \{(0; g; 0) \in S : g \in G \} \). It will be convenient to express properties of congruences on \(S \) in terms of the sets \(A_\lambda \).

Lemma 2.1. For any congruence \(\lambda \) on \(S(G, \alpha) \), \(A_\lambda \) is an \(\alpha \)-admissible normal subgroup of \(G \).

Proof. Let \(\lambda_0 = \lambda \cap (U \times U) \). Then \(\lambda_0 \) is a congruence on \(U \) and so, since \(e_0\lambda_0 \) is a normal subgroup of \(U \) and is the image of \(A_\lambda \) under the isomorphism \(g \to (0; g; 0) \) from \(G \) to \(U \), \(A_\lambda \) is a normal subgroup of \(G \).

Now let \(g \in A_\lambda \). Write \(x = (0; g; 0) \) and \(z = (0; 1; 1) \). Then \((x, e_0) \in \lambda \) and so \((xz^{-1}, ze_0z^{-1}) \in \lambda \). But \(xz^{-1} = (0; ga; 0) \) and \(ze_0z^{-1} = e_0 \). Hence \(ga \in A_\lambda \). Thus \(A_\lambda \) is \(\alpha \)-admissible.

Let \(\ker \alpha^k \) denote the kernel of the endomorphism \(\alpha^k \) for \(k = 1, 2, 3, \ldots \).

Lemma 2.2.

\[
A_\sigma \cap \mathcal{H} = A_\sigma = \bigcup_{k=1}^{\infty} \ker \alpha^k.
\]

Proof. Let \(g \in A_\sigma \). Then \((0; g; 0), e_0) \in \sigma \) and so, by Lemma 1.1, \(e_m(0; g; 0) = e_me_0 \) for some \(m \); that is, \((m; ga^m; m) = e_m \). Thus \(ga^m = 1 \) and so

\[
g \in \bigcup_{k=1}^{\infty} \ker \alpha^k.
\]
Conversely, let
\[g \in \bigcup_{k=1}^{\infty} \ker \alpha^k. \]
Then \(g \alpha^m = 1 \) for some \(m \) and so \(e_m(0; g; 0) = e_m e_0. \) Hence \((0; g; 0), e_0 \in \sigma; \) that is, \(g \in A_\sigma. \) Hence
\[A_\sigma = \bigcup_{k=1}^{\infty} \ker \alpha^k, \]
and, by an earlier remark, \(A_\sigma \cap \mathcal{E} = A_\sigma. \)

We now consider idempotent-separating congruences. These can be characterised as follows.

Lemma 2.3.

(i) Let \(\lambda \) be an idempotent-separating congruence on \(S(G, \alpha). \) Then
\[((m; g; n), (p; h; q)) \in \lambda \iff m = p, \quad n = q \quad \text{and} \quad gh^{-1} \in A_\lambda. \]

(ii) For any \(\alpha \)-admissible normal subgroup \(A \) of \(G \) there exists an idempotent-separating congruence \(\lambda \) on \(S(G, \alpha) \) such that \(A = A_\lambda. \)

The proof is omitted.

Remark. From Lemmas 2.2 and 2.3 we see that \(\alpha \cap \mathcal{E} \) is the identical congruence on \(S = S(G, \alpha) \) if and only if
\[\bigcup_{k=1}^{\infty} \ker \alpha^k = \{1\}, \]
that is, if and only if \(\alpha \) is one-to-one. It can be shown that this holds in turn if and only if the set \(E \) of idempotents of \(S \) is unitary in \(S. \) This result should be compared with [4, Theorem 3.9].

Let \(A \) be an \(\alpha \)-admissible normal subgroup of \(G. \) We define a mapping \(\alpha/A \) of \(G/A \) into itself by the rule that \((Ag)(\alpha/A) = A(\alpha g) \) for all \(g \) in \(G. \) That this is well-defined is a consequence of the \(\alpha \)-admissibility of \(A. \) It is immediate that \(\alpha/A \) is an endomorphism; moreover, if we define \(\alpha^k/A \) on \(G/A \) in a similar way, then \((\alpha/A)^k = \alpha^k/A \) for any positive integer \(k. \)

Theorem 2.4. Let \(\lambda \) be an idempotent-separating congruence on \(S = S(G, \alpha). \) Then \(S/\lambda \cong S(G/A_\lambda, \alpha/A_\lambda). \)

Proof. Consider the mapping \(\theta \) of \(S \) onto \(S(G/A_\lambda, \alpha/A_\lambda) \) defined by
\[(m; g; n) \theta = (m; A_\lambda g; n). \]
Since
\[A_\lambda(g \alpha^r . h \alpha^s) = (A_\lambda g)(\alpha/A_\lambda)^r . (A_\lambda h)(\alpha/A_\lambda)^s \]
\((g, h \in G; \ r, s \in N) \), it follows that \(\theta \) is a homomorphism. Also, \((m; g; n) \theta = (p; h; q) \theta \)
if and only if \(m = p, \ n = q \) and \(A_\lambda g = A_\lambda h. \) By Lemma 2.3 (i) these equalities hold if and only if \(((m; g; n), (p; h; q)) \in \lambda. \) Hence \(\theta \circ \theta^{-1} = \lambda, \) which gives the required result.
Corollary 2.5. Let $S = S(G, \alpha)$ and let
\[K = \bigcup_{k=1}^{\infty} \ker \alpha^k. \]
Then $S/(\sigma \cap \mathcal{H}) \cong S(G/K, \alpha/K)$.

This follows from Lemma 2.2.

A result related to that of Theorem 2.4 can be obtained by a straightforward generalisation of [10, Theorem 4.1], making use of Theorem 1.3. Let α' be an endomorphism of a group G'. Then there exists a homomorphism of $S(G, \alpha)$ onto $S(G', \alpha')$ if and only if there exists a homomorphism θ of G onto G' and an element z of G' such that
\[\alpha \theta = \theta \alpha' \psi_z, \]
where ψ_z denotes the inner automorphism $x \mapsto zxz^{-1}$ of G'. We omit the proof.

3. We now turn our attention to group congruences. The main aim of this section is to find the structure of the maximum group homomorphic image of $S(G, \alpha)$; this is achieved in Theorem 3.4.

Let us first define a relation ρ on $G \times N$ by the rule that
\[((a, i), (b, j)) \in \rho \iff a\alpha^{-r} = b\alpha^{-r} \]
for some $r \geq i, j$ (and therefore for all sufficiently large r).

Lemma 3.1. ρ is an equivalence on $G \times N$. Further, the rule
\[(a, i)\rho \cdot (b, j)\rho = (a\alpha^{m-i}b\alpha^{m-j}, m)\rho, \]
where $m = \max \{i, j\}$, defines a binary operation on $(G \times N)/\rho$ with respect to which this set is a group.

The proof is omitted. We shall denote the group $(G \times N)/\rho$ so formed by G_a and call it the direct α-limit of G. For a discussion of direct limits of groups, see [5, § 7].

Clearly
\[(a, i)\rho = (a\alpha^n, i+n)\rho \quad (2) \]
for all n in N.

Next we define $\hat{\alpha} : G_a \to G_a$ by $(a, i)\rho \hat{\alpha} = (a\alpha, i)\rho$. The following result was suggested to us by A. H. Clifford.

Lemma 3.2. $\hat{\alpha}$ is an automorphism of G_a. For all p, q in N we have that
\[(a, i)\rho \hat{\alpha}^{p-q} = (a\alpha^p, i+q)\rho. \]

Proof. By virtue of (2) we see that the mapping $\hat{\alpha}$ has a two-sided inverse $\hat{\alpha}^{-1}$ defined by
\[(a, i)\rho \hat{\alpha}^{-1} = (a, i+1)\rho. \]
To complete the proof that it is an automorphism we note that
\[[(a, i)\rho \hat{\alpha}][(b, j)\rho \hat{\alpha}] = ((a\alpha)\alpha^{m-i}(b\alpha)\alpha^{m-j}, m)\rho, \]
where $m = \max \{i, j\}$,
\[= (a\alpha^{m-i}b\alpha^{m-j}, m)\rho \hat{\alpha} \]
\[= [(a, i)\rho (b, j)\rho] \hat{\alpha}. \]
By induction on \(p \) we have that \((a, i)p^p = (ax^p, i)p\) for all \(p \) in \(N \). Similarly, \((a, i)p^{a^q} = (a, i + q)p\) for all \(q \) in \(N \) and, combining these, we have that\[
(a, i)p^{a^q} = (ax^p, i + q)p
\]
for all \(p, q \) in \(N \). (Note that in the case \(p = q \) this reduces to (2).)

For the remainder of this section the group of all integers under addition will be denoted by \(Z \).

Lemma 3.3. Let \(H \) be a group and \(\beta \) an automorphism of \(H \). Define a multiplication on the set \(Z \times H \) by the rule that\[
(i, a)(j, b) = (i + j, ab^\beta b).
\]
Then, with respect to this operation, \(Z \times H \) is a group.

Again we omit the proof. We shall denote the group so formed by \(H \uparrow \beta \). This is a semi-direct product of \(H \) by \(Z \) \([2, \S 6.5]\).

The direct product of two semigroups \(P \) and \(Q \) will be denoted by \(P \times Q \). If \(\beta \) is an inner automorphism of \(H \) then \(H \uparrow \beta \cong Z \times H \). To see this, let \(\beta \) be the mapping \(x \mapsto h^{-1}xh \) determined by the element \(h \) of \(H \); then the mapping \((i, a) \mapsto (i, h^\beta a)\) of \(H \uparrow \beta \) onto \(Z \times H \) is an isomorphism.

We now describe the maximum group homomorphic image of \(S(G, a) \).

Theorem 3.4. Let \(S = S(G, a) \). Then \(S/\sigma \cong G_x \uparrow \dot{\sigma} \).

Proof. Define a mapping \(\theta : S \to G_x \uparrow \dot{\sigma} \) by the rule that\[
(m; g; n)\theta = (m-n, (g, n)p).
\]
First we show that \(\theta \) is surjective. Let \(i \in Z \) and let \((g, n)p\) be any element of \(G_x \) \((g \in G, n \in \mathbb{N})\). If \(i \geq 0 \), then \((i, (g, n)p) = (i + n; g; n)\theta \). On the other hand, if \(i < 0 \), then, by (2),\[
(i, (g, n)p) = (i, (g\alpha^{-i}, n-i)p) = (n; g\alpha^{-i}; n-i)\theta.
\]
Now let \((m; g; n) \) and \((p; h; q) \) be any two elements of \(S \). Then\[
(m; g; n)\theta(p; h; q)\theta
\]
\begin{align*}
&= (m-n, (g, n)p)(p-q, (h, q)p) \\
&= (m-n + p-q, (g, n)p\alpha^{a^q} - q(h, q)p) \\
&= (m-n + p-q, (g\alpha^p, n+q)p(h, q)p), \quad \text{by Lemma 3.2,} \\
&= (m-n + p-q, (g\alpha^p h\alpha^q, n+q)p) \\
&= (m-n + p-q, (g\alpha^p h\alpha^q, n+q-p)r), \quad \text{by (2), where } r = \min \{ n, p \}, \\
&= (m+p-r; g\alpha^{p-r} h\alpha^{q-r}; n+q-r)\theta \\
&= [(m; g; n)(p; h; q)]\theta.
\end{align*}
Thus θ is a homomorphism. Since $S\theta$ is a group and σ is the minimum group congruence on S, it follows that $\sigma \subseteq \theta \circ \theta^{-1}$.

To complete the proof we shall show that $\theta \circ \theta^{-1} \subseteq \sigma$. Let $(m; g; n)\theta = (p; h; q)\theta$. Then

$$(m-n, (g, n)\rho) = (p-q, (h, q)\rho).$$

Hence $m-n = p-q$ and $(g, n)\rho = (h, q)\rho$. From the latter equality we have that $g\alpha^{k-n} = h\alpha^{k-q}$ for some $k \geq n$. Thus

$$(m; g; n)\epsilon_k = (m+k-n; g\alpha^{k-n}; k) = (p+k-q; h\alpha^{k-q}; k) = (p; h; q)\epsilon_k$$

and so, by Lemma 1.1, $((m; g; n), (p; h; q)) \in \sigma$. Hence $\theta \circ \theta^{-1} \subseteq \sigma$.

We have therefore shown that $\theta \circ \theta^{-1} = \sigma$ and so $S/\sigma \cong S\theta = G \uparrow \tilde{\alpha}$.

In certain cases G_α can be embedded in G and the structure of S/σ assumes a simpler form. We say that α is stable if, for some k, $\alpha \mid G\alpha^k$ is an automorphism of $G\alpha^k$. The smallest k for which this condition holds will be called the index of stability of α. Evidently α is stable if it is an automorphism of G. Also α is stable if it is nilpotent, that is, if $\alpha^n = \zeta$ (the zero endomorphism of G, defined by $g\zeta = 1$ for all g in G) for some n. Note that, if G is finite, then α is necessarily stable.

Let α be stable, with index of stability k. We prove that $G_\alpha \cong G\alpha^k$. Let $\beta = \alpha \mid G\alpha^k$ and let $\phi : G_\alpha \rightarrow G\alpha^k$ be defined by

$$(g, i)\rho \phi = g\alpha^k\beta^{-i}.$$

First, for any g in G we have that $(g\alpha^i, i)\rho \phi = g\alpha^{i+k}\beta^{-i} = g\alpha^k$ and so ϕ is surjective. Also, if $g\alpha^k\beta^{-i} = h\alpha^k\beta^{-j}$, then $g\alpha^{k+m-i} = h\alpha^{k+m-j}$, where $m = \max \{i, j\}$, and so $(g, i)\rho = (h, j)\rho$. This shows that ϕ is one-to-one. Moreover, for any elements $(g, i)\rho$ and $(h, j)\rho$ in G_α we have that

$$[(g, i)\rho(h, j)\rho]\phi = (g\alpha^{m-i}h\alpha^{m-j}, m)\rho \phi,$$

where $m = \max \{i, j\},$

$$= (g\alpha^{m-i}h\alpha^{m-j})\alpha^{k}\beta^{-m}$$

$$= (g\alpha^k\beta^{-i})(h\alpha^k\beta^{-j}) = (g, i)\rho \phi(h, j)\rho \phi.$$

It is easy to show that $\phi \beta = \tilde{\alpha} \phi$ and from this it follows that the mapping $\psi : G_\alpha \uparrow \tilde{\alpha} \rightarrow G\alpha^k \uparrow \beta$ defined by

$$(j, (g, i)\rho)\psi = (j, (g, i)\rho \phi) = (j, g\alpha^k\beta^{-i})$$

is an isomorphism. Thus we have

Corollary 3.5. Let $S = S(G, \alpha)$, where α is stable with index of stability k. Let $\beta = \alpha \mid G\alpha^k$. Then

$$S/\sigma \cong G\alpha^k \uparrow \beta.$$

A further specialisation gives the following two results.

Corollary 3.6. If α is an automorphism, then $S/\sigma \cong G \uparrow \alpha$. In particular, if α is an inner automorphism, then $S/\sigma \cong Z \times G$.

It should be noted that, if α is an inner automorphism, then $S \cong B \times G$ [10, Corollary 4.2].
COROLLARY 3.7. If \(\alpha^{k+1} = \alpha^k \) for some \(k \), then \(S/\sigma \cong \mathbb{Z} \times G_\alpha^k \). In particular, if \(\alpha \) is nilpotent, then \(S/\sigma \cong \mathbb{Z} \).

We return now to the case in which no restrictions are placed on \(\alpha \). Since the group homomorphic images of \(S = S(G, \alpha) \) are just the homomorphic images of \(G_\alpha \uparrow \alpha \), it follows that \(\mathbb{Z} \) is one such image. The next theorem shows that this is determined by the congruence \(\sigma \vee \mathcal{H} \).

LEMMA 3.8. Let \(S = S(G, \alpha) \). Then
\[
((m; g; n), (p; h; q)) \in \sigma \vee \mathcal{H} \iff m-n = p-q.
\]

Proof. Let \(x = (m; g; n) \) and \(y = (p; h; q) \). First suppose that \((x, y) \in \sigma \vee \mathcal{H}\). Then, since \(\sigma \vee \mathcal{H} = \sigma \circ \mathcal{H} \circ \sigma \) [3, Theorem 3.9], there exist elements \(a, b \) in \(S \) such that \((x, a) \in \sigma, (a, b) \in \mathcal{H} \) and \((b, y) \in \sigma \). Let \(a = (m'; g'; n') \) and \(b = (p'; h'; q') \). Since \((x, a) \in \sigma \), there exists an idempotent \(e_k \) such that \(e_kx = e_ka \) (Lemma 1.1) and we can assume, without loss of generality, that \(k \geq m, m' \). Hence we have \(k+n = k+n' = m' \) and so \(m-n = m'-n' \). Similarly, since \((b, y) \in \sigma \), we have \(p-q = p' - q' \). But \(m' = p' \) and \(n' = q' \), since \((a, b) \in \mathcal{H} \). Hence \(m-n = p-q \).

Conversely, let \(x \) and \(y \) be such that \(m-n = p-q \). We assume that \(m \leq p \). Then \(e_px = (p; ga^{p-m}; p+n-m) = (p; ga^{p-m}; q) \) and so \((e_px, y) \in \mathcal{H} \). But \((x, e_px) \in \sigma \), since \(e_p \) is an idempotent. Hence \((x, y) \in \sigma \circ \mathcal{H} \subseteq \sigma \vee \mathcal{H} \). This establishes the lemma.

THEOREM 3.9. Let \(S = S(G, \alpha) \). Then \(S/(\sigma \vee \mathcal{H}) \cong \mathbb{Z} \).

Proof. Consider the mapping \(\theta \) of \(S \) onto \(\mathbb{Z} \) defined by \((m; g; n) \theta = m-n \). It is immediate from (1) that \(\theta \) is a homomorphism. From Lemma 3.8 we have that
\[
\theta \circ \theta^{-1} = \sigma \vee \mathcal{H}
\]
and the required result follows.

4. We conclude with some further remarks on the lattice of congruences \(\Lambda \) on \(S = S(G, \alpha) \).

Let \(\Lambda_{IS} \) and \(\Lambda_G \) be defined as at the end of § 1; then \(\Lambda_{IS} \cup \Lambda_G = \Lambda \) and \(\Lambda_{IS} \cap \Lambda_G = \emptyset \).

Now \(\Lambda_G \) is modular, since it is isomorphic to the lattice of all congruences on the group \(S/\sigma \). Also, \(\Lambda_{IS} \) is modular by [6, Theorem 3.2]. This can be proved directly as follows. Let \(\mathcal{A} \) denote the set of all \(\alpha \)-admissible normal subgroups of \(G \). Since \(AA' \) and \(A \cap A' \) lie in \(\mathcal{A} \) for all \(A, A' \) in \(\mathcal{A} \), it follows that \(\mathcal{A} \) is a sublattice of the lattice of all normal subgroups of \(G \). Hence \(\mathcal{A} \) is modular. But from Lemma 2.3 (i) we have that
\[
\lambda \leq \lambda' \Rightarrow A_\lambda \subseteq A_{\lambda'} \quad (\lambda, \lambda' \in \Lambda_{IS})
\]
and so the mapping \(\phi : \Lambda_{IS} \rightarrow \mathcal{A} \) given by \(\lambda \phi = A_\lambda \)—which is surjective, by Lemma 2.3 (ii)—is a lattice isomorphism.

It is natural to ask whether \(\Lambda \) itself is modular. A full discussion of this question is given in [9]; we shall confine ourselves here to obtaining a sufficient condition for modularity.

In general \(\sigma \) and \(\mathcal{H} \) are incomparable. It can happen, however, that \(\mathcal{H} \) is contained in \(\sigma \). We now give a necessary and sufficient condition for this to hold.
LEMMA 4.1. Let $S = S(G, \alpha)$. Then

$$H \subseteq \sigma \Leftrightarrow \bigcup_{k=1}^{\infty} \ker \alpha^k = G.$$

Proof. Write

$$K = \bigcup_{k=1}^{\infty} \ker \alpha^k.$$

First let $H \subseteq \sigma$ and let $g \in G$. Then since $((0; g; 0), e_0) \in H$, we have that $g \in A_\sigma$. But $A_\sigma = K$, by Lemma 2.2. Hence $G \subseteq K$ and so $G = K$.

Conversely, let $G = K$. Consider the H^0-equivalent elements $x = (m; g; n)$ and $y = (m; h; n)$. Since $gh^{-1} \in K$ by hypothesis, there exists k such that $(gh^{-1})\alpha^k = 1$. Thus $ga^k = ha^k$. Then

$$e_{m+k}x = (m+k; g\alpha^k; n+k) = (m+k; h\alpha^k; n+k) = e_{m+k}y$$

and so $(x, y) \in \sigma$, by Lemma 1.1. Thus $H \subseteq \sigma$; moreover, equality is impossible.

In particular, $H \subseteq \sigma$ if α is nilpotent.

We note, in passing, that if α is nilpotent, then $S/J_{\alpha} \cong Z$. (See Corollary 3.7.)

Finally, we have

THEOREM 4.2. The lattice of congruences on $S(G, \alpha)$ is modular if

$$\bigcup_{k=1}^{\infty} \ker \alpha^k = G.$$

In particular, this holds if α is nilpotent.

The result follows from Lemma 4.1 and the fact that Λ_{IS} and Λ_{IG} are both modular.

REFERENCES