TOPOLOGICAL FULL GROUPS OF C^{*}-ALGEBRAS ARISING FROM β-EXPANSIONS

KENGO MATSUMOTO ${ }^{\boxtimes}$ and HIROKI MATUI
(Received 21 August 2013; accepted 22 April 2014; first published online 17 July 2014)
Communicated by G. Willis

Abstract

We introduce a family of infinite nonamenable discrete groups as an interpolation of the HigmanThompson groups by using the topological full groups of the groupoids defined by β-expansions of real numbers. They are regarded as full groups of certain interpolated Cuntz algebras, and realized as groups of piecewise-linear functions on the unit interval in the real line if the β-expansion of 1 is finite or ultimately periodic. We also classify them by a number-theoretical property of β.

2010 Mathematics subject classification: primary 20E32; secondary 37A45, 37A55, 37B10.
Keywords and phrases: Cuntz algebras, C^{*}-algebras, Higman-Thompson groups, β-expansion, full groups, symbolic dynamics.

1. Introduction

The class of finitely presented infinite groups is one of the most interesting and important classes of infinite groups from the viewpoints of not only group theory but also geometry and topology. The study of finitely presented simple infinite groups has begun with Richard J. Thompson in the 1960s. He [32] discovered the first two such groups. They are now known as the groups V_{2} and T_{2}. Higman [12] and Brown [3] generalized Thompson's examples to an infinite family of finitely presented infinite groups. One of such family is the groups written $V_{n}, 1<n \in \mathbb{N}$, which are called the Higman-Thompson groups. They are all finitely presented and their commutator subgroups are all simple. Their abelianizations are trivial if n is even, and \mathbb{Z}_{2} if n is odd. The Higman-Thompson group V_{n} is represented as the group of right-continuous piecewise-linear (PL) functions $f:[0,1) \longrightarrow[0,1)$ having finitely many singularities such that all singularities of f are in $\mathbb{Z}[1 / n]$, the derivative of f at any nonsingular point is n^{k} for some $k \in \mathbb{Z}$ and $f(\mathbb{Z}[1 / n] \cap[0,1))=\mathbb{Z}[1 / n] \cap[0,1)[32]$ (see $[4,5,26]$). Nekrashevych [25] showed that the Higman-Thompson group V_{n} appears as a certain

[^0]subgroup of the unitary group of the Cuntz algebra O_{n} of order n. The subgroup of the unitary group of O_{n} is the continuous full group Γ_{n} of O_{n}, which is also called the topological full group of the associated groupoid (see also [24, Remark 6.3]). Recently, the authors have independently studied full groups of the Cuntz-Krieger algebras and full groups of the groupoids coming from shifts of finite type. The first-named author has studied the normalizer groups of the Cuntz-Krieger algebras [9], which are called the continuous full groups from the viewpoints of orbit equivalence of topological Markov shifts and classification of C^{*}-algebras (see [16-18] etc.). He [19] proved that the continuous full groups are complete invariants for the continuous orbit equivalence classes of the underlying topological Markov shifts. The second-named author has studied the continuous full groups of more general étale groupoids (see [21-24] etc.). He has called them the topological full groups of étale groupoids. He [24] proved that if an étale groupoid is minimal, the topological full group of the groupoid is a complete invariant for the isomorphism class of the groupoid. He also showed that if a groupoid comes from a shift of finite type, the topological full group is of type F_{∞} and in particular finitely presented. He furthermore obtained that the topological full group for a shift of finite type is simple if and only if the homology group $H_{0}(G)$ of the groupoid G is 2-divisible. Hence, we know an infinite family of finitely presented infinite simple groups coming from symbolic dynamics. Nekrashevych's paper [25] says that the Higman-Thompson groups appear as the topological full groups of the groupoids of the full shifts and as the continuous full groups of the Cuntz algebras. In [13], a family of C^{*}-algebras $O_{\beta}, 1<\beta \in \mathbb{R}$ has been introduced. It arises from a family of certain subshifts called the β-shifts, which are the symbolic dynamics defined by the β-transformations on the unit interval $[0,1]$. The family of the β-shifts is an interpolation of the full shifts. Hence, the C^{*}-algebras $O_{\beta}, 1<\beta \in \mathbb{R}$ are considered as an interpolation of the Cuntz algebras $O_{N}, 1<N \in \mathbb{N}$.

In the present paper, we introduce a family $\Gamma_{\beta}, 1<\beta \in \mathbb{R}$ of infinite discrete groups as an interpolation of the Higman-Thompson groups $V_{n}, 1<n \in \mathbb{N}$ such that $\Gamma_{n}=V_{n}, 1<n \in \mathbb{N}$. The groups $\Gamma_{\beta}, 1<\beta \in \mathbb{R}$ are defined as the continuous full groups of the C^{*}-algebras $O_{\beta}, 1<\beta \in \mathbb{R}$. They are also considered as the topological full groups of the étale groupoids G_{β} for the β-shifts. We will first study the groupoid G_{β} and show that the groupoid G_{β} for each $1<\beta \in \mathbb{R}$ is an essentially principal, purely infinite, minimal étale groupoid. The homology groups $H_{i}\left(G_{\beta}\right)$ are computed as

$$
H_{i}\left(G_{\beta}\right) \cong \begin{cases}K_{i}\left(O_{\beta}\right) & \text { if } i=0,1 \\ 0 & \text { if } i \geq 2\end{cases}
$$

We will show the following theorem.
Theorem 1.1 (Theorem 3.7). Let $1<\beta \in \mathbb{R}$ be a real number. Then the group Γ_{β} is a countably infinite discrete nonamenable group such that its commutator subgroup $D\left(\Gamma_{\beta}\right)$ is simple.

For a real number $\beta>1$, let us denote by $d(1, \beta)=\xi_{1} \xi_{2} \xi_{3} \ldots$ the β-adic expansion of 1 , which means $\xi_{i} \in \mathbb{Z}, 0 \leq \xi_{i} \leq[\beta]$ and

$$
1=\frac{\xi_{1}}{\beta}+\frac{\xi_{2}}{\beta^{2}}+\frac{\xi_{3}}{\beta^{3}}+\cdots
$$

The expansion $d(1, \beta)$ is said to be finite if there exists $k \in \mathbb{N}$ such that $\xi_{m}=0$ for all $m>k$. If there exists $l \leq k$ such that

$$
d(1, \beta)=\xi_{1} \ldots \xi_{l} \xi_{l+1} \ldots \xi_{k+1} \xi_{l+1} \ldots \xi_{k+1} \xi_{l+1} \ldots \xi_{k+1} \ldots
$$

the expansion $d(1, \beta)$ is said to be ultimately periodic and written $d(1, \beta)=$ $\xi_{1} \cdots \xi_{l} \dot{\xi}_{l+1} \cdots \dot{\xi}_{k+1}$. It is well known that the Higman-Thompson group $V_{n}, n \in \mathbb{N}$ is represented as the group of right-continuous PL functions $f:[0,1) \longrightarrow[0,1)$ having finitely many singularities such that all singularities of f are in $\mathbb{Z}[1 / n]$, the derivative of f at any nonsingular point is n^{k} for some $k \in \mathbb{Z}$ and $f(\mathbb{Z}[1 / n] \cap[0,1))=\mathbb{Z}[1 / n] \cap[0,1)$. We introduce a notion of β-adic PL functions on the interval $[0,1]$ and show the following theorem.

Theorem 1.2 (Theorems 5.10 and 6.13). Let $1<\beta \in \mathbb{R}$ be a real number such that the β-expansion $d(1, \beta)$ of 1 is finite or ultimately periodic. Then the group Γ_{β} is realized as the group of β-adic PLfunctions on the interval $[0,1]$.

It is well known that $d(1, \beta)$ is finite if and only if the β-shift $\left(X_{\beta}, \sigma\right)$ is a shift of finite type, and $d(1, \beta)$ is ultimately periodic if and only if the β-shift $\left(X_{\beta}, \sigma\right)$ is a sofic shift (see [2, 11]). If $\beta=(1+\sqrt{5}) / 2$, the number is the positive solution of the quadratic equation $\beta^{2}=\beta+1$, so that the β-expansion is finite: $d(1, \beta)=110000 \cdots$. We will classify the interpolated Higman-Thompson groups $\Gamma_{\beta}, 1<\beta \in \mathbb{R}$ by the numbertheoretical property of β in the following way.

Theorem 1.3 (Theorems 7.2, 7.10 and 7.11). Let $1<\beta \in \mathbb{R}$ be a real number and $d(1, \beta)=\xi_{1} \xi_{2} \xi_{3} \ldots$ be the β-expansion of 1 .
(i) If $d(1, \beta)$ is finite, that is, $d(1, \beta)=\xi_{1} \xi_{2} \ldots \xi_{k} 00 \ldots$, then the group Γ_{β} is isomorphic to the Higman-Thompson group $V_{\xi_{1}+\cdots+\xi_{k}+1}$ of order $\xi_{1}+\cdots+\xi_{k}+1$.
(ii) If $d(1, \beta)$ is ultimately periodic, that is, $d(1, \beta)=\xi_{1} \cdots \xi_{l} \dot{\xi}_{l+1} \cdots \dot{\xi}_{k+1}$, then the group Γ_{β} is isomorphic to the Higman-Thompson group $V_{\xi_{l+1}+\cdots+\xi_{k+1}}$ of order $\xi_{l+1}+\cdots+\xi_{k+1}$.
(iii) If $1<\beta \in \mathbb{R}$ is not ultimately periodic, then the group Γ_{β} is not isomorphic to any of the Higman-Thompson groups $V_{n}, 1<n \in \mathbb{N}$.

2. Preliminaries of the C^{*}-algebra O_{β}

Throughout the paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{Z}_{+} the set of nonnegative integers, respectively. We fix an arbitrary real number $\beta>1$ unless we specify otherwise. Take a natural number N with $N-1<\beta \leq N$. Put
$\Sigma=\{0,1, \ldots, N-1\}$. For a nonnegative real number t, we denote by $[t]$ the integer part of t. Let $f_{\beta}:[0,1] \rightarrow[0,1]$ be the function defined by

$$
f_{\beta}(x)=\beta x-[\beta x], \quad x \in[0,1] .
$$

The β-expansion of $x \in[0,1]$ is a sequence $\left\{d_{n}(x, \beta)\right\}_{n \in \mathbb{N}}$ of integers of Σ determined by (see $[27,30]$)

$$
d_{n}(x, \beta)=\left[\beta f_{\beta}^{n-1}(x)\right], \quad n \in \mathbb{N}
$$

The numbers $d_{n}(x, \beta)$ will be denoted by $d_{n}(x)$ for simplicity. We then obtain the β-expansion of x :

$$
x=\sum_{n=1}^{\infty} \frac{d_{n}(x)}{\beta^{n}} .
$$

We endow the infinite product $\Sigma^{\mathbb{N}}$ with the product topology and the lexicographical order. The lexicographical order in $\Sigma^{\mathbb{N}}$ means that for $x=\left(x_{n}\right)_{n \in \mathbb{N}}, y=\left(y_{n}\right)_{n \in \mathbb{N}} \in \Sigma^{\mathbb{N}}$, the inequality $x<y$ holds if

$$
x_{1}=y_{1}, \ldots, x_{k}=y_{k} \quad \text { and } \quad x_{k+1}<y_{k+1} \text { for some } k .
$$

We denote by σ the shift on $\Sigma^{\mathbb{N}}$ defined by $\sigma\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=\left(x_{n+1}\right)_{n \in \mathbb{N}}$. Let $\xi_{\beta}=$ $\left(\xi_{n}\right)_{n \in \mathbb{N}} \in \Sigma^{\mathbb{N}}$ be the supremum element of $\left\{\left(d_{n}(x)\right)_{n \in \mathbb{N}} \mid x \in[0,1)\right\}$ with respect to the lexicographical order in $\Sigma^{\mathbb{N}}$, which is defined by

$$
\xi_{\beta}=\sup _{x \in[0,1)}\left(d_{n}(x)\right)_{n \in \mathbb{N}} .
$$

Define the σ-invariant compact subset X_{β} of $\Sigma^{\mathbb{N}}$ by

$$
X_{\beta}=\left\{\omega \in \Sigma^{\mathbb{N}} \mid \sigma^{m}(\omega) \leq \xi_{\beta}, m=0,1,2, \ldots\right\} .
$$

Defintion 2.1 (see [27,30]). The subshift $\left(X_{\beta}, \sigma\right)$ is called the β-shift.
Example 2.2. $\beta=N \in \mathbb{N}$ with $N>1$. As $\xi_{\beta}=(N-1)(N-1) \ldots$, the subshift

$$
X_{N}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in\{0,1, \ldots, N-1\}^{\mathbb{N}} \mid x_{n}=0,1, \ldots, N-1\right\}
$$

is the full N-shift.
Example 2.3. $\beta=(1+\sqrt{5}) / 2$. As $N=2$ and $d(1, \beta)=1100 \ldots, \xi_{\beta}=10101010 \ldots$,

$$
X_{(1+\sqrt{5}) / 2}=\left\{\left.\left(x_{n}\right)_{n \in \mathbb{N}} \in\{0,1\}^{\mathbb{N}}\right|^{\prime} 11^{\prime} \text { does not appear in }\left(x_{n}\right)_{n \in \mathbb{N}}\right\} .
$$

This is a shift of finite type X_{A} determined by the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.
Example 2.4. $\beta=2+\sqrt{3}$. As $N=4$ and $d(1, \beta)=\xi_{\beta}=3 \dot{2}$,

$$
X_{2+\sqrt{3}}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in\{0,1,2,3\}^{\mathbb{N}} \mid\left(x_{n+m}\right)_{n \in \mathbb{N}} \leq 3 \dot{2} \text { for all } m=0,1,2, \ldots\right\} .
$$

This is a sofic shift but not a shift of finite type.

Example 2.5. $\beta=\frac{3}{2}$. As $N=2$ and $\xi_{\beta}=101000001 \ldots$,

$$
X_{3 / 2}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in\{0,1\}^{\mathbb{N}} \mid\left(x_{n+m}\right)_{n \in \mathbb{N}} \leq 101000001 \ldots, m=0,1,2, \ldots\right\}
$$

This is not a sofic shift (and hence not a shift of finite type).
A finite sequence $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right)$ of elements $\mu_{j} \in \Sigma$ is called a block or a word. We denote by $|\mu|$ the length k of μ. Set, for $k \in \mathbb{N}$,

$$
B_{k}\left(X_{\beta}\right)=\left\{\mu \mid \text { a block with length } k \text { appearing in some } x \in X_{\beta}\right\}
$$

and $B_{*}\left(X_{\beta}\right)=\bigcup_{k=0}^{\infty} B_{k}\left(X_{\beta}\right)$, where $B_{0}\left(X_{\beta}\right)$ denotes the empty word \emptyset.
In [13], a family $O_{\beta}, 1<\beta \in \mathbb{R}$ of simple purely infinite C^{*}-algebras has been introduced as the C^{*}-algebras associated with β-shifts $\left(X_{\beta}, \sigma\right)$. We will review the construction of the C^{*}-algebra O_{β} for a fixed $1<\beta \in \mathbb{R}$. Let $\left\{e_{0}, \ldots, e_{N-1}\right\}$ be an orthonormal basis of the N-dimensional Hilbert space \mathbb{C}^{N}. We put

$$
\begin{aligned}
& \mathcal{H}_{\beta}^{0}=\mathbb{C} \Omega \quad(\Omega: \text { vacuum vector }) \\
& \mathcal{H}_{\beta}^{k}= \text { the Hilbert space spanned by the vectors } e_{\mu}=e_{\mu_{1}} \otimes \cdots \otimes e_{\mu_{k}} \\
& \mu=\left(\mu_{1}, \ldots, \mu_{k}\right) \in B_{k}\left(X_{\beta}\right)
\end{aligned}
$$

Let us denote by \mathcal{H}_{β} the Hilbert space of the direct sum $\oplus_{k=0}^{\infty} \mathcal{H}_{\beta}^{k}$. We denote by $T_{\nu}, v \in B_{*}\left(X_{\beta}\right)$ the creation operator on \mathcal{H}_{β} of e_{ν}, which is a partial isometry defined by

$$
T_{\nu} \Omega=e_{\nu} \quad \text { and } \quad T_{\nu} e_{\mu}= \begin{cases}e_{v} \otimes e_{\mu} & \text { if } v \mu \in B_{*}\left(X_{\beta}\right) \\ 0 & \text { otherwise }\end{cases}
$$

We put $T_{\emptyset}=1$ for the empty word \emptyset. Let \mathbb{P}_{0} be the rank-one projection of \mathcal{H}_{β} onto the vacuum vector Ω. It immediately follows that $\sum_{i=0}^{N-1} T_{i} T_{i}^{*}+\mathbb{P}_{0}=1$. For $\mu, v \in B_{*}\left(X_{\beta}\right)$, the operator $T_{\mu} \mathbb{P}_{0} T_{v}^{*}$ is the rank-one partial isometry from the vector e_{ν} to e_{μ}, so that the C^{*}-algebra generated by the elements of the form $T_{\mu} \mathbb{P}_{0} T_{v}^{*}, \mu, v \in B_{*}\left(X_{\beta}\right)$ is nothing but the C^{*}-algebra $\mathcal{K}\left(\mathcal{H}_{\beta}\right)$ of all compact operators on \mathcal{H}_{β}. Let \mathcal{T}_{β} be the C^{*}-algebra on \mathcal{H}_{β} generated by the elements $T_{\nu}, v \in B_{*}\left(X_{\beta}\right)$.
Definition 2.6 [13]. The C^{*}-algebra O_{β} associated with the β-shift is defined as the quotient C^{*}-algebra $\mathcal{T}_{\beta} / \mathcal{K}\left(\mathcal{H}_{\beta}\right)$ of \mathcal{T}_{β} by $\mathcal{K}\left(\mathcal{H}_{\beta}\right)$.

We denote by $S_{i}, i=0,1, \ldots, N-1$ and $S_{\mu}, \mu \in B_{*}\left(X_{\beta}\right)$ the quotient images of the operators T_{i} and T_{μ}, respectively. Since $S_{\mu}=S_{\mu_{1}} \cdots S_{\mu_{l}}$ for $\mu=\left(\mu_{1}, \ldots, \mu_{l}\right) \in B_{l}\left(X_{\beta}\right)$, the C^{*}-algebra O_{β} is generated by $N-1$ isometries S_{0}, \ldots, S_{N-2} and one partial isometry S_{N-1} with the relation $\sum_{i=0}^{N-1} S_{i} S_{i}^{*}=1$. For $\beta=N \in \mathbb{N}$, the C^{*}-algebra is isomorphic to the Cuntz algebra O_{N}. Hence, the family $O_{\beta}, 1<\beta \in \mathbb{R}$ is regarded as an interpolation of the Cuntz algebras $O_{N}, 1<N \in \mathbb{N}$.

We put $a_{\mu}=S_{\mu}^{*} S_{\mu}$ for $\mu \in B_{*}\left(X_{\beta}\right)$ and define C^{*}-subalgebras of O_{β} :
$\mathcal{A}_{l}=$ the C^{*}-subalgebra of O_{β} generated by $S_{\mu}^{*} S_{\mu}, \mu \in B_{l}\left(X_{\beta}\right)$,
$\mathcal{A}_{\beta}=$ the C^{*}-subalgebra of O_{β} generated by $S_{\mu}^{*} S_{\mu}, \mu \in B_{*}\left(X_{\beta}\right)$,
$\mathcal{D}_{\beta}=$ the C^{*}-subalgebra of \mathcal{O}_{β} generated by $S_{\mu} a S_{\mu}^{*}, \mu \in B_{*}\left(X_{\beta}\right), a \in \mathcal{A}_{\beta}$,
$\mathcal{F}_{\beta}=$ the C^{*}-subalgebra of O_{β} generated by $S_{\mu} a S_{\nu}^{*}, \mu, v \in B_{k}\left(X_{\beta}\right), k \in \mathbb{Z}_{+}, a \in \mathcal{A}_{\beta}$.

As $S_{\mu}^{*} S_{\mu}=S_{\mu}^{*} S_{0}^{*} S_{0} S_{\mu}$, the algebra \mathcal{A}_{l} is naturally embedded into \mathcal{A}_{l+1}. It is commutative and finite dimensional so that the algebras $\mathcal{A}_{\beta}, \mathcal{D}_{\beta}$ and \mathcal{F}_{β} are all AF (approximately finite dimensional)-algebras; in particular, \mathcal{A}_{β} and \mathcal{D}_{β} are both commutative. Put $\rho_{j}(x)=S_{j}^{*} x S_{j}$ for $x \in \mathcal{A}_{\beta}, j=0,1, \ldots, N-1$. Then the C^{*}-algebra O_{β} has a universal property subject to the relations (see [15])

$$
\sum_{j=0}^{N-1} S_{j} S_{j}^{*}=1, \quad \rho_{j}(x)=S_{j}^{*} x S_{j} \quad \text { for } x \in \mathcal{A}_{\beta}, j=0,1, \ldots, N-1
$$

For $t \in \mathbb{R} / \mathbb{Z}=\mathbb{T}$, the correspondence $S_{j} \longrightarrow e^{2 \pi \sqrt{-1} t} S_{j}, j=0,1, \ldots, N-1$ yields an automorphism of O_{β}, which gives rise to an action on O_{β} of \mathbb{T} called the gauge action written $\hat{\rho}$. The gauge action has a unique KMS state denoted by φ on O_{β} at inverse temperature $\log \beta$. For the projections $a_{\xi_{1} \cdots \xi_{n}}=S_{\xi_{1} \cdots \xi_{n}}^{*} S_{\xi_{1} \cdots \xi_{n}} \in \mathcal{A}_{\beta}, n=1,2, \ldots$, the values $\varphi\left(a_{\xi_{1} \cdots \xi_{n}}\right)$ are computed as

$$
\varphi\left(a_{\xi_{1} \cdots \xi_{n}}\right)=\beta^{n}-\xi_{1} \beta^{n-1}-\cdots-\xi_{n-1} \beta-\xi_{n}=\sum_{i=1}^{\infty} \frac{\xi_{i+n}}{\beta^{i}}, \quad n=1,2, \ldots \text { ([13]). }
$$

Let $m(l)$ denote the dimension $\operatorname{dim} \mathcal{A}_{l}$ of \mathcal{A}_{l}. Denote by $E_{1}^{l}, \ldots, E_{m(l)}^{l}$ the set of minimal projections of \mathcal{A}_{l}. As in [13, Lemma 3.3], the projection $E_{i}^{l}, i=1, \ldots, m(l)$ is of the form $E_{i}^{l}=a_{\xi_{1} \cdots \xi_{p_{i}}}-a_{\xi_{1} \cdots \xi_{q_{i}}}$ for some $p_{i}, q_{i}=0,1, \ldots$. The projections $a_{\xi_{1} \cdots \xi_{n}}, n \in \mathbb{Z}_{+}$ are totally ordered by the value $\varphi\left(a_{\xi_{1} \cdots \xi_{n}}\right)$. We order $E_{1}^{l}, \ldots, E_{m(l)}^{l}$ following the order $\varphi\left(a_{\xi_{1} \cdots \xi_{p_{1}}}\right)<\cdots<\varphi\left(a_{\xi_{1} \cdots \xi_{p_{m(l)}}}\right)$ in \mathbb{R}.

Some basic subclasses of β-shifts are characterized in terms of the β-expansion $d(1, \beta)$ of 1 and the projections $a_{\xi_{1} \cdots \xi_{n}}$ in the following way.
Lemma 2.7 ([27], see [13, Proposition 3.8]). The following are equivalent:
(i) $\quad\left(X_{\beta}, \sigma\right)$ is a shift of finite type;
(ii) $d(1, \beta)$ is finite, that is, $d(1, \beta)=\xi_{1} \xi_{2} \cdots \xi_{k} 000 \cdots$ for some k;
(iii) $a_{\xi_{1} \cdots \xi_{k}}=1$ for some k.

We call $\left(X_{\beta}, \sigma\right)$ an SFT β-shift if $\left(X_{\beta}, \sigma\right)$ is a shift of finite type.

Lemma 2.8 ([1], see [13, Proposition 3.8]). The following are equivalent:

(i) $\left(X_{\beta}, \sigma\right)$ is a sofic shift;
(ii) $d(1, \beta)$ is ultimately periodic, that is, $d(1, \beta)=\xi_{1} \cdots \xi_{l} \dot{\xi}_{l+1} \cdots \dot{\xi}_{k+1}$ for some $l \leq k$;
(iii) $a_{\xi_{1} \cdots \xi_{l}}=a_{\xi_{1} \cdots \xi_{k+1}}$ for some $l \leq k$.

We call $\left(X_{\beta}, \sigma\right)$ a sofic β-shift if $\left(X_{\beta}, \sigma\right)$ is a sofic shift.
The K-groups of the C^{*}-algebra O_{β} have been computed in the following way.
Lemma 2.9 [13].

$$
K_{0}\left(O_{\beta}\right)= \begin{cases}\mathbb{Z} /\left(\xi_{1}+\xi_{2}+\cdots+\xi_{k}-1\right) \mathbb{Z} & \text { if } d(1, \beta)=\xi_{1} \xi_{2} \cdots \xi_{k} 000 \ldots \\ \mathbb{Z} /\left(\xi_{l+1}+\cdots+\xi_{k+1}\right) \mathbb{Z} & \text { if }(1, \beta)=\xi_{1} \cdots \xi_{l} \dot{\xi}_{l+1} \cdots \dot{\xi}_{k+1} \\ \mathbb{Z} & \text { otherwise }\end{cases}
$$

The position [1] of the unit of O_{β} in $K_{0}\left(O_{\beta}\right)$ corresponds to the class [1] of $1 \in \mathbb{Z}$ in the first two cases, and to $1 \in \mathbb{Z}$ in the third case, and

$$
K_{1}\left(O_{\beta}\right)=0 \quad \text { for any } \beta>1 .
$$

3. Topological full groups of the groupoid G_{β}

The C^{*}-algebra $O_{\beta}, 1<\beta \in \mathbb{R}$ has been originally constructed as the C^{*}-algebra associated with the subshift $\left(X_{\beta}, \sigma\right), 1<\beta \in \mathbb{R}$. It is regarded as the C^{*}-algebra $C_{r}^{*}\left(G_{\beta}\right)$ of a certain essentially principal étale groupoid G_{β} as in [15, Section 2]. We will review the construction of the groupoid G_{β} in the following way. We denote by $\Omega_{l}=\left\{v_{1}^{l}, \ldots, v_{m(l)}^{l}\right\}$ the finite set with its discrete topology corresponding to the set of the minimal projections $E_{1}^{l}, \ldots, E_{m(l)}^{l}$ of the commutative algebra \mathcal{A}_{l}, so that $\mathcal{A}_{l}=C\left(\Omega_{l}\right)$. If $E_{j}^{l+1} \leq E_{i}^{l}$, we write $\iota_{l, l+1}\left(v_{j}^{l+1}\right)=v_{i}^{l}$. We define an edge e labeled $\alpha \in\{0,1, \ldots, N-1\}$ from v_{i}^{l} to v_{j}^{l+1} if $S_{\alpha}^{*} E_{i}^{l} S_{\alpha} \geq E_{j}^{l+1}$. Denote by $E_{l, l+1}$ such labeled edges. Let Ω_{β} be the compact Hausdorff space of the projective limit of the system $\iota_{l, l+1}: \Omega_{l+1} \longrightarrow \Omega_{l}, l \in \mathbb{Z}_{+}:$

$$
\Omega_{\beta}=\left\{\left(v^{l}\right)_{l \in \mathbb{Z}_{+}} \in \prod_{l \in \mathbb{Z}_{+}} \Omega_{l} \mid \iota_{l, l+1}\left(v^{l+1}\right)=v^{l}, l \in \mathbb{Z}_{+}\right\} .
$$

Let \mathcal{G}_{β} be the set of triplets $(u, \alpha, v) \in \Omega_{\beta} \times\{0,1, \ldots, N-1\} \times \Omega_{\beta}$ such that for each $l \in \mathbb{Z}_{+}$there exists $e_{l, l+1} \in E_{l, l+1}$ whose source is u^{l}, terminal is v^{l+1} and label is α, where $u=\left(u^{l}\right)_{l \in \mathbb{Z}_{+}}$and $v=\left(v^{l}\right)_{l \in \mathbb{Z}_{+}}$. Then \mathcal{G}_{β} becomes a zero-dimensional continuous graph in the sense of Deaconu [10]. Consider the set $G_{\beta}^{(0)}$ of one-sided paths of the graph \mathcal{G}_{β} :

$$
\begin{aligned}
G_{\beta}^{(0)}=\{ & \left(\alpha_{i}, u_{i}\right)_{i=1}^{\infty} \in \prod_{i=1}^{\infty}\left(\{0,1, \ldots, N-1\} \times \Omega_{\beta}\right) \mid \\
& \left.\left(u_{i}, \alpha_{i+1}, u_{i+1}\right) \in \mathcal{G}_{\beta} \text { for all } i \in \mathbb{N} \text { and }\left(u_{0}, \alpha_{1}, u_{1}\right) \in \mathcal{G}_{\beta} \text { for some } u_{0} \in \Omega_{\beta}\right\} .
\end{aligned}
$$

The set $G_{\beta}^{(0)}$ has the relative topology from the infinite product topology of $\{0,1, \ldots, N-1\} \times \Omega_{\beta}$. It is a zero-dimensional compact Hausdorff space such that the C^{*}-algebra $C\left(G_{\beta}^{(0)}\right)$ of complex-valued continuous functions on $G_{\beta}^{(0)}$ is canonically isomorphic to the C^{*}-subalgebra \mathcal{D}_{β} of O_{β}, which is called the canonical Cartan subalgebra of \mathcal{O}_{β}. The shift map $\sigma_{\beta}:\left(\alpha_{i}, u_{i}\right)_{i=1}^{\infty} \in G_{\beta}^{(0)} \rightarrow\left(\alpha_{i+1}, u_{i+1}\right)_{i=1}^{\infty} \in G_{\beta}^{(0)}$ is a surjective local homeomorphism.

Defintion 3.1. The groupoid G_{β} with unit space $G_{\beta}^{(0)}$ is defined by the étale groupoid associated with the surjective local homeomorphism σ_{β} on $G_{\beta}^{(0)}$ in the following way:

$$
G_{\beta}=\left\{(x, k-l, y) \in G_{\beta}^{(0)} \times \mathbb{Z} \times G_{\beta}^{(0)} \mid \sigma_{\beta}^{k}(x)=\sigma_{\beta}^{l}(y) \text { for some } k, l \in \mathbb{Z}_{+}\right\}
$$

For an étale groupoid G, we let $G^{(0)}$ denote the unit space of G and let s and r denote the source map and the range map, respectively. For $x \in G^{(0)}$, the set $G(x)=r(G x)$ is called the G-orbit of x. If every G-orbit is dense in $G^{(0)}, G$ is said to be minimal [24, 28].

Lemma 3.2. For $1<\beta \in \mathbb{R}$, the groupoid G_{β} is an essentially principal, minimal groupoid.

Proof. The C^{*}-subalgebra \mathcal{F}_{β} of O_{β} is the C^{*}-algebra $C_{r}^{*}\left(H_{\beta}\right)$ of an AF-subgroupoid H_{β} of G_{β}, which is defined by

$$
H_{\beta}=\left\{(x, 0, y) \in G_{\beta}^{(0)} \times \mathbb{Z} \times G_{\beta}^{(0)} \mid \sigma_{\beta}^{k}(x)=\sigma_{\beta}^{k}(y) \text { for some } k \in \mathbb{Z}_{+}\right\}
$$

As the algebra \mathcal{F}_{β} is simple [13, Proposition 3.5], the groupoid H_{β} is minimal, so that G_{β} is minimal.

A subset $U \subset G$ is called a G-set if $\left.r\right|_{U},\left.s\right|_{U}$ are injective. The homeomorphism $r \circ\left(\left.s\right|_{U}\right)^{-1}$ from $s(U)$ to $r(U)$ is denoted by π_{U}. Following [24], G is said to be purely infinite if for every clopen set $A \subset G^{(0)}$ there exist clopen G-sets $U, V \subset G$ such that $s(U)=s(V)=A, r(U) \cup r(V) \subset A, r(U) \cap r(V)=\emptyset$.

Lemma 3.3. For $1<\beta \in \mathbb{R}$, the groupoid G_{β} is purely infinite.
Proof. As the C^{*}-algebra \mathcal{D}_{β} is isomorphic to the algebra $C\left(G_{\beta}^{(0)}\right)$ of continuous functions on $G_{\beta}^{(0)}$, we may identify the projections of \mathcal{D}_{β} with the clopen sets of $G_{\beta}^{(0)}$. Hence, a clopen set of $G_{\beta}^{(0)}$ may be considered as a finite sum of the form $P=S_{\mu} E_{i}^{l} S_{\mu}^{*}$ for some $\mu \in B_{k}\left(X_{\beta}\right)$ with $k \leq l$ such that $S_{\mu}^{*} S_{\mu} \geq E_{i}^{l}$. It is enough to consider $P=S_{\mu} E_{i}^{l} S_{\mu}^{*}$ for simplicity. The minimal projection $E_{i}^{l} \in \mathcal{A}_{l}$ is of the form $E_{i}^{l}=a_{\xi_{1} \cdots \xi_{p_{i}}}-a_{\xi_{1} \cdots \xi_{q_{i}}}$ for some $1 \leq p_{i}, q_{i} \leq l$ with $a_{\xi_{1} \cdots \xi_{p_{i}}}>a_{\xi_{1} \cdots \xi_{q_{i}}}$. Note that

$$
\begin{equation*}
S_{\mu}^{*} S_{\mu} \geq a_{\xi_{1} \cdots \xi_{p_{i}}} \tag{3.1}
\end{equation*}
$$

There exists $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in B_{*}\left(X_{\beta}\right)$ such that

$$
\left(\xi_{1}, \ldots, \xi_{p_{i}}, \gamma_{1}, \ldots, \gamma_{r}\right) \in B_{*}\left(X_{\beta}\right), \quad\left(\xi_{1}, \ldots, \xi_{q_{i}}, \gamma_{1}, \ldots, \gamma_{r}\right) \notin B_{*}\left(X_{\beta}\right)
$$

Define the words

$$
\zeta_{1}(m)=(\overbrace{0, \ldots, 0}^{m}), \quad \zeta_{2}(m)=(\overbrace{0, \ldots, 0,1}^{m}) .
$$

By [13, Corollary 3.2], there exists $m \in \mathbb{N}$ such that

$$
\begin{equation*}
a_{\xi_{1} \cdots \xi_{p_{i}} \gamma \zeta_{1}(m)}=a_{\xi_{1} \cdots \xi_{p_{i}} \gamma \zeta_{2}(m)}=1 . \tag{3.2}
\end{equation*}
$$

Put $\zeta_{1}=\zeta_{1}(m), \zeta_{2}=\zeta_{2}(m)$. By (3.1) and (3.2),

$$
a_{\mu \gamma \zeta_{1}} \geq S_{\gamma \zeta_{1}}^{*} a_{\xi_{1} \cdots \xi_{p_{i}}} S_{\gamma \zeta_{1}}=a_{\xi_{1} \cdots \xi_{p_{i}} \gamma \zeta_{1}}=1,
$$

so that $a_{\mu \gamma \zeta_{1}}=1$ and similarly $a_{\mu \gamma \zeta_{2}}=1$. We set

$$
U=S_{\mu \gamma \zeta_{1}} E_{i}^{l} S_{\mu}^{*}, \quad V=S_{\mu \gamma \zeta_{2}} E_{i}^{l} S_{\mu}^{*},
$$

which correspond to certain clopen G-sets in G_{β}. It then follows that

$$
U^{*} U=S_{\mu} E_{i}^{l} a_{\mu \gamma \zeta_{1}} E_{i}^{l} S_{\mu}^{*}=S_{\mu} E_{i}^{l} S_{\mu}^{*}=P \quad \text { and similarly } \quad V^{*} V=P,
$$

so that

$$
U U^{*}+V V^{*}=S_{\mu \gamma \zeta_{1}} E_{i}^{l} S_{\mu \gamma \zeta_{1}}^{*}+S_{\mu \gamma \zeta_{2}} E_{i}^{l} S_{\mu \gamma \zeta_{2}}^{*} .
$$

As

$$
\begin{aligned}
& S_{\gamma \zeta_{1}}^{*} E_{i}^{l} S_{\gamma \zeta_{1}}=S_{\zeta_{1}}^{*} S_{\gamma}^{*}\left(a_{\xi_{1} \cdots \xi_{p_{i}}}-a_{\xi_{1} \cdots \xi_{\zeta_{i}}}\right) S_{\gamma} S_{\zeta_{1}}=S_{\zeta_{1}}^{*} a_{\xi_{1} \cdots \xi_{p_{i}} \gamma} S_{\zeta_{1}}=1, \\
& P S_{\mu \gamma \zeta_{1}} E_{i}^{l} S_{\mu \gamma \zeta_{1}}^{*}=S_{\mu} E_{i}^{l} S_{\gamma \zeta_{1}} E_{i}^{l} S_{\mu \gamma \zeta_{1}}^{*}=S_{\mu \gamma \zeta_{1}} S_{\gamma \zeta_{1}}^{*} E_{i}^{l} S_{\gamma_{\zeta_{1}}}^{l} E_{i}^{l} S_{\mu \gamma \zeta_{1}}^{*},
\end{aligned}
$$

so that $P S_{\mu \gamma \zeta_{1}} E_{i}^{l} S_{\mu \gamma \zeta_{1}}^{*}=S_{\mu \gamma \zeta_{1}} E_{i}^{l} S_{\mu \gamma \zeta_{1}}^{*}$. This implies $U U^{*} \leq P$ and similarly $V V^{*} \leq P$. Since $S_{\mu \gamma \zeta_{1}} E_{i}^{l} S_{\mu \gamma \zeta_{1}}^{*} \cdot S_{\mu \gamma \zeta_{2}} E_{i}^{l} S_{\mu \gamma \zeta_{2}}^{*}=0$, we have $U U^{*}+V V^{*} \leq P$.

Therefore, we have the following proposition.
Proposition 3.4. For $1<\beta \in \mathbb{R}$, the groupoid G_{β} is an essentially principal, purely infinite, minimal, étale groupoid.

We will next compute the homology groups $H_{i}\left(G_{\beta}\right)$ for the étale groupoid G_{β}. The homology theory for étale groupoids has been studied in [6]. In [22], the homology groups H_{i} for the groupoids coming from shifts of finite type have been computed such that the groups H_{i} are isomorphic to the K-groups K_{i} of the associated Cuntz-Krieger algebra for $i=0,1$, and $H_{i}=0$ for $i \geq 2$. By following the argument of the proof of [22, Theorem 4.14], we have the following proposition.

Proposition 3.5. For each $1<\beta \in \mathbb{R}$, the homology groups $H_{i}\left(G_{\beta}\right)$ are computed as

$$
H_{i}\left(G_{\beta}\right) \cong \begin{cases}K_{i}\left(O_{\beta}\right) & \text { if } i=0,1, \tag{3.3}\\ 0 & \text { if } i \geq 2 .\end{cases}
$$

Proof. For each $1<\beta \in \mathbb{R}$, the map $\rho_{\beta}:(x, n, y) \in G_{\beta} \longrightarrow n \in \mathbb{Z}$ gives rise to a groupoid homomorphism such that the skew product $G_{\beta} \times_{\rho_{\beta}} \mathbb{Z}$ is homologically similar to the AF-groupoid H_{β} (see [22, Lemma 4.13]). We know that the groupoid C^{*} algebra $C_{r}^{*}\left(G_{\beta} \times_{\rho_{\beta}} \mathbb{Z}\right)$ is stably isomorphic to the crossed product $O_{\beta} \times_{\hat{\rho}} \mathbb{T}$ of O_{β} by the gauge action, which is stably isomorphic to the AF-algebra $C_{r}^{*}\left(H_{\beta}\right)$. Since the \mathbb{Z}-module structure on $H_{0}\left(G_{\beta} \times_{\rho_{\beta}} \mathbb{Z}\right)$ is given by the induced action $\hat{\hat{\rho}}_{*}$ on $K_{0}\left(O_{\beta} \times_{\hat{\rho}} \mathbb{T}\right)$ of the bidual action $\hat{\rho}$ on $O_{\beta} \times_{\hat{\rho}} \mathbb{T}$, we get (3.3) by the same argument as [22, Theorem 4.14].

In [22], the notion of topological full groups for étale groupoids has been introduced. We will study the topological full groups of the groupoid G_{β} for the β-shift $\left(X_{\beta}, \sigma\right)$.

Defintition 3.6 [22, Definition 2.3]. The topological full group [$\left.\left[G_{\beta}\right]\right]$ of the groupoid G_{β} is defined by the group of all homeomorphisms α of $G_{\beta}^{(0)}$ such that $\alpha=\pi_{U}$ for some compact open G_{β}-set U.

In what follows, we denote the topological full group $\left[\left[G_{\beta}\right]\right]$ by Γ_{β}. By [22, Proposition 5.6], there exists a short exact sequence

$$
1 \longrightarrow U\left(C\left(G_{\beta}^{(0)}\right)\right) \longrightarrow N\left(C\left(G_{\beta}^{(0)}\right), C_{r}^{*}\left(G_{\beta}\right)\right) \longrightarrow \Gamma_{\beta} \longrightarrow 1
$$

where $U\left(C\left(G_{\beta}^{(0)}\right)\right)$ denotes the group of unitaries in $C\left(G_{\beta}^{(0)}\right)$ and $N\left(C\left(G_{\beta}^{(0)}\right), C_{r}^{*}\left(G_{\beta}\right)\right)$ denotes the group of unitaries in $C_{r}^{*}\left(G_{\beta}\right)$ which normalize $C\left(G_{\beta}^{(0)}\right)$.

Consider the full n-shift $\left(X_{n}, \sigma\right)$ and its groupoid G_{n} (see [24, 28]). The groupoid C^{*}-algebra $C_{r}^{*}\left(G_{n}\right)$ is isomorphic to the Cuntz algebra O_{n} of order n. Nekrashevych [25] has shown that the Higman-Thompson group V_{n} is identified with a certain subgroup of the unitary group of O_{n}. The identification gives rise to an isomorphism between the Higman-Thompson group V_{n} and the topological full group Γ_{n} (see also [24, Remark 6.3]). Hence, our groups $\Gamma_{\beta}, 1<\beta \in \mathbb{R}$ are considered as an interpolation of the Higman-Thompson groups $V_{n}, 1<n \in \mathbb{N}$. It is well known that the groups $V_{n}, 1<n \in \mathbb{N}$ are nonamenable and their commutator subgroups $D\left(V_{n}\right)$ are all simple. Proposition 3.4 says that the groupoid G_{β} is an essentially principal, purely infinite, minimal groupoid for every $1<\beta \in \mathbb{R}$. By [24, Proposition 4.10 and Theorem 4.16], we have the following generalization of the above fact for $V_{n}, 1<n \in \mathbb{N}$.

Theorem 3.7. Let $1<\beta \in \mathbb{R}$ be a real number. Then the group Γ_{β} is a countably infinite, discrete, nonamenable group such that its commutator subgroup $D\left(\Gamma_{\beta}\right)$ is simple.

4. Realization of O_{β} on $L^{2}([0,1])$

The Higman-Thompson group $V_{n}, 1<n \in \mathbb{N}$ is represented as the group of rightcontinuous PL bijective functions $f:[0,1) \longrightarrow[0,1)$ having finitely many singularities such that all singularities of f are in $\mathbb{Z}[1 / n]$, the derivative of f at any nonsingular point is n^{k} for some $k \in \mathbb{Z}$ and $f(\mathbb{Z}[1 / n] \cap[0,1))=\mathbb{Z}[1 / n] \cap[0,1)$. In order to represent our group Γ_{β} as a group of PL functions on $[0,1)$, we will represent the algebra O_{β} on $L^{2}([0,1])$ in the following way.

We denote by H the Hilbert space $L^{2}([0,1])$ of the square-integrable functions on $[0,1]$ with respect to the Lebesgue measure. The essentially bounded measurable functions $L^{\infty}([0,1])$ act on H by multiplication. We define the sequence

$$
\beta_{n}=\beta^{n}-\xi_{1} \beta^{n-1}-\cdots-\xi_{n-1} \beta-\xi_{n}=\sum_{i=1}^{\infty} \frac{\xi_{i+n}}{\beta^{i}}, \quad n=1,2, \ldots
$$

Consider the functions $g_{0}, g_{1}, \ldots, g_{N-1}$ defined by

$$
\begin{aligned}
g_{i}(x) & =\frac{1}{\beta}(x+i) \quad \text { for } i=0,1, \ldots, N-2, \quad x \in[0,1], \\
g_{N-1}(x) & =\frac{1}{\beta}(x+N-1) \quad \text { for } x \in\left[0, \beta_{1}\right] .
\end{aligned}
$$

They satisfy the following equalities:

$$
\begin{array}{ll}
\bigcup_{i=0}^{N-2} g_{i}([0,1]) \cup g_{N-1}\left(\left[0, \beta_{1}\right]\right)=[0,1], \\
f_{\beta}\left(g_{i}(x)\right)=x & \text { for } i=0,1, \ldots, N-2, \quad x \in[0,1], \\
f_{\beta}\left(g_{N-1}(x)\right)=x & \text { for } x \in\left[0, \beta_{1}\right] .
\end{array}
$$

For a measurable subset U of $[0,1]$, denote by χ_{U} the multiplication operator on H of the characteristic function of U. Define the bounded linear operators $T_{f_{\beta}}$, $T_{g_{i}}, i=0,1, \ldots, N-2$ on H by

$$
\begin{array}{ll}
\left(T_{f_{\beta}} \xi\right)(x)=\xi\left(f_{\beta}(x)\right) & \text { for } \xi \in H, x \in[0,1] \\
\left(T_{g_{i}} \xi\right)(x)=\xi\left(g_{i}(x)\right) & \text { for } \xi \in H, x \in[0,1], i=0,1, \ldots, N-2
\end{array}
$$

For the function g_{N-1} on $\left[0, \beta_{1}\right]$, define the operator $T_{g_{N-1}}$ by

$$
\left(T_{g_{N-1}} \xi\right)(x)= \begin{cases}\xi\left(g_{N-1}(x)\right) & \text { for } x \in\left[0, \beta_{1}\right] \\ 0 & \text { for } x \in\left(\beta_{1}, 1\right]\end{cases}
$$

The following lemma is straightforward.
Lemma 4.1. Keep the above notation. We have
(i) $T_{f_{\beta}}^{*}=(1 / \beta) \sum_{i=0}^{N-1} T_{g_{i}}$.
(ii) $\quad T_{f_{\beta}}^{*} T_{f_{\beta}}=(N-1) / \beta+(1 / \beta) \chi_{\left[0, \beta_{1}\right]}$.
(iii) $\quad T_{g_{i}}^{*} T_{g_{i}}= \begin{cases}\beta \chi_{[i / \beta,(i+1) / \beta)} & \text { for } i=0,1, \ldots, N-2, \\ \beta \chi_{[(N-1) / \beta, 1)} & \text { for } i=N-1 .\end{cases}$
(iv) $\quad T_{g_{i}} T_{g_{i}}^{*}= \begin{cases}\beta 1 & \text { for } i=0,1, \ldots, N-2, \\ \beta \chi_{\left[0, \beta_{1}\right]} & \text { for } i=N-1 .\end{cases}$

We define the operators $s_{i}, i=0, \ldots, N-1$ on H by setting

$$
s_{i}=\frac{1}{\sqrt{\beta}} T_{g_{i}}^{*}, \quad i=0,1, \ldots, N-1
$$

By the above lemma, we have the following proposition.
Proposition 4.2. The operators $s_{i}, i=0, \ldots, N-1$ are partial isometries such that

$$
\begin{aligned}
& s_{i}^{*} s_{i}= \begin{cases}1 & \text { for } i=0,1, \ldots, N-2, \\
\chi_{\left[0, \beta_{1}\right]} & \text { for } i=N-1,\end{cases} \\
& s_{i} s_{i}^{*}=\left\{\begin{array}{ll}
\chi_{[i / \beta,(i+1) / \beta)} & \text { for } i=0,1, \ldots, N-2, \\
\chi_{[(N-1) / \beta, 1)} & \text { for } i=N-1
\end{array} \text { and hence } \sum_{i=0}^{N-1} s_{i} s_{i}^{*}=1 .\right.
\end{aligned}
$$

The natural ordering of $\Sigma=\{0,1, \ldots, N-1\}$ induces the lexicographical order on $B_{*}\left(X_{\beta}\right)$, which means that for $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in B_{n}\left(X_{\beta}\right)$ and $v=\left(v_{1}, \ldots, v_{m}\right) \in B_{m}\left(X_{\beta}\right)$, the order $\mu<v$ is defined if $\mu_{1}<v_{1}$ or $\mu_{i}=v_{i}$ for $i=1, \ldots, k-1$ for some $k \leq m, n$ and $\mu_{k}<v_{k}$. For a word $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in B_{n}\left(X_{\beta}\right)$, denote by $\tilde{\mu}=\left(\tilde{\mu}_{1}, \ldots, \tilde{\mu}_{n}\right) \in B_{n}\left(X_{\beta}\right)$ the least word in $B_{n}\left(X_{\beta}\right)$ satisfying $\left(\mu_{1}, \ldots, \mu_{n}\right)<\left(\tilde{\mu}_{1}, \ldots, \tilde{\mu}_{n}\right)$. If $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ is maximal in $B_{n}\left(X_{\beta}\right)$, we set $\tilde{\mu}=\emptyset$. We will use the following notation for $\mu=$ $\left(\mu_{1}, \ldots, \mu_{n}\right) \in B_{n}\left(X_{\beta}\right):$

$$
l(\mu):=\frac{\mu_{1}}{\beta}+\frac{\mu_{2}}{\beta^{2}}+\cdots+\frac{\mu_{n}}{\beta^{n}}, \quad r(\mu):=\frac{\tilde{\mu}_{1}}{\beta}+\frac{\tilde{\mu}_{2}}{\beta^{2}}+\cdots+\frac{\tilde{\mu}_{n}}{\beta^{n}} .
$$

If $\tilde{\mu}=\emptyset$, we set $r(\mu)=1$. For $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in B_{n}\left(X_{\beta}\right)$, we set $s_{\mu}=s_{\mu_{1}} \cdots s_{\mu_{n}}$.
Lemma 4.3. For $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in B_{n}\left(X_{\beta}\right)$,

$$
\begin{equation*}
s_{\mu} s_{\mu}^{*}=\chi_{[l(\mu), r(\mu))} . \tag{4.1}
\end{equation*}
$$

Proof. For $n=1$, the equality (4.1) holds by the above proposition. Suppose that the equality (4.1) holds for a fixed $n=k$. It then follows that for $j=0, \ldots, N-1$ and $\xi, \eta \in H$,

$$
\begin{equation*}
\left\langle s_{j} s_{\mu_{1}} \cdots s_{\mu_{k}} s_{\mu_{k}}^{*} \cdots s_{\mu_{1}}^{*} s_{j}^{*} \xi \mid \eta\right\rangle=\frac{1}{\beta} \int_{0}^{1} \chi_{[l(\mu), r(\mu))} \xi\left(g_{j}(x)\right) \overline{\eta\left(g_{j}(x)\right)} d x \tag{4.2}
\end{equation*}
$$

For $j=0,1, \ldots, N-2$, put $y=g_{j}(x) \in[j / \beta,(j+1) / \beta]$, so that $x=f_{\beta}(y)=\beta y-j$. The above equation (4.2) becomes

$$
\int_{0}^{1} \chi_{[j / \beta,(j+1) / \beta)}(y) \chi_{[l(\mu), r(\mu))}\left(f_{\beta}(y)\right) \xi(y) \overline{\eta(y)} d y=\left\langle\chi_{[j / \beta,(j+1) / \beta) \cap f_{\beta}^{-1}([l(\mu), r(\mu)))} \xi \mid \eta\right\rangle
$$

As

$$
\begin{gathered}
{\left[\frac{j}{\beta}, \frac{j+1}{\beta}\right) \cap f_{\beta}^{-1}([l(\mu), r(\mu)))} \\
=\left[\frac{j}{\beta}+\frac{\mu_{1}}{\beta^{2}}+\frac{\mu_{2}}{\beta^{3}}+\cdots+\frac{\mu_{k}}{\beta^{k+1}}, \frac{j}{\beta}+\frac{\tilde{\mu}_{1}}{\beta^{2}}+\frac{\tilde{\mu}_{2}}{\beta^{3}}+\cdots+\frac{\tilde{\mu}_{k}}{\beta^{k+1}}\right) \\
s_{j} s_{\mu_{1}} \cdots s_{\mu_{k}} s_{\mu_{k}}^{*} \cdots s_{\mu_{1}}^{*} s_{j}^{*}=\chi_{\left[j / \beta+\mu_{1} / \beta^{2}+\mu_{2} / \beta^{3}+\cdots+\mu_{k} / \beta^{k+1}, j / \beta+\tilde{\mu}_{1} / \beta^{2}+\tilde{\mu}_{2} / \beta^{3}+\cdots+\tilde{\mu}_{k} / \beta^{k+1}\right)}
\end{gathered}
$$

Since $\left(j, \tilde{\mu}_{1}, \ldots, \tilde{\mu}_{k}\right)$ is minimal in $B_{k+1}\left(X_{\beta}\right)$ satisfying $\left(j, \mu_{1}, \ldots, \mu_{k}\right)<\left(j, \tilde{\mu}_{1}, \ldots, \tilde{\mu}_{k}\right)$, the desired equality holds for $k+1$ and $j=0, \ldots, N-2$. For $j=N-1$, we may similarly show the equality (4.1).

The following lemma is straightforward.
Lemma 4.4. For a measurable subset $F \subset[0,1]$, we have $s_{j}^{*} \chi_{F} s_{j}=\chi_{g_{j}^{-1}(F)}$ for $j=0,1, \ldots, N-1$.

We then have the following lemmas.

Lemma 4.5. For the maximal element $\xi_{\beta}=\left(\xi_{1}, \xi_{2}, \ldots\right) \in X_{\beta}$,

$$
\begin{equation*}
s_{\xi_{1} \xi_{2} \cdots \xi_{n}}^{*} s_{\xi_{1} \xi_{2} \cdots \xi_{n}}=\chi_{\left[0, \beta_{n}\right]}, \quad n \in \mathbb{N} . \tag{4.3}
\end{equation*}
$$

Proof. The equality (4.3) holds for $n=1$. Suppose that the equality (4.3) holds for $n=k$. It then follows that

$$
s_{\xi_{1} \xi_{2} \cdots \xi_{k+1}}^{*} s_{\xi_{1} \xi_{2} \cdots \xi_{k+1}}=s_{\xi_{k+1}}^{*} \chi_{\left[0, \beta_{k}\right]} s_{\xi_{k+1}}=\chi_{g_{\xi_{k+1}}^{-1}}\left(\left[0, \beta_{k}\right]\right)
$$

Since

$$
g_{\xi_{k+1}}^{-1}\left(\left[0, \beta_{k}\right]\right)=\left\{x \in[0,1] \left\lvert\, \frac{1}{\beta} x+\frac{\xi_{k+1}}{\beta} \leq \beta^{k}-\xi_{1} \beta^{k-1}-\cdots-\xi_{k}\right.\right\}=\left[0, \beta_{k+1}\right]
$$

the equality (4.3) holds for $n=k+1$.
Lemma 4.6. For $n \in \mathbb{N}$ and $j=0,1, \ldots, N-1$,

$$
s_{\xi_{1} \xi_{2} \cdots \xi_{n} j}^{*} s_{\xi_{1} \xi_{2} \cdots \xi_{n} j}= \begin{cases}0 & \text { for } j>\xi_{n+1} \\ \chi_{\left[0, \beta_{n+1}\right]} & \text { for } j=\xi_{n+1} \\ 1 & \text { for } j<\xi_{n+1}\end{cases}
$$

Proof. We have

$$
s_{\xi_{1} \xi_{2} \cdots \xi_{n} j}^{*} s_{\xi_{1} \xi_{2} \cdots \xi_{n} j}=s_{\xi_{j}}^{*} \chi_{\left[0, \beta_{n}\right]} s_{\xi_{j}}=\chi_{g_{j}^{-1}\left(\left[0, \beta_{n}\right]\right)}
$$

and

$$
g_{j}^{-1}\left(\left[0, \beta_{n}\right]\right)=\left\{x \in[0,1] \left\lvert\, \frac{1}{\beta} x+\frac{j}{\beta} \leq \beta_{n}\right.\right\}=\left[0, \beta \beta_{n}-j\right]
$$

Since $\beta \beta_{n}-j=\beta_{n+1}+\xi_{n+1}-j$,

$$
s_{\xi_{1} \xi_{2} \cdots \xi_{n} j}^{*} \xi_{\xi_{1} \xi_{2} \cdots \xi_{n} j}=\chi_{\left[0, \beta_{n+1}+\xi_{n+1}-j\right]}
$$

If $\xi_{n+1}=j$, the equality $s_{\xi_{1} \xi_{2} \cdots \xi_{n j} j}^{*} s_{\xi_{1} \xi_{2} \cdots \xi_{n} j}=\chi_{\left[0, \beta_{n+1}\right]}$ holds. If $\xi_{n+1}<j$, we have $\xi_{n+1}-j$ ≤-1 and hence $\beta_{n+1}+\xi_{n+1}-j \leq 0$, so that $\left[0, \beta_{n+1}+\xi_{n+1}-j\right]=\{0\}$ or \emptyset, which shows that $s_{\xi_{1} \xi_{2} \cdots \xi_{n} j}^{*} s_{\xi_{1} \xi_{2} \cdots \xi_{n} j}=0$. If $\xi_{n+1}>j$, we have $\xi_{n+1}-j \geq 1$ and hence $\beta_{n+1}+\xi_{n+1}-j \geq 1$, so that $\left[0, \beta_{n+1}+\xi_{n+1}-j\right]=[0,1]$, which shows that $s_{\xi_{1} \xi_{2} \cdots \xi_{n} j}^{*} s_{\xi_{1} \xi_{2} \cdots \xi_{n} j}=\chi_{[0,1]}=1$.

Therefore, we have the following theorem.
Theorem 4.7. The correspondence $S_{j} \longrightarrow s_{j}$ for $j=0,1, \ldots, N-1$ gives rise to an isomorphism from \mathcal{O}_{β} to the C^{*}-algebra $C^{*}\left(s_{0}, s_{1}, \ldots, s_{N-1}\right)$ on $L^{2}([0,1])$ generated by the partial isometries $s_{0}, s_{1}, \ldots, s_{N-1}$.
Proof. Let us denote by $\mathcal{A}_{[0,1], l}$ the C^{*}-algebra on $L^{2}([0,1])$ generated by the projections $s_{\mu}^{*} s_{\mu}, \mu \in B_{l}\left(X_{\beta}\right)$, and $\mathcal{A}_{[0,1], \beta}$ the C^{*}-algebra generated by $\bigcup_{l \in \mathbb{N}} \mathcal{A}_{[0,1], l}$. By the previous lemma and [13, Corollary 3.2], the C^{*}-algebra $\mathcal{A}_{[0,1], l}$ is isomorphic to the C^{*}-subalgebra \mathcal{A}_{l} of \mathcal{O}_{β}, so that $\mathcal{A}_{[0,1], \beta}$ is isomorphic to \mathcal{A}_{β} through the correspondence $S_{\mu}^{*} S_{\mu} \longleftrightarrow s_{\mu}^{*} s_{\mu}$ for $\mu \in B_{*}\left(X_{\beta}\right)$. The isomorphism from \mathcal{A}_{β} to $\mathcal{A}_{[0,1], \beta}$ is denoted by π. Put $\rho_{j}(x)=S_{j}^{*} x S_{j}$ for $x \in \mathcal{A}_{\beta}, j=0,1, \ldots, N-1$. Then the relations

$$
\begin{equation*}
\pi\left(\rho_{j}(x)\right)=s_{j}^{*} \pi(x) s_{j}, \quad x \in \mathcal{A}_{\beta}, j=0,1, \ldots, N-1 \tag{4.4}
\end{equation*}
$$

hold by the previous lemma. Since the C^{*}-algebra O_{β} has the universal property subject to the relation (4.4) (see [15]), there exists a surjective $*$-homomorphism $\tilde{\pi}$ from O_{β} to $C^{*}\left(s_{0}, s_{1}, \ldots, s_{N-1}\right)$ such that $\tilde{\pi}\left(S_{j}\right)=s_{j}, j=0,1, \ldots, N-1$ and $\tilde{\pi}(x)=\pi(x), x \in \mathcal{A}_{\beta}$. As the C^{*}-algebra O_{β} is simple, the $*$-homomorphism $\tilde{\pi}$ is actually an isomorphism.

In what follows, we may identify the C^{*}-algebra O_{β} with the C^{*}-algebra $C^{*}\left(s_{0}, s_{1}, \ldots, s_{N-1}\right)$ through the identification of the generating partial isometries S_{j} and $s_{j}, j=0,1, \ldots, N-1$.

5. PL functions for SFT $\boldsymbol{\beta}$-shifts

In this section, we will realize the group Γ_{β} for an $\operatorname{SFT} \beta$-shift as PL functions on $[0,1)$. For a word $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in B_{n}\left(X_{\beta}\right)$, denote by $U_{\mu} \subset X_{\beta}$ the cylinder set

$$
U_{\mu}=\left\{\left(x_{i}\right)_{i \in \mathbb{N}} \in X_{\beta} \mid x_{1}=\mu_{1}, \ldots, x_{n}=\mu_{n}\right\} .
$$

We put

$$
\Gamma^{+}(\mu)=\left\{\left(x_{i}\right)_{i \in \mathbb{N}} \in X_{\beta} \mid\left(\mu_{1}, \ldots, \mu_{n}, x_{1}, x_{2}, \ldots\right) \in X_{\beta}\right\}
$$

for the set of followers of μ. Recall that φ stands for the unique KMS state for the gauge action on the C^{*}-algebra O_{β}. We note that the value $\varphi\left(a_{\mu_{1} \cdots \mu_{n}}\right)$ is computed inductively in the following way. For $n=1$,

$$
\varphi\left(a_{\mu_{1}}\right)= \begin{cases}1 & \text { if } \mu_{1}<\xi_{1} \\ \beta-\xi_{1} & \text { if } \mu_{1}=\xi_{1} \\ 0 & \text { if } \mu_{1}>\xi_{1}\end{cases}
$$

Suppose that the value $\varphi\left(a_{\mu_{1} \cdots \mu_{k}}\right)$ is computed for all $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right) \in B_{k}\left(X_{\beta}\right)$ with $k<n$. If $\left(\mu_{1}, \ldots, \mu_{n}\right)$ is the maximal element $\left(\xi_{1}, \ldots, \xi_{n}\right)$ in $B_{n}\left(X_{\beta}\right)$, then

$$
\begin{equation*}
\varphi\left(a_{\mu_{1} \cdots \mu_{n}}\right)=\beta^{n}-\xi_{1} \beta^{n-1}-\cdots-\xi_{n-1} \beta-\xi_{n} . \tag{5.1}
\end{equation*}
$$

If $\left(\mu_{1}, \ldots, \mu_{n}\right) \neq\left(\xi_{1}, \ldots, \xi_{n}\right)$, then there exists $k \leq n$ such that $\mu_{k}<\xi_{k}$. If $k=n$, then $\varphi\left(a_{\mu_{1} \cdots \mu_{n}}\right)=1$. If $k<n$, we see that $a_{\mu_{1} \cdots \mu_{k}}=1$, so that

$$
a_{\mu_{1} \cdots \mu_{n}}=S_{\mu_{n}}^{*} \cdots S_{\mu_{k+1}}^{*} S_{\mu_{k+1}} \cdots S_{\mu_{n}}=a_{\mu_{k+1} \cdots \mu_{n}} .
$$

Hence,

$$
\varphi\left(a_{\mu_{1} \cdots \mu_{n}}\right)=\varphi\left(a_{\mu_{k+1} \cdots \mu_{n}}\right)
$$

Since $\left|\left(\mu_{k+1}, \ldots, \mu_{n}\right)\right|<n$, the value $\varphi\left(a_{\mu_{k+1} \cdots \mu_{n}}\right)$ is computed. Therefore, the value $\varphi\left(a_{\mu_{1} \cdots \mu_{n}}\right)$ is computed for all $\left(\mu_{1}, \ldots, \mu_{n}\right) \in B_{n}\left(X_{\beta}\right)$. The following lemma is clear from Lemma 4.5 and (5.1).

Lemma 5.1. Assume that the generating partial isometries $S_{0}, S_{1}, \ldots, S_{N-1}$ are represented on $L^{2}([0,1])$. For a word $\mu \in B_{*}\left(X_{\beta}\right)$, the projection $S_{\mu}^{*} S_{\mu}$ is identified with the characteristic function $\chi_{\left[0, \varphi\left(a_{\mu}\right)\right)}$ of the interval $\left[0, \varphi\left(a_{\mu}\right)\right)$.

Recall that for a word $v=\left(v_{1}, \ldots, v_{n}\right) \in B_{n}\left(X_{\beta}\right)$, the notation

$$
l(v)=\frac{v_{1}}{\beta}+\frac{v_{2}}{\beta^{2}}+\cdots+\frac{v_{n}}{\beta^{n}}, \quad r(v)=\frac{\tilde{v}_{1}}{\beta}+\frac{\tilde{v}_{2}}{\beta^{2}}+\cdots+\frac{\tilde{v}_{n}}{\beta^{n}}
$$

is introduced in Section 4, where $\tilde{v}=\left(\tilde{v}_{1}, \ldots, \tilde{v}_{n}\right)$ is the smallest word in $B_{n}\left(X_{\beta}\right)$ satisfying $v<\tilde{v}$. If v is the maximum word in $B_{n}\left(X_{\beta}\right)$, we set $r(v)=1$. The following two lemmas are crucial.

Lemma 5.2. For $\mu, v \in B_{*}\left(X_{\beta}\right)$, we have $\Gamma^{+}(\mu)=\Gamma^{+}(v)$ if and only if

$$
\frac{r(\mu)-l(\mu)}{r(v)-l(v)}=\beta^{|v|-|\mu|}
$$

Proof. We note that $\Gamma^{+}(\mu)=\Gamma^{+}(v)$ if and only if $S_{\mu}^{*} S_{\mu}=S_{v}^{*} S_{v}$. By the above lemma, we have $\Gamma^{+}(\mu)=\Gamma^{+}(v)$ if and only if $\varphi\left(a_{\mu}\right)=\varphi\left(a_{v}\right)$. Since $\varphi\left(S_{\mu}^{*} S_{\mu}\right)=\beta^{|\mu|} \varphi\left(S_{\mu} S_{\mu}^{*}\right)$ and $\varphi\left(S_{\mu} S_{\mu}^{*}\right)=r(\mu)-l(\mu)$, we have $\varphi\left(a_{\mu}\right)=\varphi\left(a_{v}\right)$ if and only if $\beta^{|\mu|}(r(\mu)-l(\mu))=$ $\beta^{|v|}(r(v)-l(v))$.

We note that the above lemma holds for any real number $\beta>1$ even if $\left(X_{\beta}, \sigma\right)$ is not a shift of finite type.
Lemma 5.3. For $\tau \in \Gamma_{\beta}$, there exists $u_{\tau} \in N\left(\mathcal{D}_{\beta}, O_{\beta}\right)$ such that there exist $\mu(i), \nu(i) \in$ $B_{*}\left(X_{\beta}\right), i=1,2, \ldots, m$ satisfying
(1) $u_{\tau}=\sum_{i=1}^{m} S_{\mu(i)} S_{v(i)}^{*}$ such that
(a) $S_{v(i)}^{*} S_{v(i)}=S_{\mu(i)}^{*} S_{\mu(i)}, i=1,2, \ldots, m$,
(b) $\sum_{i=1}^{m} S_{\nu(i)} S_{v(i)}^{*}=\sum_{i=1}^{m} S_{\mu(i)} S_{\mu(i)}^{*}=1$.
(2) $f \circ \tau^{-1}=u_{\tau} f u_{\tau}^{*}$ for $f \in \mathcal{D}_{\beta}$.

Proof. Since $\left(X_{\beta}, \sigma\right)$ is SFT, there exist continuous functions $k, l: X_{\beta} \longrightarrow \mathbb{Z}_{+}$for $\tau \in \Gamma_{\beta}$ such that $\sigma^{l(x)}(\tau(x))=\sigma^{k(x)}(x), x \in X_{\beta}$. Hence, there exists a family of cylinder sets $U_{\nu(1)}, \ldots, U_{\nu(m)}, U_{\mu(1)}, \ldots, U_{\mu(m)}$ such that

$$
\begin{aligned}
\Gamma^{+}(v(i)) & =\Gamma^{+}(\mu(i)), \quad i=1, \ldots, m \\
X_{\beta} & =\bigsqcup_{i=1}^{m} U_{v(i)}=\bigsqcup_{i=1}^{m} U_{\mu(i)}
\end{aligned}
$$

and

$$
\tau\left(x_{1}, x_{2}, \ldots\right)=\left(\mu(i)_{1}, \ldots, \mu(i)_{l_{i}}, x_{k_{i}+1}, x_{k_{i}+2}, \ldots\right) \text { for }\left(x_{n}\right)_{n \in \mathbb{N}} \in U_{v(i)},
$$

where $l_{i}=|\mu(i)|, k_{i}=|v(i)|$ and $\mu(i)=\left(\mu(i)_{1}, \ldots, \mu(i)_{l_{i}}\right)$. Hence,

$$
\sum_{i=1}^{m} S_{v(i)} S_{v(i)}^{*}=\sum_{i=1}^{m} S_{\mu(i)} S_{\mu(i)}^{*}=1, \quad S_{v(i)}^{*} S_{v(i)}=S_{\mu(i)}^{*} S_{\mu(i)}, \quad i=1,2, \ldots, m
$$

By putting $u_{\tau}=\sum_{i=1}^{m} S_{\mu(i)} S_{v(i)}^{*}$, we see that u_{τ} belongs to $N\left(\mathcal{D}_{\beta}, O_{\beta}\right)$ and satisfies $\chi_{U_{\eta}} \circ \tau^{-1}=u_{\tau} S_{\eta} S_{\eta}^{*} u_{\tau}^{*}$ for all $\eta \in B_{*}\left(X_{\beta}\right)$, so that $f \circ \tau^{-1}=u_{\tau} f u_{\tau}^{*}$ for $f \in \mathcal{D}_{\beta}$.

Following Nekrashevych [25], we will introduce a notation of tables in order to represent elements of Γ_{β}.
Definition 5.4. A β-adic table for an SFT β-shift is a matrix

$$
\left[\begin{array}{cccc}
\mu(1) & \mu(2) & \cdots & \mu(m) \\
v(1) & v(2) & \cdots & v(m)
\end{array}\right]
$$

for $v(i), \mu(i) \in B_{*}\left(X_{\beta}\right), i=1,2, \ldots, m$ such that
(a) $\Gamma^{+}(v(i))=\Gamma^{+}(\mu(i)), i=1,2, \ldots, m$,
(b) $X_{\beta}=\sqcup_{i=1}^{m} U_{\nu(i)}=\sqcup_{i=1}^{m} U_{\mu(i)}$ are disjoint unions.

We may assume that $v(1)<v(2)<\cdots<v(m)$. Since the above two conditions (a), (b) are equivalent to the conditions (a), (b) in Lemma 5.3(1), respectively, we have the following lemma.
Lemma 5.5. For an element $\tau \in \Gamma_{\beta}$ with its unitary $u_{\tau}=\sum_{i=1}^{m} S_{\mu(i)} S_{\nu(i)}^{*} \in N\left(\mathcal{D}_{\beta}, O_{\beta}\right)$ as in Lemma 5.3, the matrix

$$
T_{\tau}=\left[\begin{array}{llll}
\mu(1) & \mu(2) & \cdots & \mu(m) \\
v(1) & v(2) & \cdots & v(m)
\end{array}\right]
$$

is a β-adic table for an SFT β-shift.
Definition 5.6.
(i) An interval $\left[x_{1}, x_{2}\right)$ in $[0,1]$ is said to be a β-adic interval for the word $v \in B_{*}\left(X_{\beta}\right)$ if $x_{1}=l(v)$ and $x_{2}=r(v)$.
(ii) A rectangle $I \times J$ in $[0,1] \times[0,1]$ is said to be a β-adic rectangle if both I, J are β-adic intervals for words $v \in B_{n}\left(X_{\beta}\right), \mu \in B_{m}\left(X_{\beta}\right)$ such that $I=[l(v), r(v))$, $J=[l(\mu), r(\mu))$ and

$$
\frac{r(\mu)-l(\mu)}{r(v)-l(v)}=\beta^{n-m} .
$$

(iii) For two partitions $0=x_{0}<x_{1}<\cdots<x_{m-1}<x_{m}=1$ and $0=y_{0}<y_{1}<\cdots<$ $y_{m-1}<y_{m}=1$ of $[0,1]$, put $I_{p}=\left[x_{p-1}, x_{p}\right), J_{p}=\left[y_{p-1}, y_{p}\right), p=1,2, \ldots, m$. The partition $I_{p} \times J_{q}, p, q=1,2, \ldots, m$ of $[0,1) \times[0,1)$ is said to be a β-adic pattern of rectangles for an SFT β-shift if there exists a permutation σ on $\{1,2, \ldots, m\}$ such that the rectangles $I_{p} \times J_{\sigma(p)}$ are β-adic rectangles for all $p=1,2, \ldots, m$.
For a β-adic pattern of rectangles above, the slopes of diagonals $s_{p}=$ $\left(y_{\sigma(p)}-y_{\sigma(p)-1}\right) /\left(x_{p}-x_{p-1}\right), p=1,2, \ldots, m$ are said to be rectangle slopes. We then have the following lemma.

Lemma 5.7. For a β-adic table

$$
T=\left[\begin{array}{cccc}
\mu(1) & \mu(2) & \cdots & \mu(m) \\
v(1) & v(2) & \cdots & v(m)
\end{array}\right]
$$

there exists a β-adic pattern of rectangles whose rectangle slopes are

$$
\beta^{|\nu(1)|-|\mu(1)|}, \beta^{|\nu(2)|-|\mu(2)|}, \ldots, \beta^{|\nu(m)|-|\mu(m)|} .
$$

Proof. We are assuming the ordering such as $v(1)<\cdots<v(m)$. Since $X_{\beta}=\sqcup_{j=1}^{m} U_{\mu(j)}$ is a disjoint union, there exists a permutation σ_{0} on $\{1,2, \ldots, m\}$ such that $\mu\left(\sigma_{0}(1)\right)<$ $\mu\left(\sigma_{0}(2)\right)<\cdots<\mu\left(\sigma_{0}(m)\right)$. Put

$$
x_{i}=l(v(i+1)), \quad y_{i}=l\left(\mu\left(\sigma_{0}(i+1)\right)\right), \quad i=0,1, \ldots, m-1
$$

and

$$
I_{p}=\left[x_{p-1}, x_{p}\right), \quad J_{p}=\left[y_{p-1}, y_{p}\right), \quad p=1,2, \ldots, m
$$

Define the permutation $\sigma:=\sigma_{0}^{-1}$ on $\{1,2, \ldots, m\}$. We note that $r(v(i))=l(v(i+1))$, $r\left(\mu\left(\sigma_{0}(i)\right)\right)=l\left(\mu\left(\sigma_{0}(i+1)\right)\right)$ for $i=1,2, \ldots, m-1$. Then the rectangles $I_{p} \times J_{\sigma(p)}, p=$ $1,2, \ldots, m$ are β-adic rectangles such that

$$
\frac{y_{\sigma(p)}-y_{\sigma(p)-1}}{x_{p}-x_{p-1}}=\frac{r(\mu(p))-l(\mu(p))}{r(v(p))-l(v(p))} .
$$

Since $r(\zeta)-l(\zeta)=\varphi\left(S_{\zeta} S_{\zeta}^{*}\right)=\frac{1}{\beta \llbracket!} \varphi\left(S_{\zeta}^{*} S_{\zeta}\right)$ for $\zeta \in B_{*}\left(X_{\beta}\right)$,

$$
\begin{aligned}
& r(v(p))-l(v(p))=\frac{1}{\beta^{|v(p)|}} \varphi\left(S_{v(p)}^{*} S_{v(p)}\right) \\
& r(\mu(p))-l(\mu(p))=\frac{1}{\beta^{|\mu(p)|}} \varphi\left(S_{\mu(p)}^{*} S_{\mu(p)}\right)
\end{aligned}
$$

As the condition $\Gamma^{+}(v(p))=\Gamma^{+}(\mu(p))$ implies $S_{v(p)}^{*} S_{v(p)}=S_{\mu(p)}^{*} S_{\mu(p)}$,

$$
\frac{y_{\sigma(p)}-y_{\sigma(p)-1}}{x_{p}-x_{p-1}}=\beta^{|\nu(p)|-|\mu(p)|}, \quad p=1,2, \ldots, m
$$

We define a β-adic version of PL functions on $[0,1)$ in the following way.
Definition 5.8. A PL function f on $[0,1)$ is called a β-adic PL function for an SFT β-shift if f is a right-continuous bijection on $[0,1)$ such that there exists a β-adic pattern of rectangles $I_{p} \times J_{p}, p=1,2, \ldots, m$, where $I_{p}=\left[x_{p-1}, x_{p}\right), J_{p}=\left[y_{p-1}, y_{p}\right), p=$ $1,2, \ldots, m$, with a permutation σ on $\{1,2, \ldots, m\}$ such that

$$
f\left(x_{p-1}\right)=y_{\sigma(p)-1}, \quad f_{-}\left(x_{p}\right)=y_{\sigma(p-1)+1}, \quad p=1,2, \ldots, m
$$

where $f_{-}\left(x_{p}\right)=\lim _{h \rightarrow 0+} f\left(x_{p}-h\right)$ and f is linear on $\left[x_{p-1}, x_{p}\right)$ with slope $\left(y_{\sigma(p)}-y_{\sigma(p)-1}\right) /\left(x_{p}-x_{p-1}\right)$ for $p=1,2, \ldots, m$.

The following proposition is immediate from the definition of β-adic PL functions.
Proposition 5.9. A β-adic PL function for an SFT β-shift naturally gives rise to a β-adic pattern of rectangles for an SFT β-shift.

We may directly construct a β-adic PL function f_{T} from a β-adic table $T=$ $\left[\begin{array}{cccc}\mu(1) & \mu(2) \\ \nu(1) & v(2) & \ldots & \nu(m)\end{array}\right]$ as follows. Put $x_{i}=l(v(i+1)), \hat{y}_{i}=l(\mu(i+1)), i=0,1, \ldots, m-1$. Define f_{T} by $f_{T}\left(x_{i}\right)=\hat{y}_{i}, i=0,1, \ldots, m-1$ and f_{T} is linear on $\left[x_{i-1}, x_{i}\right), i=$ $1,2, \ldots, m$ with slope $\left(\hat{y}_{i}-\hat{y}_{i-1}\right) /\left(x_{i}-x_{i-1}\right)=(r(\mu(i))-l(\mu(i))) /(r(v(i))-l(v(i)))=$ $\beta^{|v(i)|-|\mu(i)|}$. Hence, the function f_{T} yields a β-adic PL function.

It is straightforward to see that the composition of two β-adic PL functions is also a β-adic PL function. Hence, the set of β-adic PL functions forms a group under compositions. We reach the following theorem.

Theorem 5.10. The topological full group Γ_{β} for an SFT β-shift $\left(X_{\beta}, \sigma\right)$ is realized as the group of all β-adic PL functions for an SFT β-shift.

6. PL functions for sofic β-shifts

In this section, we will represent the topological full group Γ_{β} for sofic β-shifts as PL functions on $[0,1)$. Throughout this section, we assume that $\left(X_{\beta}, \sigma\right)$ is sofic. By Lemma 2.7, the algebra \mathcal{A}_{β} is finite dimensional. We set $K_{\beta}=\operatorname{dim} \mathcal{A}_{\beta}$. Let $E_{1}, \ldots, E_{K_{\beta}}$ be the minimal projections of \mathcal{A}_{β} so that $\sum_{i=1}^{K_{\beta}} E_{i}=1$. Then any minimal projection E_{i} is of the form $E_{i}=a_{\xi_{1} \cdots \xi_{p_{i}}}-a_{\xi_{1} \cdots \xi_{q_{i}}}$ for some $p_{i}, q_{i} \in \mathbb{Z}_{+}$. We order $E_{1}, \ldots, E_{K_{\beta}}$ following the order $\varphi\left(a_{\xi_{1} \cdots \xi_{p_{1}}}\right)<\cdots<\varphi\left(a_{\xi_{1} \cdots \xi_{p_{K_{\beta}}}}\right)$ in \mathbb{R}, where φ is the unique KMS state on O_{β} for the gauge action. Recall that $\hat{\rho}_{t} \in \operatorname{Aut}\left(O_{\beta}\right), t \in \mathbb{R} / \mathbb{Z}$ denotes the gauge action on O_{β} and $N\left(\mathcal{D}_{\beta}, O_{\beta}\right)$ denotes the normalizer group of $\mathcal{D}_{\beta} \subset O_{\beta}$. Fix $u \in N\left(\mathcal{D}_{\beta}, O_{\beta}\right)$ for a while. For $m \in \mathbb{Z}$ and $\mu \in B_{n}\left(X_{\beta}\right), n \in \mathbb{N}$, put

$$
u_{m}=\int_{\mathbb{T}} \hat{\rho}_{t}(u) e^{-2 \pi \sqrt{-1} m t} d t \quad \text { and } \quad u_{\mu}=S_{\mu}^{*} u_{n}, \quad u_{-\mu}=u_{-n} S_{\mu}
$$

It is straightforward to see the following lemma.
Lemma 6.1. The operators $u_{\mu}, u_{-\mu}$ for $\mu \in B_{n}\left(X_{\beta}\right)$ and u_{0} are partial isometries in \mathcal{F}_{β} such that u is decomposed as the following finite sum:

$$
u=\sum_{n \text { finite }} \sum_{\mu \in B_{n}\left(X_{\beta}\right)} S_{\mu} v_{\mu}+u_{0}+\sum_{n \text { finite }} \sum_{\mu \in B_{n}\left(X_{\beta}\right)} u_{-\mu} S_{\mu}^{*}
$$

such that $u_{\mu} \mathcal{D}_{\beta} u_{\mu}^{*}, u_{\mu}^{*} \mathcal{D}_{\beta} u_{\mu}, u_{-\mu} \mathcal{D}_{\beta} u_{-\mu}^{*}$ and $u_{-\mu}^{*} \mathcal{D}_{\beta} u_{-\mu}$ are contained in \mathcal{D}_{β}.
Define a subalgebra \mathcal{F}_{β}^{k} of \mathcal{F}_{β} for $k \in \mathbb{Z}_{+}$by

$$
\mathcal{F}_{\beta}^{k}=C^{*}\left(S_{\xi} E_{i} S_{\eta}^{*} \mid \xi, \eta \in B_{k}\left(X_{\beta}\right), i=1,2, \ldots, K_{\beta}\right) .
$$

We set

$$
\operatorname{supp}_{+}(u)=\left\{\mu \in B_{*}\left(X_{\beta}\right) \mid u_{\mu} \neq 0\right\}, \quad \operatorname{supp}_{-}(u)=\left\{\mu \in B_{*}\left(X_{\beta}\right) \mid u_{-\mu} \neq 0\right\}
$$

Both of them are finite sets. For $\mu \in \operatorname{supp}_{+}(u)$, there exists $k_{+}(\mu) \in \mathbb{Z}_{+}$such that $u_{\mu} \in \mathcal{F}_{\beta}^{k_{+}(\mu)}$. For $\mu \in \operatorname{supp}_{-}(u)$, there exists $k_{-}(\mu) \in \mathbb{Z}_{+}$such that $u_{-\mu} \in \mathcal{F}_{\beta}^{k-(\mu)}$. There exists $k_{0} \in \mathbb{Z}_{+}$such that $u_{0} \in \mathcal{F}_{\beta}^{k_{0}}$. We then have the following lemma.

Lemma 6.2. Keep the above notation.
(i) \quad For $\mu \in \operatorname{supp}_{+}(u)$ and $\eta \in B_{k_{+}(\mu)}\left(X_{\beta}\right), i=1,2, \ldots, K_{\beta}$ such that $u_{\mu}^{*} u_{\mu} \geq S_{\eta} E_{i} S_{\eta}^{*} \neq 0$, there uniquely exists $\xi \in B_{k_{+}(\mu)}\left(X_{\beta}\right)$ such that $u_{\mu} u_{\mu}^{*} \geq S_{\xi} E_{i} S_{\xi}^{*} \neq 0$ and

$$
\operatorname{Ad}\left(u_{\mu}\right)\left(S_{\eta} E_{i} S_{\eta}^{*}\right)=S_{\xi} E_{i} S_{\xi}^{*} .
$$

(ii) For $\mu \in \operatorname{supp}_{-}(u)$ and $\eta \in B_{k-(\mu)}\left(X_{\beta}\right), i=1,2, \ldots, K_{\beta}$ such that $u_{-\mu}^{*} u_{-\mu} \geq S_{\eta} E_{i} S_{\eta}^{*}$ $\neq 0$, there uniquely exists $\xi \in B_{k_{-}(\mu)}\left(X_{\beta}\right)$ such that $u_{-\mu} u_{-\mu}^{*} \geq S_{\xi} E_{i} S_{\xi}^{*} \neq 0$ and

$$
A d\left(u_{-\mu}\right)\left(S_{\eta} E_{i} S_{\eta}^{*}\right)=S_{\xi} E_{i} S_{\xi}^{*}
$$

(iii) For $\eta \in B_{k_{0}}\left(X_{\beta}\right), i=1,2, \ldots, K_{\beta}$ such that $u_{0}^{*} u_{0} \geq S_{\eta} E_{i} S_{\eta}^{*} \neq 0$, there uniquely exists $\xi \in B_{k_{0}}\left(X_{\beta}\right)$ such that $u_{0} u_{0}^{*} \geq S_{\xi} E_{i} S_{\xi}^{*} \neq 0$ and

$$
\operatorname{Ad}\left(u_{0}\right)\left(S_{\eta} E_{i} S_{\eta}^{*}\right)=S_{\xi} E_{i} S_{\xi}^{*} .
$$

Proof. (i) As $u_{\mu} \in \mathcal{F}_{\beta}^{k_{+}(\mu)}$, it is written $u_{\mu}=\sum_{\xi, \eta^{\prime} \in B_{k_{+}(\mu)}\left(X_{\beta}\right)} S_{\xi} a_{\xi, \eta^{\prime}} S_{\eta^{\prime}}^{*}$ for some $a_{\xi, \eta^{\prime}} \in \mathcal{A}_{\beta}$. Suppose that $u_{\mu}^{*} u_{\mu} \geq S_{\eta} E_{i} S_{\eta}^{*} \neq 0$. Hence, $S_{\eta}^{*} S_{\eta} \geq E_{i}$. It then follows that

$$
\begin{aligned}
\operatorname{Ad}\left(u_{\mu}\right)\left(S_{\eta} E_{i} S_{\eta}^{*}\right) & =u_{\mu} S_{\eta} E_{i} S_{\eta}^{*} u_{\mu}^{*} \\
& =\sum_{\xi, \xi^{\prime} \in B_{k_{k+}(\mu)}\left(X_{\beta}\right)} S_{\xi} a_{\xi, \eta} S_{\eta}^{*} S_{\eta} E_{i} S_{\eta}^{*} S_{\eta} a_{\xi^{\prime}, \eta}^{*} S_{\xi^{\prime}}^{*} \\
& =\sum_{\xi, \xi^{\prime} \in B_{k_{+}(\mu)}\left(X_{\beta}\right)} S_{\xi} a_{\xi, \eta} E_{i} a_{\xi^{\prime}, \eta}^{*} S_{\xi^{\prime}}^{*} .
\end{aligned}
$$

Since $\operatorname{Ad}\left(u_{\mu}\right)\left(S_{\eta} E_{i} S_{\eta}^{*}\right)$ belongs to \mathcal{D}_{β}, we have, for $\xi \neq \xi^{\prime}$,

$$
0=S_{\xi} S_{\xi}^{*} \operatorname{Ad}\left(u_{\mu}\right)\left(S_{\eta} E_{i} S_{\eta}^{*}\right) S_{\xi^{\prime}} S_{\xi^{\prime}}^{*}=S_{\xi} a_{\xi, \eta} E_{i} a_{\xi^{\prime}, \eta}^{*} S_{\xi^{\prime}}^{*}
$$

so that

$$
\operatorname{Ad}\left(u_{\mu}\right)\left(S_{\eta} E_{i} S_{\eta}^{*}\right)=\sum_{\xi \in B_{k_{+}(\mu)}\left(X_{\beta}\right)} S_{\xi} a_{\xi, \eta} E_{i} a_{\xi, \eta}^{*} S_{\xi}^{*} .
$$

Since $u_{\mu} u_{\mu}^{*}=\sum_{\xi, \zeta \in B_{k_{+}(\mu)}\left(X_{\beta}\right)} S_{\xi} a_{\xi, \zeta} a_{\xi, \zeta}^{*} S_{\xi}^{*}$ is a projection, the operators $a_{\xi, \eta} a_{\xi, \eta}^{*}$ are projections in \mathcal{A}_{β} for all $\xi \in B_{k_{+}(\mu)}\left(X_{\beta}\right)$. As $S_{\xi^{\prime}}^{*} S_{\xi} a_{\xi, \eta} E_{i} a_{\xi^{\prime}, \eta}^{*} S_{\xi^{\prime}}^{*} S_{\xi^{\prime}}=a_{\xi, \eta} E_{i} a_{\xi^{\prime}, \eta}^{*}$, we have $a_{\xi, \eta} a_{\xi, \eta}^{*} \cdot a_{\xi^{\prime}, \eta} a_{\xi^{\prime}, \eta}^{*}=0$ for $\xi \neq \xi^{\prime}$, so that there uniquely exists $\xi \in B_{k_{+}(\mu)}\left(X_{\beta}\right)$ such that $a_{\xi, \eta} a_{\xi, \eta}^{*} E_{i}=E_{i}$ for the word η and i. By the identity $a_{\xi, \eta} E_{i} a_{\xi, \eta}^{*}=a_{\xi, \eta} a_{\xi, \eta}^{*} E_{i}$,

$$
\operatorname{Ad}\left(u_{\mu}\right)\left(S_{\eta} E_{i} S_{\eta}^{*}\right)=S_{\xi} E_{i} S_{\xi}^{*}
$$

(ii) and (iii) are similar to (i).

Proposition 6.3. For a unitary $u \in N\left(\mathcal{D}_{\beta}, \mathcal{O}_{\beta}\right)$, there exists a finite family of partial isometries $u_{\mu}, u_{0}, u_{-\mu}$ in \mathcal{F}_{β} such that u is decomposed in the following way:

$$
u=\sum_{n \text { finite }} \sum_{\mu \in B_{n}\left(X_{\beta}\right)} S_{\mu} u_{\mu}+u_{0}+\sum_{n \text { finite }} \sum_{\mu \in B_{n}\left(X_{\beta}\right)} u_{-\mu} S_{\mu}^{*}
$$

such that
(1) For any $\eta \in B_{k_{+}(\mu)}\left(X_{\beta}\right)$ with $S_{\eta} E_{i} S_{\eta}^{*} \leq u_{\mu}^{*} u_{\mu}$, the equality

$$
\operatorname{Ad}\left(S_{\mu} u_{\mu}\right)\left(S_{\eta} E_{i} S_{\eta}^{*}\right)=S_{\mu} S_{\xi} E_{i} S_{\xi}^{*} S_{\mu}^{*}
$$

holds for some $\xi \in B_{k_{+}(\mu)}\left(X_{\beta}\right)$.
(2) For any $\eta \in B_{k_{0}}\left(X_{\beta}\right)$ with $S_{\eta} E_{i} S_{\eta}^{*} \leq u_{0}^{*} u_{0}$, the equality

$$
A d\left(u_{0}\right)\left(S_{\eta} E_{i} S_{\eta}^{*}\right)=S_{\xi} E_{i} S_{\xi}^{*}
$$

holds for some $\xi \in B_{k_{0}}\left(X_{\beta}\right)$.
(3) For any $\eta \in B_{k_{-}(\mu)}\left(X_{\beta}\right)$ with $S_{\eta} E_{i} S_{\eta}^{*} \leq u_{-\mu}^{*} u_{-\mu}$, the equality

$$
\operatorname{Ad}\left(u_{-\mu} S_{\mu}^{*}\right)\left(S_{\mu} S_{\eta} E_{i} S_{\eta}^{*} S_{\mu}^{*}\right)=S_{\xi} E_{i} S_{\xi}^{*}
$$

holds for some $\xi \in B_{k_{-}(\mu)}\left(X_{\beta}\right)$.
Therefore, we have the following lemma.
Lemma 6.4. For $\tau \in \Gamma_{\beta}$, there exists $u_{\tau} \in N\left(\mathcal{D}_{\beta}, O_{\beta}\right)$ such that there exists a family $S_{\nu(j)} E_{i_{j}} S_{v(j)}^{*}, S_{\mu(j)} E_{i_{j}} S_{\mu(j)}^{*}, j=1,2, \ldots, m$ of projections satisfying
(1) $u_{\tau}=\sum_{j=1}^{m} S_{\mu(j)} E_{i_{j}} S_{v(j)}^{*}$ such that
(a) $S_{v(j)}^{*} S_{v(j)}, S_{\mu(j)}^{*} S_{\mu(j)} \geq E_{i_{j}}, \quad j=1,2, \ldots, m$,
(b) $\sum_{j=1}^{m} S_{v(j)} E_{i_{j}} S_{v(j)}^{*}=\sum_{j=1}^{m} S_{\mu(j)} E_{i_{j}} S_{\mu(j)}^{*}=1$.
(2) $f \circ \tau^{-1}=u_{\tau} f u_{\tau}^{*}$ for $f \in \mathcal{D}_{\beta}$.

For $i=1,2, \ldots, K_{\beta}$, put

$$
\Gamma_{n}^{-}(i)=\left\{\mu \in B_{n}\left(X_{\beta}\right) \mid S_{\mu}^{*} S_{\mu} \geq E_{i}\right\}, \quad \Gamma_{*}^{-}(i)=\bigcup_{n=0}^{\infty} \Gamma_{n}^{-}(i)
$$

For $v=\left(v_{1}, \ldots, v_{n}\right) \in \Gamma_{n}^{-}(i)$ and $i=1,2, \ldots, K_{\beta}$, define the projection in \mathcal{D}_{β} by

$$
v_{[i]}:=S_{v} E_{i} S_{v}^{*}
$$

and define

$$
\begin{aligned}
r\left(v_{[i]}\right) & =l(v)+\frac{1}{\beta^{n}} \varphi\left(a_{\xi_{1} \cdots \xi_{p_{i}}}\right) \\
& =\frac{v_{1}}{\beta}+\frac{v_{2}}{\beta^{2}}+\cdots+\frac{v_{n}}{\beta^{n}}+\frac{\xi_{p_{i}+1}}{\beta^{n+1}}+\frac{\xi_{p_{i}+2}}{\beta^{n+2}}+\ldots, \\
l\left(v_{[i]}\right) & =l(v)+\frac{1}{\beta^{n}} \varphi\left(a_{\xi_{1} \cdots \xi_{q_{i}}}\right) \\
& =\frac{v_{1}}{\beta}+\frac{v_{2}}{\beta^{2}}+\cdots+\frac{v_{n}}{\beta^{n}}+\frac{\xi_{q_{i}+1}}{\beta^{n+1}}+\frac{\xi_{q_{i}+2}}{\beta^{n+2}}+\cdots,
\end{aligned}
$$

where $E_{i}=a_{\xi_{1} \cdots \xi_{p_{i}}}-a_{\xi_{1} \cdots \xi_{q_{i}}}$. The following lemma is obvious.
Lemma 6.5. Assume that the generating partial isometries $S_{0}, S_{1}, \ldots, S_{N-1}$ are represented on $L^{2}([0,1])$. For $v \in \Gamma_{n}^{-}(i)$, the projection $S_{v} E_{i} S_{v}^{*}$ is identified with the characteristic function $\chi_{\left[l\left(v_{[i]}\right), r\left(v_{[i]}\right)\right)}$ of the interval $\left[l\left(v_{[i]}\right), r\left(v_{[i]}\right)\right)$.

For $v \in \Gamma_{*}^{-}(i)$ and $\mu \in \Gamma_{*}^{-}(j)$ with $S_{v} E_{i} S_{v}^{*} \cdot S_{\mu} E_{j} S_{\mu}^{*}=0$, define

$$
v_{[i]}<\mu_{[j]} \text { if } r\left(v_{[i]}\right) \leq l\left(\mu_{[j]}\right) .
$$

Note that under the condition $S_{v} E_{i} S_{v}^{*} \cdot S_{\mu} E_{j} S_{\mu}^{*}=0$, the intervals $\left[l\left(v_{[i]}\right), r\left(v_{[i]}\right)\right)$ and $\left[l\left(\mu_{[j]}\right), r\left(\mu_{[j]}\right)\right)$ are disjoint. Hence, the condition $v_{[i]}<\mu_{[j]}$ implies that the interval $\left[l\left(v_{[i]}\right), r\left(v_{[i]}\right)\right)$ is located on the left-hand side of $\left[l\left(\mu_{[j]}\right), r\left(\mu_{[j]}\right)\right)$.
Lemma 6.6. Keep the above notation.
(i) For $v \in \Gamma_{n}^{-}(i)$ and $\mu \in \Gamma_{k}^{-}(j)$, we have $S_{v} E_{i} S_{v}^{*} \cdot S_{\mu} E_{j} S_{\mu}^{*}=0$ if and only if $\left[l\left(v_{[i]}\right), r\left(v_{[i]}\right)\right) \cap\left[l\left(\mu_{[j]}\right), r\left(\mu_{[j]}\right)\right)=\emptyset$.
(ii) $\operatorname{For} v(j) \in \Gamma_{n_{j}}^{-}\left(i_{j}\right), j=1,2, \ldots, m$, we have $\sum_{j=1}^{m} S_{v(j)} E_{i_{j}} S_{v(j)}^{*}=1$ if and only if $[0,1)=\sqcup_{j=1}^{m}\left[l\left(v(j)_{\left[i_{j}\right]}\right), r\left(v(j)_{\left[i_{j}\right]}\right)\right)$ is a disjoint union.
(iii) $\operatorname{For} v(j) \in \Gamma_{n_{j}}^{-}\left(i_{j}\right), j=1,2, \ldots, m$ such that $\sum_{j=1}^{m} S_{v(j)} E_{i_{j}} S_{v(j)}^{*}=1$ and $v(1)_{\left[i_{1}\right]}<$ $v(2)_{\left[i_{2}\right]}<\cdots<v(m)_{\left[i_{m}\right]}$,

$$
r\left(v(j)_{\left[i_{j}\right]}\right)=l\left(v(j+1)_{\left[i_{j+1}\right]}\right), \quad j=1,2, \ldots, m
$$

Defintion 6.7. A β-adic table for a sofic β-shift is a matrix

$$
T=\left[\begin{array}{cccc}
\mu(1)_{\left[i_{1}\right]} & \mu(2)_{\left[i_{2}\right]} & \cdots & \mu(m)_{\left[i_{m}\right]} \\
v(1)_{\left[i_{1}\right]} & v(2)_{\left[i_{2}\right]} & \cdots & v(m)_{\left[i_{m}\right]}
\end{array}\right]
$$

such that
(a) $\quad v(j) \in \Gamma_{*}^{-}\left(i_{j}\right), \quad \mu(j) \in \Gamma_{*}^{-}\left(i_{j}\right) \quad$ for $j=1,2, \ldots, m$.
(b) $\quad \sqcup_{j=1}^{m}\left[l\left(v(j)_{\left[i_{j}\right]}\right), r\left(v(j)_{\left[i_{j}\right]}\right)\right)=\bigcup_{j=1}^{m}\left[l\left(\mu(j)_{\left[i_{j}\right]}\right], r\left(\mu(j)_{\left[i_{j}\right]}\right)\right)=[0,1)$.

We may assume that

$$
v(1)_{\left[i_{1}\right]}<v(2)_{\left[i_{2}\right]}<\cdots<v(m)_{\left[i_{m}\right]} .
$$

Therefore, we have the following lemma.
Lemma 6.8. For an element $\tau \in \Gamma_{\beta}$ with its unitary $u_{\tau}=\sum_{j=1}^{m} S_{\mu(j)} E_{i_{j}} S_{v(j)}^{*} \in N\left(\mathcal{D}_{\beta}, O_{\beta}\right)$ as in Lemma 6.4, the matrix

$$
T_{\tau}=\left[\begin{array}{llll}
\mu(1)_{\left[i_{1}\right]} & \mu(2)_{\left[i_{2}\right]} & \cdots & \mu(m)_{\left[i_{m}\right]} \\
v(1)_{\left[i_{1}\right]} & v(2)_{\left[i_{2}\right]} & \cdots & v(m)_{\left[i_{m}\right]}
\end{array}\right]
$$

is a β-adic table for a sofic β-shift.
Defintition 6.9. (i) An interval $\left[x_{1}, x_{2}\right)$ in $[0,1]$ is said to be a β-adic interval for the word $v_{[i]}$ if $x_{1}=l\left(v_{[i]}\right)$ and $x_{2}=r\left(v_{[i]}\right)$ for some $v \in B_{*}\left(X_{\beta}\right)$ and $i=1,2, \ldots, K_{\beta}$.
(ii) A rectangle $I \times J$ in $[0,1] \times[0,1]$ is said to be a β-adic rectangle if both I, J are β-adic intervals for words $v_{[i]}, \mu_{[i]}$ such that $I=\left[l\left(v_{[i]}\right), r\left(v_{[i]}\right)\right)$ and $J=$ $\left[l\left(\mu_{[i]}\right), r\left(\mu_{[i]}\right)\right)$ and

$$
\frac{r\left(\mu_{[i]}\right)-l\left(\mu_{[i]}\right)}{r\left(v_{[i]}\right)-l\left(v_{[i]}\right)}=\beta^{|v|-|\mu|} .
$$

(iii) For two partitions $0=x_{0}<x_{1}<\cdots<x_{m-1}<x_{m}=1$ and $0=y_{0}<y_{1}<\cdots<$ $y_{m-1}<y_{m}=1$ of $[0,1]$, put $I_{p}=\left[x_{p-1}, x_{p}\right), J_{p}=\left[y_{p-1}, y_{p}\right), p=1,2, \ldots, m$. The partition $I_{p} \times J_{q}, p, q=1,2, \ldots, m$ of $[0,1) \times[0,1)$ is said to be a β-adic pattern of rectangles for a sofic β-shift if there exists a permutation σ on $\{1,2, \ldots, m\}$ such that the rectangles $I_{p} \times J_{\sigma(p)}$ are β-adic rectangles for all $p=1,2, \ldots, m$.
For a β-adic pattern of rectangles above, the slopes of diagonals $s_{p}=$ $\left(y_{\sigma(p)}-y_{\sigma(p)-1}\right) /\left(x_{p}-x_{p-1}\right), p=1,2, \ldots, m$ are said to be rectangle slopes. Similarly to Lemma 5.7 for an SFT β-shift, we have the following lemma.
Lemma 6.10. For a β-adic table for a sofic β-shift

$$
T=\left[\begin{array}{cccc}
\mu(1)_{\left[i_{1}\right]} & \mu(2)_{\left[i_{2}\right]} & \cdots & \mu(m)_{\left[i_{m}\right]} \\
v(1)_{\left[i_{1}\right]} & v(2)_{\left[i_{2}\right]} & \cdots & \left.v(m)_{\left[i_{m}\right]}\right]
\end{array}\right],
$$

there exists a β-adic pattern of rectangles for a sofic β-shift whose rectangle slopes are

$$
\beta^{|v(1)|-|\mu(1)|}, \beta^{|v(2)|-|\mu(2)|}, \ldots, \beta^{|v(m)|-|\mu(m)|} .
$$

Similarly to the preceding section, we will define a β-adic version of PL functions on $[0,1)$ for a sofic β-shift in the following way.
Defintition 6.11. A PL function f on $[0,1)$ is called a β-adic $P L$ function for a sofic β-shift if f is a right-continuous bijection on $[0,1)$ such that there exists a β-adic pattern of rectangles $I_{p} \times J_{p}, p=1,2, \ldots, m$, where $I_{p}=\left[x_{p-1}, x_{p}\right), J_{p}=\left[y_{p-1}, y_{p}\right), p=$ $1,2, \ldots, m$ with a permutation σ on $\{1,2, \ldots, m\}$ such that

$$
f\left(x_{p-1}\right)=y_{\sigma(p)-1}, \quad f_{-}\left(x_{p}\right)=y_{\sigma(p-1)+1}, \quad p=1,2, \ldots, m
$$

where $f_{-}\left(x_{p}\right)=\lim _{h \rightarrow 0+} f\left(x_{p}-h\right)$ and f is linear on $\left[x_{p-1}, x_{p}\right)$ with slope $\left(y_{\sigma(p)}-y_{\sigma(p)-1}\right) /\left(x_{p}-x_{p-1}\right)$ for $p=1,2, \ldots, m$.

Similarly to the preceding section, we have the following proposition.
Proposition 6.12. A β-adic PL function for a sofic β-shift naturally gives rise to a β-adic pattern of rectangles for a sofic β-shift.

We may directly construct a β-adic PL function f_{T} for a sofic β-shift from a β-adic table for a sofic β-shift $T=\left[\begin{array}{c}v()_{\left[i_{1}\right]} \nu(2)_{\left[i_{2}\right]} \ldots \nu(m)_{\left[i_{i n}\right]} \\ \mu(1)_{\left[i_{1}\right]} \mu(2){ }_{\left[i_{2}\right]} \ldots \mu(m)_{\left[i_{m}\right]}\end{array}\right]$ as follows. Put $x_{j}=$ $l\left(v(j+1)_{\left[i_{j}\right]}\right), \hat{y}_{j}=l\left(\mu(j+1)_{\left[i_{j}\right]}\right), j=0,1, \ldots, m-1 . \quad$ Define f_{T} by $f_{T}\left(x_{j}\right)=\hat{y}_{j}$, $j=0,1, \ldots, m-1$ and f_{T} is linear on $\left[x_{j-1}, x_{j}\right), j=1,2, \ldots, m$ with slope $(r(\mu(j))-l(\mu(j))) /(r(v(j))-l(v(j)))=\beta^{|v(j)|-|\mu(j)|}$. The function f_{T} yields a β-adic PL function for a sofic β-shift.

It is straightforward to see that the composition of two β-adic PL functions for a sofic β-shift is also a β-adic PL function for a sofic β-shift. Hence, the set of β-adic PL functions for a sofic β-shift forms a group under compositions. We reach the following theorem.

Theorem 6.13. The topological full group Γ_{β} for a sofic β-shift $\left(X_{\beta}, \sigma\right)$ is realized as the group of all β-adic PL functions for a sofic β-shift.

7. Classification of the topological full groups $\boldsymbol{\Gamma}_{\boldsymbol{\beta}}$

In this section, we will classify the groups Γ_{β} for SFT β-shifts and sofic β-shifts. We will first classify Γ_{β} for SFT β-shifts.

1. SFT case:

Proposition 7.1. Suppose that the β-shift $\left(X_{\beta}, \sigma\right)$ is a shift of finite type such that the β-expansion of 1 is $1=\eta_{1} / \beta+\eta_{2} / \beta^{2}+\cdots+\eta_{n} / \beta^{n}$. Set

$$
\begin{aligned}
T_{i} & =S_{i-1} \quad \text { for } i=1, \ldots, \eta_{1}, \\
T_{\eta_{1}+i} & =S_{\eta_{1}} S_{i-1} \quad \text { for } i=1, \ldots, \eta_{2}, \\
T_{\eta_{1}+\eta_{2}+i} & =S_{\eta_{1}} S_{\eta_{2}} S_{i-1} \quad \text { for } i=1, \ldots, \eta_{3}, \\
\vdots & \\
T_{\eta_{1}+\eta_{2}+\cdots+\eta_{n-1}+i} & =S_{\eta_{1}} S_{\eta_{2}} \cdots S_{\eta_{n-1}} S_{i-1} \quad \text { for } i=1, \ldots, \eta_{n} .
\end{aligned}
$$

Define the C^{*}-subalgebras $\widehat{\mathcal{O}}_{\beta}, \widehat{\mathcal{D}}_{\beta}$ of O_{β} by

$$
\begin{aligned}
& \widehat{O}_{\beta}=C^{*}\left(T_{i} ; i=1,2, \ldots, \eta_{1}+\eta_{2}+\cdots+\eta_{n}\right) \\
& \widehat{\mathcal{D}}_{\beta}=C^{*}\left(T_{\mu} T_{\mu}^{*} ; \mu=\left(\mu_{1}, \ldots, \mu_{m}\right), \mu_{i}=1,2, \ldots, \eta_{1}+\eta_{2}+\cdots+\eta_{n}\right)
\end{aligned}
$$

Then the C^{*}-algebras \widehat{O}_{β} and $\widehat{\mathcal{D}}_{\beta}$ coincide with O_{β} and \mathcal{D}_{β}, respectively, and are isomorphic to the Cuntz algebra $O_{\eta_{1}+\eta_{2}+\cdots+\eta_{n}}$ and the canonical Cartan subalgebra $\mathcal{D}_{\eta_{1}+\eta_{2}+\cdots+\eta_{n}}$, respectively, that is,

$$
\widehat{O}_{\beta}=O_{\beta}=O_{\eta_{1}+\eta_{2}+\cdots+\eta_{n}}, \quad \widehat{\mathcal{D}}_{\beta}=\mathcal{D}_{\beta}=\mathcal{D}_{\eta_{1}+\eta_{2}+\cdots+\eta_{n}} .
$$

Proof. It is direct to see that the operators $T_{1}, T_{2}, \ldots, T_{\eta_{1}+\eta_{2}+\cdots+\eta_{n}}$ are all isometries. Then

$$
\begin{aligned}
\sum_{i=1}^{\eta_{1}} T_{i} T_{i}^{*} & =\sum_{j=0}^{\eta_{1}-1} S_{j} S_{j}^{*}=1-S_{\eta_{1}} S_{\eta_{1}}^{*}, \\
\sum_{i=\eta_{1}+1}^{\eta_{1}+\eta_{2}} T_{i} T_{i}^{*} & =\sum_{j=0}^{\eta_{2}-1} S_{\eta_{1}} S_{j} S_{j}^{*} S_{\eta_{1}}^{*}=S_{\eta_{1}}\left(1-S_{\eta_{2}} S_{\eta_{2}}^{*}\right) S_{\eta_{1}}^{*}, \\
& \vdots \\
\sum_{i=\eta_{1}+\eta_{2}+\cdots+\eta_{n-1}+1}^{\eta_{1}+\eta_{2}+\cdots+\eta_{n}} T_{i} T_{i}^{*} & =\sum_{j=0}^{\eta_{n}-1} S_{\eta_{1}} S_{\eta_{2}} \cdots S_{\eta_{n-1}} S_{j} S_{j}^{*} S_{\eta_{n-1}}^{*} S_{\eta_{1}}^{*} \cdots S_{\eta_{2}}^{*} S_{\eta_{1}}^{*} \\
& =S_{\eta_{1}} S_{\eta_{2}} \cdots S_{\eta_{n-1}}\left(1-S_{\eta_{n}} S_{\eta_{n}}^{*}\right) S_{\eta_{n-1}}^{*} \cdots S_{\eta_{2}}^{*} S_{\eta_{1}}^{*} \\
& =S_{\eta_{1}} S_{\eta_{2}} \cdots S_{\eta_{n-1}} S_{\eta_{n-1}}^{*} \cdots S_{\eta_{2}}^{*} S_{\eta_{1}}^{*} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \sum_{i=1}^{\eta_{1}+\eta_{2}+\cdots+\eta_{n}} T_{i} T_{i}^{*} \\
& \quad=\sum_{i=1}^{\eta_{1}} T_{i} T_{i}^{*}+\sum_{i=\eta_{1}+1}^{\eta_{1}+\eta_{2}} T_{i} T_{i}^{*}+\cdots+\sum_{i=\eta_{1}+\eta_{2}+\cdots+\eta_{n-1}+1}^{\eta_{1}+\eta_{2}+\cdots+\eta_{n}} T_{i} T_{i}^{*} \\
& \quad=1-S_{\eta_{1}} S_{\eta_{1}}^{*}+S_{\eta_{1}}\left(1-S_{\eta_{2}} S_{\eta_{2}}^{*}\right) S_{\eta_{1}}^{*}+\cdots+S_{\eta_{1}} S_{\eta_{2}} \cdots S_{\eta_{n-1}} S_{\eta_{n-1}}^{*} \cdots S_{\eta_{2}}^{*} S_{\eta_{1}}^{*}=1 .
\end{aligned}
$$

Hence, the C^{*}-algebra \widehat{O}_{β} is isomorphic to the Cuntz algebra $O_{\eta_{1}+\eta_{2}+\cdots+\eta_{n}}$. The inclusion relation $\widehat{O}_{\beta} \subset O_{\beta}$ is clear. To show the converse inclusion relation $O_{\beta} \subset \widehat{O}_{\beta}$, it suffices to prove that the partial isometry $S_{\eta_{1}}$ belongs to the algebra \widehat{O}_{β}. By the equality

$$
\begin{aligned}
& \varphi\left(S_{\eta_{1}}^{*} S_{\eta_{1}}\right)=\beta-\eta_{1}=\frac{\eta_{2}}{\beta}+\frac{\eta_{3}}{\beta^{2}}+\cdots+\frac{\eta_{n}}{\beta^{n-1}} \\
& S_{\eta_{1}}^{*} S_{\eta_{1}}=\sum_{j=0}^{\eta_{2}-1} S_{j} S_{j}^{*}+\sum_{j=0}^{\eta_{3}-1} S_{\eta_{2}} S_{j} S_{j}^{*} S_{\eta_{2}}^{*}+\cdots \\
& \quad+\sum_{j=0}^{\eta_{n}-1} S_{\eta_{2}} S_{\eta_{3}} \cdots S_{\eta_{n-1}} S_{j} S_{j}^{*} S_{\eta_{n}-1}^{*} \cdots S_{\eta_{3}}^{*} S_{\eta_{2}}^{*}
\end{aligned}
$$

so that

$$
\begin{aligned}
S_{\eta_{1}}= & S_{\eta_{1}} S_{\eta_{1}}^{*} S_{\eta_{1}} \\
=\sum_{j=0}^{\eta_{2}-1} & T_{\eta_{1}+j+1} S_{j}^{*}+\sum_{j=0}^{\eta_{3}-1} T_{\eta_{1}+\eta_{2}+j+1}\left(S_{\eta_{2}} S_{j}\right)^{*}+\cdots \\
& +\sum_{j=0}^{\eta_{n}-1} T_{\eta_{1}+\eta_{2}+\cdots+\eta_{n-1}+j+1}\left(S_{\eta_{2}} S_{\eta_{3}} \cdots S_{\eta_{n-1}} S_{j}\right)^{*} .
\end{aligned}
$$

Denote by η_{0} the empty word. The following set W_{β} of the words

$$
W_{\beta}=\left\{\left(\eta_{2}, \eta_{3}, \ldots, \eta_{m-1}, i\right) \mid i=0,1, \ldots, \eta_{m}-1, m=1,2, \ldots, n\right\}
$$

are all admissible words of X_{β}. By cutting a word in the subwords beginning with η_{1}, one easily sees that any admissible word of X_{β} is decomposed into a product of some of the words of the following set:

$$
C_{\beta}=\left\{\left(\eta_{1}, \eta_{2}, \ldots, \eta_{m-1}, j\right) \mid j=0,1, \ldots, \eta_{m}-1, m=1,2, \ldots, n\right\} .
$$

Hence, any word of W_{β} is a product of some of the words of C_{β}. This implies that the operators

$$
S_{\eta_{2}} S_{\eta_{3}} \cdots S_{\eta_{m-1}} S_{j}, \quad j=0,1, \ldots, \eta_{m}-1, m=1,2, \ldots, n
$$

are products of some of $T_{1}, T_{2}, \ldots, T_{\eta_{1}+\eta_{2}+\cdots+\eta_{n}}$. Therefore, $S_{\eta_{1}}$ is written as a product of $T_{i}, T_{i}^{*}, i=1,2, \ldots, \eta_{1}+\eta_{2}+\cdots+\eta_{n}$. This shows that $\mathcal{O}_{\beta} \subset \widehat{O}_{\beta}$. The equality $\mathcal{D}_{\beta}=\widehat{\mathcal{D}}_{\beta}$ is direct.

The above proposition implies that the SFT β-shift $\left(X_{\beta}, \sigma\right)$ is continuously orbit equivalent to the full $\left(\eta_{1}+\eta_{2}+\cdots+\eta_{n}\right)$-shift $\left(X_{\eta_{1}+\eta_{2}+\cdots+\eta_{n}}, \sigma\right)[16,22,29]$. Therefore, we have the following theorem.

Theorem 7.2. If the β-expansion of 1 is finite such that

$$
1=\frac{\eta_{1}}{\beta}+\frac{\eta_{2}}{\beta^{2}}+\cdots+\frac{\eta_{n}}{\beta^{n}},
$$

then the group Γ_{β} is isomorphic to the Higman-Thompson group $V_{\eta_{1}+\eta_{2}+\cdots+\eta_{n}}$.
Corollary 7.3. Let $\left(X_{\beta}, \sigma\right)$ and $\left(X_{\beta^{\prime}}, \sigma\right)$ be SFT β-shifts such that their finite β expansions of 1 are

$$
1=\frac{\eta_{1}}{\beta}+\frac{\eta_{2}}{\beta^{2}}+\cdots+\frac{\eta_{n}}{\beta^{n}}=\frac{\eta_{1}^{\prime}}{\beta^{\prime}}+\frac{\eta_{2}^{\prime}}{\beta^{\prime 2}}+\cdots+\frac{\eta_{n^{\prime}}^{\prime}}{\beta^{\prime n^{\prime}}},
$$

respectively. Then the following are equivalent:
(i) the groups Γ_{β} and $\Gamma_{\beta^{\prime}}$ are isomorphic;
(ii) the Cuntz algebras $O_{\eta_{1}+\eta_{2}+\cdots+\eta_{n}}$ and $O_{\eta_{1}^{\prime}+\eta_{2}^{\prime}+\cdots+\eta_{n^{\prime}}^{\prime}}$ are isomorphic;
(iii) $\eta_{1}+\eta_{2}+\cdots+\eta_{n}=\eta_{1}^{\prime}+\eta_{2}^{\prime}+\cdots+\eta_{n^{\prime}}^{\prime}$.

Proof. The implication (iii) implies that (ii) is trivial, and its converse (ii) implies that (iii) is well known [7, 8]. Assume that the groups Γ_{β} and $\Gamma_{\beta^{\prime}}$ are isomorphic. By [19] or more generally [24], the C^{*}-algebras $C_{r}^{*}\left(G_{\beta}\right)$ and $C_{r}^{*}\left(G_{\beta^{\prime}}\right)$ of the groupoids G_{β} and $G_{\beta^{\prime}}$ associated with their respective shifts $\left(X_{\beta}, \sigma\right)$ and $\left(X_{\beta^{\prime}}, \sigma\right)$ of finite type are isomorphic. Since $C_{r}^{*}\left(G_{\beta}\right)=O_{\beta}$ and $C_{r}^{*}\left(G_{\beta^{\prime}}\right)=O_{\beta^{\prime}}$, Proposition 7.1 implies (ii), so that the implication (i) implies that (ii) holds. The implication (iii) implies that (i) is a direct consequence of the above theorem.
2. Sofic case:

Assume that the β-shift X_{β} is sofic. Put

$$
k_{\beta}=\min \left\{k \in \mathbb{N} \mid \mathcal{A}_{k}=\mathcal{A}_{k+1}\right\}, \quad K_{\beta}=k_{\beta}+1
$$

Hence, $\mathcal{A}_{k_{\beta}}=\mathcal{A}_{k_{\beta}+1}=\cdots=\mathcal{A}_{\beta}$ and $\operatorname{dim} \mathcal{A}_{\beta}=K_{\beta}$. There exists $l \in \mathbb{N}$ with $0<l \leq k_{\beta}$ such that

$$
\begin{equation*}
a_{\xi_{1} \cdots \xi_{K_{\beta}}}=a_{\xi_{1} \cdots \xi_{l}} \quad \text { and hence } \quad d(1, \beta)=\xi_{1} \cdots \xi_{l} \dot{\xi}_{l+1} \cdots \dot{\xi}_{K_{\beta}} . \tag{7.1}
\end{equation*}
$$

Let $E_{1}, \ldots, E_{K_{\beta}}$ be the minimal projections of \mathcal{A}_{β} as in the preceding section, so that

$$
\begin{equation*}
\mathcal{A}_{\beta}=\mathbb{C} E_{1} \oplus \cdots \oplus \mathbb{C} E_{K_{\beta}} . \tag{7.2}
\end{equation*}
$$

Define a labeled graph \mathcal{G}_{β} over $\Sigma=\{0,1, \ldots, N-1\}$ with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{K_{\beta}}\right\}$ corresponding to the minimal projections $E_{1}, \ldots, E_{K_{\beta}}$ in the following way. Define a labeled edge from v_{i} to v_{j} labeled $\alpha \in \Sigma$ if $S_{\alpha}^{*} E_{i} S_{\alpha} \geq E_{j}$. We denote by \mathcal{E}_{β} the edge set of the labeled graph \mathcal{G}_{β} with labeling map $\lambda: \mathcal{E}_{\beta} \longrightarrow \Sigma$. The vertex set $\left\{v_{1}, v_{2}, \ldots, v_{K_{\beta}}\right\}$ is denoted by \mathcal{V}_{β}. Let \mathcal{M}_{β} be the $K_{\beta} \times K_{\beta}$ symbolic matrix of \mathcal{G}_{β} and M_{β} the $K_{\beta} \times K_{\beta}$ nonnegative matrix obtained from \mathcal{M}_{β} by putting all the symbols equal to 1 . For an
edge $e \in \mathcal{E}_{\beta}$, denote by $\lambda(e) \in \Sigma$ and $s(e), t(e) \in\left\{1,2, \ldots, K_{\beta}\right\}$ the letter of the label of e and the number of the source vertex $v_{s(e)}$ of e and that of the terminal vertex $v_{t(e)}$ of e, respectively. Define a partial isometry $s_{e}=S_{\lambda(e)} E_{t(e)}$ for an edge $e \in \mathcal{E}_{\beta}$ in the C^{*}-algebra O_{β}. Define the $\left|\mathcal{E}_{\beta}\right| \times\left|\mathcal{E}_{\beta}\right|$ matrix $B_{\beta}=\left[B_{\beta}(e, f)\right]_{e, f \in \mathcal{E}_{\beta}}$ with entries in $\{0,1\}$ by

$$
B_{\beta}(e, f)= \begin{cases}1 & \text { if } t(e)=s(f) \\ 0 & \text { if } t(e) \neq s(f)\end{cases}
$$

We have the following lemma (see [31, Section 4]).
Lemma 7.4. The partial isometries $s_{e}, e \in \mathcal{E}_{\beta}$ satisfy the following relations:

$$
\sum_{e \in \mathcal{E}_{\beta}} s_{e} s_{e}^{*}=1, \quad s_{e}^{*} s_{e}=\sum_{f \in \mathcal{E}_{\beta}} B_{\beta}(e, f) s_{f} s_{f}^{*} .
$$

Hence, the C^{*}-algebra $C^{*}\left(s_{e} ; e \in \mathcal{E}_{\beta}\right)$ generated by $s_{e}, e \in \mathcal{E}_{\beta}$ is isomorphic to the Cuntz-Krieger algebra $O_{B_{\beta}}$.
Proof. We see the identities

$$
1=\sum_{i=1}^{K_{\beta}} E_{i}=\sum_{i=1}^{K_{\beta}} \sum_{\alpha=0}^{N-1} S_{\alpha} S_{\alpha}^{*} E_{i} S_{\alpha} S_{\alpha}^{*}
$$

The projection $S_{\alpha}^{*} E_{i} S_{\alpha}$ is not zero if and only if there exists $e \in \mathcal{E}_{\beta}$ such that $\alpha=\lambda(e)$ and $i=s(e)$. Hence,

$$
S_{\alpha}^{*} E_{i} S_{\alpha}=\sum_{\substack{e \in \mathcal{\mathcal { F }}_{\mathcal{B}}, \alpha=\lambda(e), i=s(e)}} E_{t((e),},
$$

so that

$$
1=\sum_{i=1}^{K_{\beta}} \sum_{\alpha=0}^{N-1} \sum_{\substack{e \in \mathcal{\mathcal { E }}_{\beta}, \alpha=\lambda(e), i=s(e)}} S_{\alpha} E_{t(e)} S_{\alpha}^{*}=\sum_{e \in \mathcal{E}_{\beta}} s_{e} s_{e}^{*}
$$

For an edge $e \in \mathcal{E}_{\beta}$,

$$
\begin{aligned}
s_{e}^{*} s_{e} & =E_{t(e)} S_{\lambda(e)}^{*} S_{\lambda(e)} E_{t(e)}=E_{t(e)} \\
& =\sum_{\alpha=0}^{N-1} S_{\alpha} S_{\alpha}^{*} E_{t(e)} S_{\alpha} S_{\alpha}^{*} \\
& =\sum_{\alpha=0}^{N-1} S_{\alpha} \cdot \sum_{\substack{f \in \mathcal{E}_{\beta}, \alpha=\lambda(f), t(e)=s(f)}} E_{t(f)} \cdot S_{\alpha}^{*}=\sum_{f \in \mathcal{E}_{\beta}} B_{\beta}(e, f) s_{f} s_{f}^{*} .
\end{aligned}
$$

Denote by $\mathcal{D}_{B_{\beta}}$ the canonical Cartan subalgebra of $O_{B_{\beta}}$, which is a C^{*}-subalgebra of $O_{B_{\beta}}$ generated by the projections $s_{e_{1}} \cdots s_{e_{n}} s_{e_{n}}^{*} \cdots s_{e_{1}}^{*}, e_{1}, \ldots, e_{n} \in \mathcal{E}_{\beta}$.

Lemma 7.5. $O_{\beta}=O_{B_{\beta}}$ and $\mathcal{D}_{\beta}=\mathcal{D}_{B_{\beta}}$.
Proof. Since $s_{e}=S_{\lambda(e)} E_{t(e)}, e \in \mathcal{E}_{\beta}$, we have $s_{e} \in O_{\beta}$, so that the inclusion $O_{B_{\beta}} \subset O_{\beta}$ is obvious. For $\alpha \in \Sigma=\{0,1, \ldots, N-1\}, i=1,2, \ldots, K_{\beta}$, we know that $S_{\alpha} E_{i} \neq 0$ if and only if $S_{\alpha}^{*} S_{\alpha} \geq E_{i}$, which is equivalent to the condition that there exists an edge $e \in \mathcal{E}_{\beta}$ such that $\alpha=\lambda(e), i=t(e)$. For $i=1,2, \ldots, K_{\beta}$, take $e \in \mathcal{E}_{\beta}$ such that $\alpha=\lambda(e), i=t(e)$. We then have $s_{e}^{*} s_{e}=E_{t(e)}=E_{i}$, so that $E_{i} \in \mathcal{O}_{B_{\beta}}$. For $\alpha \in \Sigma$,

$$
S_{\alpha}=\sum_{i=1}^{K_{\beta}} S_{\alpha} E_{i}=\sum_{e \in \mathcal{E}_{\beta}, \alpha=\lambda(e)} S_{\lambda(e)} E_{t(e)}=\sum_{e \in \mathcal{E}_{\beta}, \alpha=\lambda(e)} s_{e},
$$

so that $S_{\alpha} \in O_{B_{\beta}}$. We thus have the inclusion $O_{\beta} \subset O_{B_{\beta}}$ and hence $O_{\beta}=O_{B_{\beta}}$.
We will next show that $\mathcal{D}_{\beta}=\mathcal{D}_{B_{\beta}}$. We have $s_{e} s_{e}^{*}=S_{\lambda(e)} E_{t(e)} S_{\lambda(e)}^{*} \in \mathcal{D}_{\beta}$. Suppose that $s_{e_{1}} \cdots s_{e_{n}} s_{e_{n}}^{*} \cdots s_{e_{1}}^{*} \in \mathcal{D}_{\beta}$. By the equality

$$
s_{e_{0}} s_{e_{1}} \cdots s_{e_{n}} s_{e_{n}}^{*} \cdots s_{e_{1}}^{*} s_{e_{0}}^{*}=S_{\lambda\left(e_{0}\right)} E_{t\left(e_{0}\right)} s_{e_{1}} \cdots s_{e_{n}} s_{e_{n}}^{*} \cdots s_{e_{1}}^{*} E_{t\left(e_{0}\right)} S_{\lambda\left(e_{0}\right)}^{*} \in \mathcal{D}_{\beta}
$$

the inclusion relation $\mathcal{D}_{B_{\beta}} \subset \mathcal{D}_{\beta}$ holds by induction. Conversely, suppose that $S_{\alpha} E_{i} S_{\alpha}^{*}$ is not zero. Take $e \in \mathcal{E}_{\beta}$ such that $\alpha=\lambda(e), i=t(e)$, so that

$$
S_{\alpha} E_{i} S_{\alpha}^{*}=S_{\lambda(e)} E_{t(e)} S_{\lambda(e)}^{*}=s_{e} s_{e}^{*}
$$

belongs to $\mathcal{D}_{B_{\beta}}$. Suppose next that $S_{\mu_{1} \cdots \mu_{n}} E_{i} S_{\mu_{1} \cdots \mu_{n}}^{*}$ belongs to $\mathcal{D}_{B_{\beta}}$ and $S_{\mu_{0}} S_{\mu_{1} \cdots \mu_{n}} E_{i} S_{\mu_{1} \cdots \mu_{n}}^{*} S_{\mu_{0}}^{*}$ is not zero. The labeled graph \mathcal{G}_{β} is left-resolving, which means that there uniquely exists a finite sequence of edges $e_{1}, e_{2}, \ldots, e_{n} \in \mathcal{E}_{\beta}$ for the vertex v_{i} such that

$$
\begin{aligned}
& \lambda\left(e_{p}\right)=\mu_{p}, t\left(e_{p}\right)=s\left(e_{p+1}\right) \quad \text { for } p=1,2, \ldots, n-1, \\
& \lambda\left(e_{n}\right)=\mu_{n}, t\left(e_{n}\right)=i .
\end{aligned}
$$

Put $j=s\left(e_{1}\right)$, so that

$$
E_{j} \geq S_{\mu_{1} \cdots \mu_{n}} E_{i} S_{\mu_{1} \cdots \mu_{n}}^{*}, \quad E_{j} S_{\mu_{1} \cdots \mu_{n}} E_{i} S_{\mu_{1} \cdots \mu_{n}}^{*} E_{j}=S_{\mu_{1} \cdots \mu_{n}} E_{i} S_{\mu_{1} \cdots \mu_{n}}^{*}
$$

Take a unique edge $e_{0} \in \mathcal{E}_{\beta}$ such that $\lambda\left(e_{0}\right)=\mu_{0}, t\left(e_{0}\right)=j$. Hence, $S_{\mu_{0}} E_{j}=s_{e_{0}}$. It then follows that

$$
\begin{aligned}
S_{\mu_{0}} S_{\mu_{1} \cdots \mu_{n}} E_{i} S_{\mu_{1} \cdots \mu_{n}}^{*} S_{\mu_{0}}^{*} & =S_{\mu_{0}} E_{j} S_{\mu_{1} \cdots \mu_{n}} E_{i} S_{\mu_{1} \cdots \mu_{n}}^{*} E_{j} S_{\mu_{0}}^{*} \\
& =s_{e_{0}} S_{\mu_{1} \cdots \mu_{n}} E_{i} S_{\mu_{1} \cdots \mu_{n}}^{*} s_{e_{0}}^{*}
\end{aligned}
$$

As $S_{\mu_{1} \cdots \mu_{n}} E_{i} S_{\mu_{1} \cdots \mu_{n}}^{*} \in \mathcal{D}_{B_{\beta}}$, we have $s_{e_{0}} S_{\mu_{1} \cdots \mu_{n}} E_{i} S_{\mu_{1} \cdots \mu_{n}}^{*} s_{e_{0}}^{*} \in \mathcal{D}_{B_{\beta}}$. Thus, the element $S_{\mu_{0}} S_{\mu_{1} \cdots \mu_{n}} E_{i} S_{\mu_{1} \cdots \mu_{n}}^{*} S_{\mu_{0}}^{*}$ belongs to $\mathcal{D}_{B_{\beta}}$. By induction, we have $\mathcal{D}_{\beta} \subset \mathcal{D}_{B_{\beta}}$ and hence $\mathcal{D}_{\beta}=\mathcal{D}_{B_{\beta}}$.

A nonnegative square matrix B is said to be elementary equivalent to a nonnegative square matrix M if there exist nonnegative rectangular matrices R and S such that $B=R S$ and $M=S R$ (see [14]).

Lemma 7.6. The matrix B_{β} is elementary equivalent to the matrix M_{β}. Hence,

$$
\operatorname{det}\left(1-B_{\beta}\right)=\operatorname{det}\left(1-M_{\beta}\right)
$$

Proof. Note that $\operatorname{dim} \mathcal{A}_{\beta}=\left|\mathcal{V}_{\beta}\right|=K_{\beta}$. Define a $\left|\mathcal{E}_{\beta}\right| \times\left|\mathcal{V}_{\beta}\right|$ matrix R_{β} and a $\left|\mathcal{V}_{\beta}\right| \times\left|\mathcal{E}_{\beta}\right|$ matrix S_{β} as follows.

$$
R_{\beta}(e, i)=\left\{\begin{array}{ll}
1 & \text { if } t(e)=v_{i}, \\
0 & \text { otherwise },
\end{array} \quad S_{\beta}(j, f)= \begin{cases}1 & \text { if } s(f)=v_{j} \\
0 & \text { otherwise }\end{cases}\right.
$$

for $e, f \in \mathcal{E}_{\beta}, v_{i}, v_{j} \in \mathcal{V}_{\beta}$ and $i, j=1,2 \ldots, K_{\beta}$. It is direct to see that

$$
B_{\beta}=R_{\beta} S_{\beta}, \quad M_{\beta}=S_{\beta} R_{\beta}
$$

and $\operatorname{det}\left(1-B_{\beta}\right)=\operatorname{det}\left(1-M_{\beta}\right)$.
Recall that φ stands for the unique KMS state on the C^{*}-algebra O_{β} under the gauge action. It satisfies the identities

$$
\varphi\left(a_{\xi_{1} \cdots \xi_{j}}\right)=\beta^{j}-\xi_{1} \beta^{j-1}-\xi_{2} \beta^{j-2}-\cdots-\xi_{j-1} \beta-\xi_{j}, \quad j=1, \ldots, K_{\beta} .
$$

By (7.2), the K_{0}-group $K_{0}\left(\mathcal{A}_{k_{\beta}}\right)$ of the algebra $\mathcal{A}_{k_{\beta}}$ is generated by the classes of the minimal projections $E_{1}, \ldots, E_{K_{\beta}}$ of $\mathcal{A}_{k_{\beta}}\left(=\mathcal{A}_{\beta}\right)$, so that $K_{0}\left(\mathcal{A}_{k_{\beta}}\right)$ is isomorphic to $\mathbb{Z}^{K_{\beta}}$. Since a minimal projection E_{i} is of the form $a_{\xi_{1} \cdots \xi_{p_{i}}}-a_{\xi_{1} \cdots \xi_{q_{i}}}$, the following correspondence:

$$
\begin{aligned}
& {[1] \in K_{0}\left(\mathcal{A}_{k_{\beta}}\right) } \longrightarrow(1,0,0, \ldots, 0) \in \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \cdots \oplus \beta^{k_{\beta}} \mathbb{Z}, \\
& {\left[a_{\xi_{1}}\right] \in K_{0}\left(\mathcal{A}_{k_{\beta}}\right) } \longrightarrow\left(-\xi_{1}, 1,0, \ldots, 0\right) \in \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \cdots \oplus \beta^{k_{\beta}} \mathbb{Z}, \\
& {\left[a_{\xi_{1} \cdots \xi_{j}}\right] \in K_{0}\left(\mathcal{A}_{k_{\beta}}\right) } \longrightarrow\left(-\xi_{j},-\xi_{j-1}, \ldots,-\xi_{2},-\xi_{1}, 1,0, \ldots, 0\right) \in \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \cdots \oplus \beta^{k_{\beta}} \mathbb{Z} \\
& \text { for } j=1, \ldots, K_{\beta} \text { yields an isomorphism from } K_{0}\left(\mathcal{A}_{k_{\beta}}\right) \text { to } \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \cdots \oplus \beta^{k_{\beta} \mathbb{Z}} \text { as a } \\
& \text { group, which we denote by } \Phi . \text { By (7.1), } \\
& \qquad \begin{aligned}
& \beta^{k_{\beta}+1}-\xi_{1} \beta^{k_{\beta}}-\xi_{2} \beta^{k_{\beta}-1}-\cdots-\xi_{k_{\beta}} \beta-\xi_{k_{\beta}+1} \\
&=\beta^{l}-\xi_{1} \beta^{l-1}-\xi_{2} \beta^{l-2}-\cdots-\xi_{l-1} \beta-\xi_{l},
\end{aligned}
\end{aligned}
$$

so that β is a solution of a monic polynomial of degree K_{β}. We denote this polynomial by

$$
\beta^{k_{\beta}+1}-\eta_{1} \beta^{k_{\beta}}-\eta_{2} \beta^{k_{\beta}-1}-\cdots-\eta_{k_{\beta}} \beta-\eta_{k_{\beta}+1}=0
$$

Then

$$
\begin{equation*}
\eta_{1}+\eta_{2}+\cdots+\eta_{k_{\beta}}+\eta_{k_{\beta}+1}=\xi_{l+1}+\xi_{l+2}+\cdots+\xi_{k_{\beta}+1}+1 \tag{7.3}
\end{equation*}
$$

Lemma 7.7 [13, Lemma 4.8]. The following diagram is commutative:

where $\lambda_{\beta *}$ is the endomorphism of $K_{0}\left(\mathcal{A}_{\beta}\right)$ induced from the map $\lambda_{\beta}: \mathcal{A}_{k_{\beta}} \rightarrow \mathcal{A}_{k_{\beta}+1}$ $\left(=\mathcal{A}_{\beta}\right)$ defined by

$$
\lambda_{\beta}(a)=\sum_{\alpha=0}^{N-1} S_{\alpha}^{*} a S_{\alpha} \quad \text { for } a \in \mathcal{A}_{\beta}
$$

and τ is an endomorphism of $\mathbb{Z} \oplus \beta \mathbb{Z} \oplus \cdots \oplus \beta^{k_{\beta}} \mathbb{Z}$ defined by

$$
\begin{aligned}
\tau\left(m_{0}, m_{1}, \ldots, m_{k_{\beta}-1}, 0\right) & =\left(0, m_{0}, m_{1}, \ldots, m_{k_{\beta}-1}\right), \quad m_{i} \in \mathbb{Z}, \\
\tau(0, \ldots, 0,1) & =\left(\eta_{k_{\beta}+1}, \eta_{k_{\beta}}, \ldots, \eta_{2}, \eta_{1}\right) .
\end{aligned}
$$

Define the $\left(k_{\beta}+1\right) \times\left(k_{\beta}+1\right)$ matrix

$$
L_{\beta}=\left[\begin{array}{cccc}
& & & \eta_{k_{\beta}+1} \\
1 & & & \eta_{k_{\beta}} \\
& \ddots & & \vdots \\
& & 1 & \eta_{1}
\end{array}\right]
$$

where the blanks denote zeros. The matrix L_{β} acts from the left-hand side of the transpose $\left(m_{0}, m_{1}, \ldots, m_{k_{\beta}}\right)^{t}$ of $\left(m_{0}, m_{1}, \ldots, m_{k_{\beta}}\right)$, so that it represents the homomorphism τ. The characteristic polynomial of L_{β} is

$$
\operatorname{det}\left(t-L_{\beta}\right)=t^{k_{\beta}+1}-\eta_{1} t^{k_{\beta}}-\eta_{2} t^{k_{\beta}-1}-\cdots-\eta_{k_{\beta}} t-\eta_{k_{\beta}+1}
$$

and the number β is one of the eigenvalues of the transpose of L_{β} with eigenvector $\left[1, \beta, \beta^{2}, \ldots, \beta^{k_{\beta}}\right]$. Hence, we have the following corollary.

Corollary 7.8. $\operatorname{det}\left(1-B_{\beta}\right)=\operatorname{det}\left(1-L_{\beta}\right)=1-\eta_{1}-\eta_{2}-\cdots-\eta_{k_{\beta}}-\eta_{k_{\beta}+1}<0$.
Proposition 7.9. There exists an isomorphism Φ from the Cuntz-Krieger algebra $O_{B_{\beta}}$ onto the Cuntz algebra $\mathcal{O}_{\xi_{1}+\cdots+\xi_{k \beta+1}+1}$ such that $\Phi\left(\mathcal{D}_{B_{\beta}}\right)=\mathcal{D}_{\xi_{1}+\cdots+\xi_{k_{\beta}+1}+1}$. Therefore, their topological full groups $\Gamma_{B_{\beta}}$ and $\Gamma_{\xi_{1}+\cdots+\xi_{k \beta+1}+1}$ are isomorphic.

Proof. We have already shown that O_{β} is isomorphic to $O_{\xi_{1}+\cdots+\xi_{k+1}+1}$ by [13]. By the preceding lemma, we know that $O_{\beta}=O_{B_{\beta}}$ and $\mathcal{D}_{\beta}=\mathcal{D}_{B_{\beta}}$, so that $O_{B_{\beta}}$ is isomorphic to $O_{\xi_{1}+\cdots+\xi_{k_{\beta}+1}+1}$. By the preceding lemma with (7.3),

$$
\begin{aligned}
\operatorname{det}\left(1-B_{\beta}\right) & =1-\eta_{1}-\eta_{2}-\cdots-\eta_{k_{\beta}}-\eta_{k_{\beta}+1} \\
& =1-\left(\xi_{l+1}+\cdots+\xi_{k_{\beta}+1}+1\right) .
\end{aligned}
$$

Hence, the topological Markov shift $\left(X_{B_{\beta}}, \sigma\right)$ is continuously orbit equivalent to the full shift $\left(X_{\xi_{l+1}+\cdots+\xi_{k_{\beta}+1}+1}, \sigma\right)$ by [17] (see [20]). Thus, their topological full groups $\Gamma_{B_{\beta}}$ and $\Gamma_{\xi_{l+1}+\cdots+\xi_{k_{\beta}+1}+1}$ are isomorphic.
Theorem 7.10. Suppose that $\left(X_{\beta}, \sigma\right)$ is sofic such that the β-expansion of 1 is

$$
d(1, \beta)=\xi_{1} \cdots \dot{\xi}_{l} \dot{\xi}_{l+1} \cdots \dot{\xi}_{k+1}
$$

Then there exists an isomorphism Φ from O_{β} to $O_{\xi_{l+1}+\cdots+\xi_{k+1}+1}$ such that $\Phi\left(\mathcal{D}_{\beta}\right)=$ $\mathcal{D}_{\xi_{l+1}+\cdots+\xi_{k+1}+1}$. Therefore, their topological full groups Γ_{β} and $\Gamma_{\xi_{l+1}+\cdots+\xi_{k+1}+1}$ are isomorphic. This implies that the group Γ_{β} is isomorphic to the Higman-Thompson group $V_{\xi_{l+1}+\cdots+\xi_{k+1}+1}$.

3. Nonsofic case:

Theorem 7.11. If $1<\beta \in \mathbb{R}$ is not ultimately periodic, then the group Γ_{β} is not isomorphic to any of the Higman-Thompson groups $V_{n}, 1<n \in \mathbb{N}$.

Proof. By Proposition 3.4, the groupoid G_{β} is an essentially principal, purely infinite, minimal groupoid. Suppose that Γ_{β} is isomorphic to one of the Higman-Thompson groups V_{n} for some $n \in \mathbb{N}$. Since V_{n} is isomorphic to the topological full group Γ_{n} of the groupoid G_{n} for the full n-shift, by Matui [24], the groupoid G_{β} is isomorphic to G_{n}. By Renault [28, Theorem 4.11], there exists an isomorphism Φ from $C_{r}^{*}\left(G_{\beta}\right)$ to $C_{r}^{*}\left(G_{n}\right)$. The C^{*}-algebra $C_{r}^{*}\left(G_{\beta}\right)$ is isomorphic to O_{β}, and $C_{r}^{*}\left(G_{n}\right)$ is isomorphic to the Cuntz algebra O_{n}. Since β is not ultimately periodic, we know that $K_{0}\left(O_{\beta}\right)=\mathbb{Z}$ by [13, Theorem 4.12], which is a contradiction to the fact that $K_{0}\left(O_{n}\right)=\mathbb{Z} /(1-n) \mathbb{Z}$.

References

[1] A. Bertrand-Mathis, 'Développement en base θ, répartition modulo un de la suite $\left(x \theta^{n}\right)_{n \geq 0}$, languages codés et θ-shift', Bull. Soc. Math. France 114 (1986), 271-323.
[2] F. Blanchard, ' β-expansions and symbolic dynamics', Theoret. Comput. Sci. 65 (1989), 131-141.
[3] K. S. Brown, 'Finiteness properties of groups', J. Pure Appl. Algebra 44 (1987), 45-75.
[4] J. W. Cannon, W. J. Floyd and W. R. Parry, 'Introductory notes on Richard Thompson's groups', Enseign. Math. 42(2) (1996), 215-256.
[5] S. Cleary, 'Regular subdivision in $\mathbb{Z}[(1+\sqrt{5}) / 2]$ ', Illinois J. Math. 44 (2000), 453-464.
[6] M. Crainic and I. Moerdijk, 'A homology theory for étale groupoids', J. reine angew. Math. 521 (2000), 25-46.
[7] J. Cuntz, 'Simple C^{*}-algebras generated by isometries', Comm. Math. Phys. 57 (1977), 173-185.
[8] J. Cuntz, 'K-theory for certain C^{*}-algebras', Ann. of Math. (2) 113 (1981), 181-197.
[9] J. Cuntz and W. Krieger, 'A class of C^{*}-algebras and topological Markov chains', Invent. Math. 56 (1980), 251-268.
[10] V. Deaconu, 'Groupoids associated with endomorphisms', Trans. Amer. Math. Soc. 347 (1995), 1779-1786.
[11] C. Frougny and B. Solomyak, 'Finite β-expansions', Ergodic Theory Dynam. Systems 12 (1992), 713-723.
[12] G. Higman, 'Finitely presented infinite simple groups', Notes on Pure Mathematics, Vol. 8 (Australian National University, Canberra, 1974).
[13] Y. Katayama, K. Matsumoto and Y. Watatani, ‘Simple C^{*}-algebras arising from β-expansion of real numbers', Ergodic Theory Dynam. Systems 18 (1998), 937-962.
[14] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding (Cambridge University Press, Cambridge, 1995).
[15] K. Matsumoto, ' C^{*}-algebras associated with presentations of subshifts', Doc. Math. 7 (2002), $1-30$.
[16] K. Matsumoto, 'Orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras', Pacific J. Math. 246 (2010), 199-225.
[17] K. Matsumoto, 'Classification of Cuntz-Krieger algebras by orbit equivalence of topological Markov shifts', Proc. Amer. Math. Soc. 141 (2013), 2329-2342.
[18] K. Matsumoto, 'K-groups of the full group actions on one-sided topological Markov shifts', Discrete Contin. Dyn. Syst. 33 (2013), 3753-3765.
[19] K. Matsumoto, Full groups of one-sided topological Markov shifts, Israel J. Math., to appear.
[20] K. Matsumoto and H. Matui, Continuous orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Kyoto J. Math., to appear.
[21] H. Matui, 'Some remarks on topological full groups of Cantor minimal systems’, Internat. J. Math. 17 (2006), 231-251.
[22] H. Matui, 'Homology and topological full groups of étale groupoids on totally disconnected spaces', Proc. Lond. Math. Soc. 104 (2012), 27-56.
[23] H. Matui, 'Some remarks on topological full groups of Cantor minimal systems II', Ergodic Theory Dynam. Systems 33 (2013), 1542-1549.
[24] H. Matui, Topological full groups of one-sided shifts of finite type, J. reine angew Math., to appear.
[25] V. V. Nekrashevych, 'Cuntz-Pimsner algebras of group actions', J. Operator Theory 52 (2004), 223-249.
[26] E. Pardo, 'The isomorphism problem for Higman-Thompson groups', J. Algebra 344 (2011), 172-183.
[27] W. Parry, 'On the β-expansion of real numbers', Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416.
[28] J. Renault, A Groupod Approach to C^{*}-Algebras, Lecture Notes in Mathematics, 793 (Springer, Berlin-Heidelberg-New York, 1980).
[29] J. Renault, ‘Cartan subalgebras in C^{*}-algebras’, Irish Math. Soc. Bull. 61 (2008), 29-63.
[30] A. Rényi, 'Representations for real numbers and their ergodic properties', Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493.
[31] M. Rørdam, 'Classification of Cuntz-Krieger algebras', K-Theory 9 (1995), 31-58.
[32] R. J. Thompson, 'Embeddings into finitely generated simple groups which preserve the word problem', in: Word Problems II, Studies in Logic and the Foundations of Mathematics, 95 (eds. S. I. Adian, W. W. Boone and G. Higman) (North-Holland, Amsterdam, 1980), 401-441.

KENGO MATSUMOTO,

 Department of Mathematics, Joetsu University of Education, Joetsu 943-8512, Japan e-mail: kengo@juen.ac.jp
HIROKI MATUI,

 Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
[^0]: This work was supported by JSPS KAKENHI grant numbers 22740099 and 2354037.
 (C) 2014 Australian Mathematical Publishing Association Inc. 1446-7887/2014 \$16.00

