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Flow data are often decomposed using proper orthogonal decomposition (POD) of the
space—time separated form, ¢’ (x,7) =) 4 (1) ¢; (x), which targets spatially correlated
flow structures in an optimal manner. This paper analyses permuted POD (PPOD), which
decomposes data as ¢ (x, 1) = Zj a;j (n) ¢j (s, 1), where x = (s, n) is a general spatial
coordinate system, s is the coordinate along the bulk advection direction and n = (n1, ny)
are along mutually orthogonal directions normal to the advection characteristic. This
separation of variables is associated with a fundamentally different inner product space
for which PPOD is optimal and targets correlations in s, ¢ space. This paper presents
mathematical features of PPOD, followed by analysis of three experimental datasets from
high-Reynolds-number, turbulent shear flows: a wake, a swirling annular jet and a jet in
cross-flow. In the wake and swirling jet cases, the leading PPOD and space-only POD
modes focus on similar features but differ in convergence rates and fidelity in capturing
spatial and temporal information. In contrast, the leading PPOD and space-only POD
modes for the jet in cross-flow capture completely different features — advecting shear
layer structures and flapping of the jet column, respectively. This example demonstrates
how the different inner product spaces, which order the PPOD and space-only POD
modes according to different measures of variance, provide unique ‘lenses’ into features
of advection-dominated flows, allowing complementary insights.
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1. Introduction

High-Reynolds-number flows are characterised by complex spatio-temporal dynamics
resulting from the superposition and interactions of flow features spanning a wide
range of spatial and temporal scales. We often seek low-dimensional descriptions
in the form of an optimal set of basis functions which capture the dominant flow
dynamics, physically controlling features and coherent patterns embedded in noise.
The distinct vortex shedding pattern due to the Bénard—von Karman instability (Perry,
Chong & Lim 1982) and shear layer vortices due to the Kelvin—Helmholtz instability
(Prasad & Williamson 1997) are examples of dynamically important coherent structures
in turbulent shear flows. Low-dimensional structures such as these can be identified
and extracted from high-dimensional data using a range of different methods. These
include both physics-based methods, such as hydrodynamic stability analysis, and
data-driven techniques, such as proper orthogonal decomposition (POD), dynamic mode
decomposition (DMD) or traditional Fourier mode decomposition. This work is based on
POD (Lumley 1967, 1970), which has been extensively used for dimensionality reduction,
feature extraction, reduced-order modelling and data reconstruction/visualisation (Holmes
et al. 2012; Rowley & Dawson 2017; Taira et al. 2017).

Fluid flows are commonly described by space—time data, here denoted g(x, t), where
g represents a measured or calculated quantity, x represents a general spatial coordinate
system and ¢ denotes time. The most commonly used form of POD, which provides a
space—time separated representation of these data, is referred to as space-only POD in this
work, following the naming convention used by Towne, Schmidt & Colonius (2018). This
form of POD decomposes the mean subtracted flow, ¢/ (x, 1) = g(x, ) — g(x), according
to

q (.0=> ajt)¢;x), (L1)

J

where a;(r) are the scalar time-dependent coefficients and (bj(x) are the spatially
orthogonal modes. These modes are defined as the uncorrelated directions which
maximise the projected variance (or equivalently, minimise the mean squared error)
of the input data (Jolliffe 2002; Bishop 2006; Holmes et al. 2012). Proper orthogonal
decomposition provides an optimal decomposition of a given flow, as the ordering of the
modes ensures that the POD basis captures as much of the variance in the given data with
as few modes as possible. Hence, the POD basis can be used to reconstruct a truncated
approximation, q,(x, t), defined as

g, D=q+) ajt)¢;x), (12)

J=1

which provides an optimal linear representation of the flow for any order r. Equation
(1.2) provides the smallest mean squared error approximation of the given flow: no other
basis can reconstruct the flow with a smaller error. When the input data are in the
form of constant-density turbulent velocity fields, the projected variance is proportional
to the average turbulent kinetic energy in each mode (Holmes er al. 2012; Rowley
& Dawson 2017; Taira et al. 2017). Therefore, space-only POD is commonly used to
extract high-energy spatial structures from a given flow. Note, however, that there is no
restriction on the properties of the time coefficients, and hence a single mode can contain
a superposition of flow structures with very different time scales. Further properties of
space-only POD relevant to this work are discussed in § 2.1.
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Spectral POD (SPOD) is an alternative decomposition approach for statistically
stationary flows, which formulates POD in frequency space (Lumley 1970; Towne et al.
2018). The input data are transformed into Fourier space along the temporal dimension
and POD is performed at each discrete frequency. This results in a set of time-harmonic,
spatially orthogonal modes ranked according to their energy at each of these frequencies.
Thus, SPOD targets flow structures which evolve coherently in space and time. As shown
by Towne et al. (2018), there is no localised relationship between space-only POD and
SPOD modes. For example, a single space-only POD mode can potentially contain
information from every single SPOD mode across all frequencies, and vice versa.

This work is motivated by the desire to analyse spatio-temporal data from
advection-dominated turbulent flows. Advection is a prominent feature of fluid mechanics
problems, as evidenced by the substantial derivatives appearing in the governing
equations. However, different decomposition techniques capture advection differently.
As discussed by Holmes et al. (2012) and Brunton & Kutz (2019), space-only POD
represents advecting features (i.e. features with coupled space—time dependencies via their
translational character) by a superposition of modes. For example, the simplest case of a
single-frequency travelling wave, when cast in the form of (1.1), can be written as

. X ) wx . [ owx
Assin |:a) (t — —)] = Asin (wt) cos (—) — A cos (wt) sin (—) , (1.3)
Ue Ue Uc

where x refers to a one-dimensional spatial coordinate, A is the amplitude, w is the
angular frequency and u. is the convection velocity of the travelling wave. Thus, a
combination of at least two standing waves is required to represent a travelling wave.
In practice, travelling structures in real, high-Reynolds-number flows are spread across
many space-only POD modes. Often, manual inspection is used to interpret which modes
collectively represent a travelling disturbance (e.g. see figure 7), although techniques
have been developed which automate this process, such as identifying ‘linked modes’
via a DMD on the time coefficients from POD (Sieber, Paschereit & Oberleithner
2016). In contrast, the ‘translation’ property of the Fourier transform enables SPOD
to capture space—time correlated information, such as travelling waves (Towne et al.
2018). For example, SPOD decomposes equation (1.3) as a single complex mode, whose
mode shape is given by exp(iwx/u.), while decomposing a more general, non-dispersive
travelling wave, f(t — x/u.), as a single mode with a spectrum given by F(w) exp(iwx/u.).
However, in the event that a single physical flow feature contains multi-frequency content,
SPOD splits this information across different SPOD modes. For highly turbulent flows,
where coherent structures can occur intermittently and often display variable-frequency
characteristics due to phase jitter or frequency modulations, a single physical feature is
therefore likely to be represented by multiple SPOD modes.

Many alternative POD methods have been suggested to provide additional insights and
complementary perspectives to the ones offered by space-only POD and SPOD. Often,
the goal of these methods is to capture space—time correlated flow features with an
easy-to-interpret, more compact set of basis functions, as the performance of space-only
POD depends on the coordinate system in which the data are represented. As discussed by
Brunton & Kutz (2019), the increased rank of the space-only POD basis due to translation
is not intrinsic to the method itself but, rather, reflects the ‘geometric dependence’ of
the singular value decomposition (SVD). Using a spatial transformation, translational
symmetries can be removed from the data before extracting the modes, as expressed by

Gy (x. 1) =Y a; (1) §;(x + cj(x. 1), (1.4)
j
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where ¢;(x, 1) denotes a specified shift velocity such that the decomposition is performed in
the reference frame of a travelling structure. Commonly, a single shift velocity is assumed,
which is determined using centring or template fitting. Centring refers to the procedure
of identifying the centre point of a wave and then shifting the data such that the centre in
each snapshot is at the same point (Glavaski, Marsden & Murray 1998). Template fitting
shifts the data at each time such that they align with (i.e. are maximally correlated to) a
preselected template (Sirovich, Kirby & Winter 1990; Kirby & Armbruster 1992; Rowley
& Marsden 2000; Rowley et al. 2003). Furthermore, Fedele, Abessi & Roberts (2015)
reduced translational symmetry in turbulent pipe flow measurements using a Fourier-based
method, while Reiss ef al. (2018) developed an iterative procedure which handles structures
advecting at different velocities. This iterative procedure separates the modes into different
reference frames using a spatial shift determined by the different advection velocities.
Common to all these studies is that determining the shift velocity and calculating the
(shifted) POD modes are independent, potentially iterative steps.

Extending the idea of a spatial transformation, Sesterhenn & Shahirpour (2019)
introduced a spatio-temporal transformation whereby the modal decomposition
(space-only POD or DMD) is carried out along a direction characteristic to the travelling
structure. This direction is identified as the rotation of the data in space and time which
produces the largest reduction in the singular values when performing an SVD. Physically,
this direction coincides with the group velocity of the travelling structure. A new time
coordinate is aligned with the direction of the characteristic and the decomposition
(demonstrated using DMD) is performed on planes (snapshots) normal to it. Hence,
each new, transformed snapshot contains spatial information about the travelling structure
across a range of physical time steps, enhancing the method’s ability to capture coherent
space—time structures with fewer modes.

In a different vein, Sieber er al. (2016) introduced a method which applies a filtering
operation on the POD covariance matrix, resulting in a decomposition which mitigates the
superposition of features with different time scales within a given spatial POD mode. Since
coherent structures are generally associated with a relatively narrow range of time scales
(but not necessarily a distinct frequency), this filtering operation allows for a single mode
to provide a more comprehensive representation of a given flow structure. Furthermore,
Schmidt & Schmid (2019) proposed a conditional space—time POD formulation targeting
the statistics of rare or intermittent events via their space—time coherence during finite
time intervals. By construction, this method provides spatio-temporal POD modes which
are orthogonal in a space—time inner product over a finite time interval.

A key motivator for this work is the reorientation of the space—time coordinates noted by
Schmid (2010), who demonstrated that DMD can be applied either spatially or temporally.
The temporal DMD analysis decomposes the data into spatial modes that temporally
evolve as exp(iw,t) exp(w;t). In this way, the modes are analogous to the linear modes
from global hydrodynamic stability analysis. However, Schmid also noted that the method
could be applied equally well for a spatial analysis of the data by reorienting the space—time
axes. In this case, the DMD modes are transverse space—time modes that spatially evolve as
exp(ik,x) exp(k;x) in a similar manner to spatial stability modes from local hydrodynamic
stability analysis

This work utilises Schmid’s (2010) approach of reorienting the space—time coordinates
in the context of POD, while noting that the multi-dimensional POD theory is independent
of an a priori distinction between the space and time variables (Holmes et al. 2012). The
reorientation can be accomplished by simply permuting the input data to obtain a snapshot
sequence in space rather than time. This permutation applied to POD, an approach referred
to as permuted POD (PPOD), is the focus of this paper (Ek et al. 2019). In PPOD, the
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space—time variables are permuted such that the PPOD modes are orthogonal in time and
the spatial coordinate s, defined along the bulk advection direction, while the coefficients
provide the profiles along the mutually orthogonal directions n = (n1, ny) which are taken
to be normal to the advection direction. Permuted POD is noted to have several interesting
properties. First, PPOD targets correlations in s, ¢ space and naturally captures advecting
structures. As such, it is not necessary to do an a priori determination of disturbance
advection speeds. Rather, such speeds are a natural output of the analysis and can vary in
an arbitrary and dispersive manner along the s coordinate. Second, the modes can have an
arbitrary time dependence, and need not be composed of a single fundamental frequency,
so a broadband or multi-frequency disturbance can be described by a single mode. This
can be an attractive property, as high-Reynolds-number flows generally have coherent
advecting structures with a combination of narrowband fundamental and harmonic
spectral features, as well as more spectrally distributed features. This arbitrary time
dependence also allows PPOD to be applied to transient flow phenomena, since the method
does not require the flow to be statistically stationary. Finally, the two-dimensional Fourier
transform of the PPOD modes presents amplitudes in the k—w plane, which provides a
useful alternative way to summarise modal characteristics. For example, in cases where
the PPOD mode is dominated by a structure with a narrowband spectral signature, the
wavenumber—frequency spectrum can be compared with the dispersion relation from
local linear hydrodynamic stability analysis and the transverse coefficients, a;j(n), can
be compared to the stability mode shapes. Thus, while space-only POD modes can be
compared to the modes from a global linear stability analysis (Tammisola & Juniper 2016),
a local linear stability analysis naturally lends itself to comparison with PPOD modes.

The objective of this paper is to further evaluate the PPOD technique and compare its
results with space-only POD, emphasising the complementary and distinctive perspectives
that the two approaches provide. In addition to basic characterisation of PPOD, key
questions we wish to address include:

(i) What are the dominant energetic structures in PPOD and how do they compare with
space-only POD?

(i) In cases where these dominant structures appear the same, how do the energy
convergence rates compare?

(iii)) Due to nonlinearity, coherent structures generally consist of many disturbance
frequencies with spatially evolving spectral content and higher harmonics. How does
PPOD decompose such multi-frequency content?

(iv) A given flow may consist of distinct structures which advect dispersively and at
different phase speeds (e.g. the inner and outer shear layers of a coaxial or annular
jet). How does PPOD decompose such different disturbances across modes?

This work consists of two major sections. First, § 2 presents the basic mathematical
features of PPOD and highlights key differences compared with space-only POD.
Then, §3 presents three case studies, using data from high-Reynolds-number,
advection-dominated flows including a reacting wake, a reacting swirling annular jet and
a non-reacting jet in cross-flow (JICF).

2. Overview of space-only POD and permuted POD properties
2.1. Space-only POD properties

The implementation of space-only POD has been detailed by many authors (e.g. Berkooz,
Holmes & Lumley 1993; Holmes et al. 2012; Rowley & Dawson 2017; Taira et al. 2017),
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and this section briefly summarises key details in order to compare with PPOD. The flow
data, g(x, t), are acquired at a number of discrete time instants over a set of discrete points
in one, two or three spatial dimensions. Here, we will assume for convenience that the data
are obtained on a uniformly spaced grid in a Cartesian coordinate system; more general
situations are addressed in §2.3. The mean-subtracted data at each time instant #; are
arranged as a column vector denoted g; € RN~ which is then stacked alongside column

vectors from other time instants to form the data matrix Q € RV~*N_ Here, N, refers to
the dimensionality of each observation which equals the number of spatial grid points
multiplied by the number of variables considered at each grid point, and N; is the number
of temporal observations. The space-only POD modes are the eigenvectors of the spatial
covariance matrix Cy = QQ' € R¥~*Nx (excluding the factor 1/N; in the covariance
definition). When the spatial dimensionality of an observation is much larger than the
number of temporal observations (i.e. Ny 3> N;), it is computationally less expensive to
obtain the space-only POD modes from a method commonly referred to as snapshot POD.
Snapshot POD was introduced by Sirovich (1987) and utilises the temporal covariance
matrix C; = @' @ € RV Assuming a linearly independent set of observations, the rank
of the space-only POD problem is governed by min(Ny, ;). The reader is referred to Taira
et al. (2017) and Holmes et al. (2012) for more information on the spatial versus temporal
eigenvalue problems and their connection to the SVD.

This work utilises an economy sized SVD of the data matrix Q, computed using a
direct algorithm, which provides M spatially orthogonal modes, where M is equal to the
number of temporal snapshots (N;) used for the decomposition (equivalent to snapshot
POD). Associated with each space-only POD mode ¢;(x) is an eigenvalue 4; (related to
the singular values o; from the SVD via 4; = sz) and a time coefficient a;(r) = QT(bj(x).
The modes are ordered according to their eigenvalues via 1| > Ay > --- > Ay > 0, where
each eigenvalue 4; is equal to the projected variance of the input data onto mode ¢;(x). The
projection operation is defined according to the standard inner product, which constitutes
a sum over the spatial domain. This provides the energy-based ranking referred to in
§ 1, where it was remarked that the projected variance A; is proportional to the average
turbulent kinetic energy in mode ¢;(x) when the input data consist of mean-subtracted,
constant-density velocity fields. This work utilises cumulative percent energy, E.(m),
which is the sum of the energy of modes 1 through m as a fraction of the energy summed
over all modes M, as a measure of convergence for the POD basis:

oA
E. (m) = 100 x (Zfﬁ;l ’). 2.1)

2.2. Permuted POD properties

With this background, we next consider PPOD in more detail. Permuted POD is
formulated by describing space in terms of x = (s, n) coordinates, where the s coordinate
is taken along the bulk advection direction in curvilinear space, and n = (1, ny) are
defined along mutually orthogonal directions normal to it. This provides a decomposition
of ¢’ (x, 1) according to

q (x.0)=> aj(n)§;(s.1), 22)

j
where a;(n) are the transverse coefficients and (bj (s, t) are the orthogonal modes. Utilising
the discrete space—time form of the data g(x, 7) centred by the temporal mean, the s, # data
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at each normal location n; are formed into a column vector p; € ROsxNoxT and stacked

side by side to form the data matrix P € RWs*N)*Na where Ny is the dimensionality in
the s coordinate (the number of grid points times the number of variables considered at
each grid point) and N,, refers to the number of total grid points in n. Hence, the data
matrix P is constructed from a ‘snapshot’ sequence in the spatial directions n. In the
case where the data are derived from a uniform Cartesian grid and where s is aligned
with one of the coordinate directions, P can easily be obtained from a simple permutation
of Q. The PPOD eigenvalue problem is derived using a variational argument (similar to
the derivations detailed by Bishop (2006) and Holmes et al. (2012)), where the variance
of the input data is maximised as it is projected onto subsequent orthogonal directions,
in this case in the s, 7 space. This provides a set of orthogonal modes, ¢;(s, r), which

are the eigenvectors of the s, t covariance matrix, Cs; = PPT ¢ RWsxN)x(NsxNt) When
Ng x Ny > Np, which is often the case for experimental data, it is computationally less
expensive to obtain the PPOD modes from the n covariance matrix C, = PTP € RN#*Nn,
i.e. the PPOD equivalent of snapshot POD. Assuming the ‘snapshots’ in n are linearly
independent, the rank of the PPOD problem is governed by min(N; x N;, Np).

The PPOD modes in this work are calculated using an economy sized SVD of the
data matrix P, the same direct method as for space-only POD, which provides M’
orthogonal modes, where M’ is equal to the number of normal locations (N,) used for the
decomposition. Associated with each PPOD mode ¢;(s, 1) is a corresponding eigenvalue

4; and normal coefficient a;j(n) = PT¢j(s, t). The PPOD approach provides an optimal
description of the input data, where the PPOD modes are ordered according to their
eigenvalues, 41 > Ap > --- > Ay > 0, and the eigenvalue 4; is equal to the projected
variance of the input data onto mode ¢j(s, 1). The standard inner product for the PPOD
projection operation constitutes a sum over the s, r domain, rather than a sum over the
spatial domain as for space-only POD. In the case of mean-subtracted velocity data, the
PPOD eigenvalues are proportional to the turbulent kinetic energy density (an intrinsic
property) summed over s and ¢. The implications due to the different inner products, and
hence the different energy-based rankings associated with PPOD and space-only POD
are discussed further in the context of a simple model problem in § 2.4 as well as in the
high-Reynolds-number datasets in § 3. The convergence behaviour of PPOD is evaluated
in a similar manner to (2.1), where the sum of the first m eigenvalues is divided by the
sum of all the eigenvalues, 1 through M’. We refer to the convergence behaviour and the
ordering of both PPOD and space-only POD modes as being based on the flow ‘energy’,
keeping in mind that the ‘energy’ metrics for PPOD and space-only POD are different
and that a physical energy ranking based on the turbulent kinetic energy only applies to
space-only POD performed on mean-subtracted, constant-density velocity data.

2.3. Coordinate transformations

Since PPOD is formulated in a curvilinear orthogonal coordinate system where s is defined
along the bulk advection direction, a coordinate transformation is often required before
performing the decomposition. For example, when the bulk advection direction does not
coincide with one of the coordinates in which the data are acquired, a transformation
to curvilinear coordinates is necessary for optimal PPOD convergence characteristics, as
demonstrated in § 2.4. To enable back-to-back comparison of PPOD and space-only POD
results in the curvilinear orthogonal coordinate system (as utilised for case 3, § 3.3), the
space-only POD calculation must be appropriately weighted. Since we choose to formulate
space-only POD in a uniformly spaced Cartesian coordinate system (motivated by the
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physical energy interpretation of its spatial inner product), but perform the calculation in
the s, n coordinate system, the spatial inner product must be weighted by the Jacobian
determinant of the coordinate transformation to preserve the physical turbulent kinetic
energy ranking of the space-only POD basis. In contrast, PPOD is defined based on the
s, t inner product, which does not require any weighting for interpretation in uniformly
sampled s, n, t spaces. In the rest of this paper, we consider data from planar measurements
such that only two-dimensional (i.e. x = (s, n)) coordinates are necessary. Furthermore,
planar three-component velocity data in curvilinear orthogonal form are denoted uy, uy,, u,
where u; is the out-of-plane component.

A second set of coordinate transformation considerations arise when considering planar
data through systems with other symmetries. For example, consider the transverse velocity
component associated with planar data acquired through the centre of a round jet (as in
e.g. Alomar et al. 2020). In a cylindrical coordinate system, radial velocity components
directed away from the centreline are positive. These radial velocity components will
have the same (opposite) sign as the corresponding transverse velocity in a Cartesian
coordinate system above (below) the centreline, respectively. The same is true for
the out-of-plane velocity component, which corresponds to an azimuthal velocity in
cylindrical coordinates. This is important, as PPOD will decompose a velocity disturbance
with azimuthal symmetry given by exp(imy6) differently in these two coordinate systems.
In the cylindrical coordinate system, the three velocity components (uy, u,, ug) have
consistent symmetries across the centreline (i.e. at 6 = 0 or & = m). More specifically, the
cylindrical velocity components all have even symmetry for even mg, and odd symmetry
for odd my. In contrast, in Cartesian form, the different velocity components have different
symmetries. Thus, if a helical disturbance were considered in Cartesian coordinates, its
disparate symmetries would necessarily be split between different PPOD modes despite
representing a single disturbance.

Appropriate symmetries are achieved by simply reversing the sign of the transverse
and out-of-plane velocity components below the jet centreline. The sign convention is
consistent with that of a cylindrical coordinate system, but the velocity components are
not scaled by a change in volume since the measurement plane, and hence the cell
size associated with the measurement resolution, is constant. This coordinate system is
therefore referred to as ‘locally cylindrical’ in the rest of the paper.

It should also be noted that the locally cylindrical coordinate transformation can provide
appropriate symmetries for non-axisymmetric flows. As in the JICF case study in § 3.3,
where velocity data acquired in a plane through the jet and aligned in the direction of
the cross-flow are analysed, a sign convention corresponding to a cylindrical coordinate
system provides consistent symmetries for capturing windward and leeward shear layer
structures. If these structures appear in a symmetric (asymmetric) configuration across
the jet centreline, the three velocity components associated with the shear layer rollup
will all be symmetric (respectively, asymmetric) in locally cylindrical form, while the
velocity components in a Cartesian coordinate system will have mixed symmetries (the
axial component will have the opposite symmetry across the jet centreline compared to the
transverse and out-of-plane components). Hence, all vector data are subject to the locally
cylindrical transformation, and the velocity components do not carry the above noted
subscripts (x, r, ) when also transformed into curvilinear orthogonal form (applicable
to the JICF velocity data in § 3.3).

2.4. Model problem with advecting structures

This section compares the convergence characteristics of PPOD and space-only POD
for a synthetic dataset with advecting structures. To clearly illustrate key features of
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Figure 1. (a—c) Three consecutive temporal snapshots of mean-subtracted scalar fields containing advecting,
high-intensity squares, superimposed onto a noisy background. The advecting structures travel along the
nominal trajectory indicated by the red dotted line, oriented at an angle « with respect to the red dashed line
parallel to s. The black dotted outlines surrounding the advecting structures indicate their maximum allowable
spatial variation due to phase noise.

PPOD, consider a time series of linearly independent scalar data sampled uniformly
in the two-dimensional plane s, n, which corresponds to a Cartesian plane where Ny =
N5 x N, =25 x 25. The number of temporal snapshots is chosen such that it equals the
number of spatial points in n, i.e. N; = N,, = 25, which governs the rank of the space-only
POD and PPOD eigenvalue problems via N; < N and N, < Ny x Ny, respectively. Hence,
both methods provide the same number of modes (M = M’ = 25), making comparisons of
the convergence characteristics straightforward. The mean-subtracted scalar fields consist
of a train of high-intensity 5 x 5 pixel squares with a wavelength of A; = 10 pixels
advecting across the domain at an angle o with respect to the s axis. To emulate turbulent
flow data and prevent rank deficiencies, these advecting structures are superimposed onto
a background of low-intensity noise sampled from a uniform distribution with +20 %
relative amplitude. Additionally, the centre locations of the high-intensity squares are
randomly perturbed in order to simulate ‘phase jitter’ effects (Shanbhogue, Seelhorst &
Lieuwen 2009). These perturbations correspond to spatial shifts of £1.75 pixels in both s
and n. To illustrate, three consecutive temporal snapshots of the disturbance scalar fields
are displayed in figure 1, where the advecting structures travel along the nominal trajectory
indicated by the red dotted line oriented at an angle « with respect to the s coordinate axis.
The black dotted outlines surrounding the advecting structures indicate their maximum
allowable spatial variation due to phase noise.

It should be emphasised that this model problem is constructed such that two temporal
snapshots exactly capture one period of advection, i.e. the sampling frequency is two times
the frequency of these structures, and the s domain fits 2.5 structures (s/4; = 2.5). In
the case of no phase noise, this means that the data are sampled/generated such that the
advecting structures are captured in only two distinct spatial configurations as they travel
through the domain, and the time series consists of repetitions of these two configurations.
Intuitively, space-only POD captures the train of advecting structures with two high-energy
modes, while the random background noise is relegated to the remaining 23 low-energy
modes. This rank-2 representation of the advecting structures demonstrates that space-only
POD can capture certain translations very efficiently (similar to the example of a harmonic
travelling wave discussed in the introduction (e.g. (1.3)), which is also described by two
space-only modes).
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However, translating structures generally are not captured by such a small set of modes,
as noted previously. For example, if the data are sampled/generated such that the square
structures are captured at many different streamwise locations as they travel through the
domain (e.g. if the sampling frequency is increased), the rank of the space-only POD
representation of these structures will increase. This can be considered an artificial rank
inflation which is strictly due to the translation since critical features no longer appear
in the same spatial location from time to time. This decreases the correlation and the
variance is redistributed from a few leading, high-energy modes to many lower-energy
modes. Whether space-only POD provides a low- or high-rank representation of advecting
structures depends on the underlying functional form of the data (i.e. sinusoidal, square,
Gaussian, etc.), and the sampling frequency relative to the frequency of the advecting
structures. On the other hand, PPOD captures the advecting structures in these cases with
a single high-energy mode (assuming that the structure(s) travel along s). The objective of
the data permutation associated with PPOD is to align critical features, whether periodic
or non-periodic, such that they occur at constant n. As long as the critical features appear in
the same s, ¢ locations across ‘normal’ snapshots, PPOD provides a rank-1 representation
of the advecting structures. This is similar to the ability of space-only POD to provide a
rank-1 representation of a spatially stationary structure (Brunton & Kutz 2019).

The following paragraphs demonstrate the effects of phase noise and alignment of
the nominal advection trajectory with the s axis, which can be explained using intuition
from the previous discussion. Calculations are performed on datasets with ten different
values of «, from 0° to 45°. To ensure a statistical representation of the convergence
behaviour at each angle, 100 datasets with 25 temporal snapshots each are generated
with randomly assigned phase and background noise, as specified above. Space-only
POD and PPOD are performed on each of these 100 model datasets, and the results
(i.e. the eigenvalues) at each « are averaged. The averaged cumulative percent energy
as a function of mode number is shown in figure 2(a). Consider first the case where
the nominal advection trajectory is perfectly aligned with s (i.e. @ = 0°). As expected
from our previous discussion, PPOD displays a significantly higher convergence rate
than space-only POD, since the advecting structures are mostly (apart from the random
displacement caused by the normal phase noise) aligned in n. The first PPOD mode
captures ~70 % of the energy, while four space-only POD modes are required to capture
the same amount. For a complete representation of the advecting structures, E. ~ 90 % is
required, which is captured by the first four PPOD modes and the first 12 space-only POD
modes. This can be compared to the one PPOD mode and two space-only POD modes
required to capture these structures in the case of no phase noise and « = 0°. Hence, the
phase noise causes a four times versus six times increase in the number of modes required
to capture the advecting information for PPOD and space-only POD, respectively. This
demonstrates that the convergence behaviour of PPOD is less sensitive to phase noise than
space-only POD, since the convergence of PPOD is only affected by the phase noise in the
normal direction, while space-only POD is sensitive to the phase noise in both the normal
and streamwise directions, consistent with the discussion in the previous paragraph.

Next, consider the effect of @. The convergence characteristics of PPOD are a strong
function of the alignment of the advecting structures with respect to s. This is demonstrated
in figure 2(a), where the energy of the leading mode decreases as « increases, and a
larger number of modes is required to capture the advecting structures (i.e. reach 90 % E.).
This increase in rank for increasing o occurs since the advecting structures are no longer
perfectly aligned between ‘normal’ snapshots, consistent with previous discussions. The
convergence characteristics of space-only POD, on the other hand, are independent of «
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Figure 2. Dependence of (a) cumulative percent energy, E., as a function of the number of modes, m, and
(b) condition number, «, as a function of the angle, a, between the nominal advection trajectory and s. The
error bars in (b) represent the variability in « due to the random background noise and phase jitter displaying
one standard deviation.

since the advecting structures appear in two distinct spatial configurations through time
for each «.

To clearly visualise each method’s convergence rate as a function of «, we use the
condition number «, defined as the ratio of the largest to the smallest eigenvalue.
As mentioned previously, economy sized SVDs of the data matrices Q and P (which
correspond to the eigenvalue problems of the temporal covariance matrix C; and the
normal covariance matrix C,) are used to compute all eigenvalues for space-only POD
and PPOD, respectively. Since N; = Ny = N,, = 25 for this model problem, N; < Ny
and N, < Ny x Ny, and the economy sized SVDs provide non-zero eigenvalues for both
methods. Under such conditions, « can be used as a measure of each decomposition’s
convergence rate, where a large « indicates fast convergence. The averaged « as a function
of o is shown in figure 2(b), where the error bars indicate one standard deviation over
the 100 datasets used for the calculation at each «. Figure 2(b) quantifies the slower
convergence of PPOD as « increases and shows that the convergence rate of PPOD is
higher than that of space-only POD below a certain «. For the specified phase noise,
PPOD has a faster convergence rate when o < 30°.

To summarise, this model problem demonstrates that PPOD achieves the highest
possible convergence rates when it is performed in a coordinate system aligned with the
bulk direction of advecting disturbances, i.e. @ = 0°. It also shows that PPOD achieves
favourable convergence rates compared to space-only POD as long as « is sufficiently
small. Realistic examples with small «, where the data are acquired in coordinate systems
which are closely aligned with the direction of the advecting structures, are considered
in §§3.1 and 3.2. On the other hand, if « is large due to a misalignment between the
measurement plane and the s, n coordinates, a spatial transformation can be performed to
improve the PPOD convergence rate. Such a transformation is implemented in § 3.3.

3. Case studies

This section contains three case studies, using scalar and velocity data from three
different turbulent, shear flow experiments. Case 1 uses chemiluminescence data from
a forced reacting wake flow with advecting shear layer structures with symmetric and
asymmetric features. These datasets were used as they contain different transverse
flow symmetries, as well as sharp spatial variation in the flame luminosity, and so
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Case Uy (ms™")  pu/pp

1A 26 7
1B 32 2.5
1C 39 1.7

Table 1. Test conditions for the bluff body cases.

require multiple wavenumbers in spectral space to decompose these spatial patterns. In
addition, periodic disturbances manifest themselves as a number of spectrally concentrated
temporal harmonics in flame luminosity at a given point. As such, this case illustrates
how PPOD decomposes a single structure with many constituent frequencies. Case
2 uses planar, three-component velocity data from a reacting, swirl-stabilised flow.
High-Reynolds-number swirl flows have significant amounts of strong helical disturbances
and phase jitter (i.e. phase noise) in the space—time characteristics of their coherent
structures. A common feature of cases 1 and 2 is that the leading snapshot POD and
PPOD modes capture similar information. In these cases, our analysis primarily considers
the differences in their convergence rates, as well as fidelity in reconstructing spatial and
temporal features. Case 3 involves a JICF and the high-energy snapshot POD and PPOD
modes capture qualitatively different information, providing additional insights into the
differences between the two approaches.

3.1. Case 1: scalar imaging of a forced, reacting wake flow

This case study utilises CH* chemiluminescence data from a Rey ~ 10000, rectangular
test section housing a flame stabilised by a nominally two-dimensional bluff body of width
dp, previously detailed by Emerson, Murphy & Lieuwen (2013) and Emerson & Lieuwen
(2015). The datasets were acquired at a sampling frequency of 5 kHz, while subjected to
axial acoustic forcing at a forcing frequency of fy = 515 Hz. The bluff body lip velocity,
Ulip, and the ratio of unburned to burned gas density, o,/ 0p, for each case are summarised
in table 1.

Combustion-induced density stratification strongly affects the global stability
characteristics, and associated mode shapes, of reacting wake flows. At high density
ratios, represented by case 1A (p,/ppr = 7), the flow is globally stable, but the axial
forcing excites symmetric rollup of the convectively unstable shear layers, resulting in the
symmetric flame wrinkling in figure 3(a). As the density ratio is decreased, the global wake
mode is destabilised. Case 1B (o, /0, = 2.5) is an intermittent case; while the flow is still
globally stable but convectively unstable, the flame wrinkling is intermittently symmetric
and asymmetric due to the superposition of varicose forcing upon a sinuous global mode
as seen in figure 3(b). At the density ratio of p, /0, = 1.7, case 1C, the flow is globally
unstable and the flame shape displays the strong sinuous character of the underlying flow
disturbances (see figure 3c).

This case study is used to demonstrate PPOD on datasets dominated by coherent
advecting structures with different symmetries. The primary focus of this section is the
analysis of the high-density-ratio case (1A), while the lower-density-ratio cases (1B and
1C) are used to highlight the different transverse symmetries of the flow.

Decompositions are performed on 1500 chemiluminescence snapshots from each of
the three cases in table 1. For these wake flows, the bulk advection direction above
and below the bluff body centreline is defined along the trajectory of the maximum
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Figure 3. Instantaneous flame images of normalised CH* chemiluminescence for three different density
ratios: case 1A, p,/pp = 7 (a); case 1B, p,/pp = 2.5 (b); case 1C, p,/pp = 1.7 (¢).

time-averaged intensity. The angle between each trajectory and the x axis is small
(approximately 5°), and PPOD is therefore performed on the data in Cartesian form
(i.e. (x,y) = (s,n)), where the number of spatial grid points in x and y are 696 and
194, respectively. Since only one variable is considered at each grid point, Ny = Ny =
696, Ny = N;, = 194 and Ny = N, x Ny = 696 x 194. Snapshot POD produces M = 1500
modes (equal to the number of temporal snapshots, N;) while PPOD produces M’ = 194
modes (equal to the number of transverse locations, Ny = N,).

First, the basic features of the PPOD modes, ¢] (x 1), are considered. The first three
most energetic modes for case 1A, corresponding to 65 % of the energy, are presented
in figure 4. The dominant features of these modes in x— space form a roughly diagonal
pattern, indicative of advecting flow structures propagating in the streamwise direction.
Advection properties such as phase speed, wavenumber and temporal frequency can be
readily obtained from these modes. For example, it is apparent that the phase speed, which
corresponds to the slope of the diagonal structures, increases as a function of streamwise
distance, especially noticeable in the small x/d}, regions close to the bluff body. This is a
gas expansion effect, reflecting the acceleration of the flow in the confined channel.

The PPOD coefficients, a;(y), describe the transverse structure of each mode. The
profiles associated with the first three modes for case 1A are displayed in figure 5(a), from
which it is apparent that the three dominant modes are all symmetric about the centreline.
This is consistent with the strong varicose flame shape observed in figure 3, as symmetric
vortex structures dominate the unsteady flow field. The transverse profiles associated with
modes 1-3 for the lower-density-ratio cases, 1B and 1C, are shown in figures 5(b) and
5(c), respectively. For case 1C, where the flame exhibits a strong sinuous character, the
transverse profiles corresponding to the first three modes are all asymmetric. For case 1B,
the intermittent case, which exhibits a superposition of varicose and sinuous disturbance
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Figure 4. Space-time dependence of the first three PPOD modes, ¢;(x, 1), for case 1A.
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Figure 5. Transverse profiles, a;(y), corresponding to the first three PPOD modes for case 1A (a), case
1B (b) and case 1C (c). Circles indicate symmetric profiles and crosses indicate asymmetric profiles.

features, the profiles corresponding to the first two modes are symmetric, while the profile
of the third mode is asymmetric. Although not plotted, the first two symmetric modes of
case 1B contain 45 % and 15 % of the total energy, respectively, and the third asymmetric
mode contains 10 %.

Alternative visualisations of the PPOD modes can be obtained by considering the spatial
evolution of the temporal Fourier transform or the spatio-temporal Fourier transform,
denoted as (;Sj(x, f) and (i i(k, f), respectively. Here, we use f instead of w = 27tf such that
the frequency represents a Strouhal number. First, consider the temporal Fourier transform
of the spatio-temporal mode, (ij(x, f), shown in figure 6(a) for case 1A. This plot shows
that the first mode is dominated by spectral content at the forcing frequency, but also
clear spectral content at the first three harmonics. In other words, these lower-amplitude,
higher-frequency harmonics are all superimposed into this first mode, rather than being
divided out into other modes. As shown later, the snapshot POD analysis separates these
higher-order temporal harmonics into lower-energy modes.

Performing an additional Fourier transform in the streamwise direction renders the
modal structure as a function of frequency and axial wavenumber, k, which is shown
in figure 6(b). The black lines of constant slope correspond to lines of constant phase
velocity, c¢pp. It is apparent that the energy of the first mode is concentrated in a
structure that is oscillating at the forcing frequency and advecting at a speed just above
the lip velocity. It is noteworthy that the external excitation forces oscillations at the
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Figure 6. Fourier reductions of PPOD modes 1, 2 and 4 for case 1A. (a) The amplitude of (i)j(x, f) as a
function of frequency and streamwise position, where the red profiles represent the streamwise dependence
of the amplitude at the forcing frequency and the harmonics. (b) The amplitude of (}Sj (k,f) as a function of
frequency and streamwise wavenumber. The black lines indicate constant phase speed, while the black crosses
(mode 1) indicate the maximum amplitude at the forcing frequency and its harmonics.

forcing frequency and its harmonics, which exhibit weakly dispersive behaviour. This is
particularly apparent for mode 1 (and 5), where the peak amplitude at the fundamental
frequency and its harmonics are indicated by black crosses for clarity. For lower-energy
modes, which contain more information on higher-degree-of-freedom turbulent motions
than coherent advecting disturbances, spectral information is spread more broadly across
the constant-speed line rather than clustered at the forcing frequency and harmonics, as
demonstrated by mode 4.

We next provide a comparative analysis of the snapshot POD results for case 1A.
Figure 7 presents the spatial modes, ¢;(x, y), and the Fourier transforms of the associated
time coefficients, a;(f), are shown in figure 8(a). Mode 1 seems to describe the inherent
spatial phase variation in the disturbance characteristics at f;/ff = 1; i.e. spatial variability
in the flame wrinkling at the same phase in subsequent cycles. Modes 2 and 3, which
together contain approximately 33 % of the energy, display the same spatial pattern
shifted axially by a quarter-wave relative to one another, and their temporal frequency
spectra both display a distinct peak at the forcing frequency, fs/f; = 1, indicating the
same temporal evolution of these two modes. Modes 2 and 3 constitute the first advecting
mode pair. Similarly, modes 7 and 8, which together contain approximately 2.7 % of the
energy, form a second advecting mode pair associated with a first-harmonic frequency
as indicated by the distinct peak at f;/fr = 2. Consistent with (1.3), the mode pairs (2, 3)
and (7, 8) independently represent standing wave structures but superimpose in space and
time to represent an advecting structure. The clear correlation between these modes is
illustrated by the phase portrait in figure 8(b), which plots the relationship between the
time coefficients of modes 2, 3 and 7. The (2, 3) superposition captures the symmetric
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Figure 7. Snapshot POD modes, ¢;(x, y), for case 1A, where the colours represent regions of high (red) and
low (blue) chemiluminescence.
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Figure 8. (a) Fourier transform representation of the time coefficients, a;(f), from snapshot POD for case 1A,
where the spectrum for mode 8 is very similar to the one corresponding to mode 7. (b) The phase portrait of
the time coefficients corresponding to modes 2, 3 and 7.

flame wrinkling throughout the domain, from the rollup immediately after the bluff body
followed by the growth of these spatial features as they advect downstream. The (7, 8)
mode pair captures shorter-length-scale advecting information, which provides the finer
details of the flame rollup close to the bluff body (primarily in the region x/dp < 4).
Furthermore, second and third harmonics can also be identified; mode 44 (containing
0.2 % of the energy) and mode 142 (with 0.048 % of the energy) correspond to the peak
amplitude at fs/fy = 3 and f; /fy = 4, respectively. As the order of the harmonic increases,
the length scale associated with the coherent flame structures decreases, while the region
in which they are coherent shifts closer to the bluff body. In comparison, note that spectral
information at the forcing frequency and the harmonics were contained in the first PPOD
mode (see figure 6). However, the information captured by this PPOD mode is not identical
to the information captured by the combination of space-only POD modes in figure 7.
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Figure 9. Cumulative percent energy, E., as a function of the number of modes, m, for snapshot POD and
PPOD for case 1A. The light-blue filled circles for snapshot POD (M = 1500) correspond to modes 1-3, 7, 8,
44 and 142 associated with the train of advecting flame wrinkles.

Rather, they capture similar physical flow features, and should be considered approximate
qualitative comparisons.

The snapshot POD results for the lower-density-ratio cases (1B and 1C) are similar to
the ones just discussed. Both cases have a high-energy advecting mode pair associated
with the fundamental frequency, followed by a second advecting mode pair associated
with the first harmonic. The primary difference between the three datasets is the spatial
patterns associated with the advecting mode pairs, which reflect the different symmetries
(as discussed previously in the context of figure 3) due to the difference in density ratio,
and hence stability characteristics.

We next compare the convergence characteristics, as well as the nature of the space—time
reconstructions for snapshot POD and PPOD. Recall that the convergence according to
(2.1) is a measure of the cumulative percent energy, or variance, in the data, and the
low-order reconstructions according to (1.2) provide maximum variance/minimum mean
squared error approximations of the given flow. Of course, it should be emphasised that
these are not true comparisons, as the energy metrics of space-only POD and PPOD
are different. However, as long as this caveat is kept in mind, it is still interesting to
consider the convergence rates of each method and to plot them together to compare the
number of modes required to capture a certain fraction of each one’s energy metric. When
evaluating the convergence rates, note that experimental flow data commonly consist
of many temporal snapshots, N;, while the spatial resolution is coarser (i.e. small Ny).
Under such conditions, when Ny <« N; the number of PPOD modes, M’, is much smaller
than the number of snapshot POD modes, M, i.e. M’ <« M. With this in mind, consider
figure 9, which shows cumulative percent energy, E, as a function of the number of modes,
m, for snapshot POD and PPOD. Using all the temporal snapshots for the comparison
(i.e. N; = 1500), it is clear that fewer PPOD modes are required to capture a specific
percentage of the energy as compared to snapshot POD. This is especially apparent among
the high-energy modes. However, the total number of PPOD modes is much smaller as
compared to the total number of snapshot POD modes due to Ny < N;.

To gain more insight, consider the difference in rank between the two methods. For the
reacting wake datasets, N; < Ny x Ny and Ny < N, x N;. Hence, N; and N, govern the
rank of the snapshot POD and PPOD problems, respectively, and additionally Ny < N,.
Therefore, if the number of temporal snapshots used for the decompositions is reduced,
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Figure 10. Three instantaneous chemiluminescence images (a) and the corresponding reconstructed fields
based on modes 1-3 for snapshot POD (b) and PPOD (c), together with the frequency spectrum for each
time series.

the rank of the snapshot POD problem (N;) will decrease, while the rank of the PPOD
problem (Ny) is unaffected. To demonstrate, we have recomputed the results shown in
figure 9 as the number of temporal snapshots is reduced from 1500 to 194, such that
Ny, = N;and M’ = M. Here, the large reduction in temporal snapshots noticeably alters the
snapshot POD convergence behaviour due to the change in rank (notice the deviation near
m ~ 10), and since N; = 194 is no longer a sufficient number of temporal snapshots for a
statistical representation of this particular flow. The convergence behaviour of PPOD, on
the other hand, is not affected by the reduction in the number of temporal snapshots, since
the rank of the PPOD eigenvalue problem is unaffected and its convergence behaviour
is tied to the resolution and number of snapshots in the normal direction, rather then in
time. Additionally, it should be noted that a change in rank does not necessarily impact
convergence. For example, the effect of adding or removing snapshots is negligible if
such changes only affect the near-zero eigenvalues, as would be the case for a converged
statistically stationary flow.

A more direct way to compare the leading snapshot POD and PPOD modes is
to evaluate their truncated space—time reconstructions calculated according to (1.2).
Figure 10 shows three instantaneous chemiluminescence fields from the original time
series (case 1A) (figure 10a), and the corresponding reconstructed ones based on modes
1-3 for snapshot POD (figure 10b) and PPOD (figure 10c), which account for ~52 % and
62 % of the energy, respectively. The three instantaneous snapshots in figure 10 provide
a typical representation of the instantaneous flow, and a visual comparison between
these snapshots and the reconstructions can be used to qualitatively evaluate the types
of flow structures that space-only POD and PPOD capture in their respective high-energy
modes. Additionally, the frequency spectrum for each time series is included, calculated
in the shear layer at (x/dp, y/dp) = (2, 0.5). While the reconstructions from both snapshot
POD and PPOD provide reasonable overall representations of the flame rollup, including
both accurate symmetry and dominant length-scale information, the primary differences
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between these results are observed in the fine-scale spatial patterns and frequency spectra.
While the spectrum of the reconstructed snapshot POD data displays a single, distinct
peak at the forcing frequency, the PPOD spectrum contains information at the first four
harmonics. In contrast, the fine-scale spatial features, particularly near the first flame rollup
region, are much better resolved in snapshot POD. These different results arise from the
two different inner products used for maximising the variance as discussed in § 2 and
provide insights into the differences in the two approaches for reduced-basis descriptions
of the data.

3.2. Case 2: velocity fields from a reacting swirling annular jet

This section considers three-component velocity data acquired in the centre plane of
a high-Reynolds-number swirling flow. Notable features in the flow include vortex
breakdown, shear layer structures, much more rapid spatial decorrelation of these
structures and significant levels of phase noise. Full details of the facility, optical set-up and
particle image velocimetry (PIV) data processing approaches are presented in Rock et al.
(2019) and Chterev et al. (2017). The dataset in this section was acquired at a combustor
pressure of 3.6 bar, a preheat temperature of 445 K, an equivalence ratio of 0.36 and an air
inlet velocity of 65 ms~! using a liquid fuel (C5; Edwards 2017; Rock ez al. 2019) injected
using a generic pressure atomiser. The nozzle exit diameter is denoted as ds. Stereo-PIV
measurements were acquired at 5 kHz in the region immediately downstream of the swirler
exit.

A total of 3750 mean-subtracted velocity fields were used as input for the POD
calculations, including all three velocity components. In this case, the bulk advection
direction in each half-plane is defined along the trajectory of the maximum time-averaged
velocity magnitude. Near the nozzle exit, each trajectory forms an angle of approximately
13° to the x axis, a relatively small angle considering the effects of o on the PPOD
convergence rate explored in §2.4. Additionally, previous work on similar data has
shown that a coordinate transformation which aligns the apparently travelling shear layer
structures in the axial direction only marginally effects the results (Ek er al. 2019). Hence,
the coordinate transformation is not a critical step for the PPOD analysis of the annular
swirling jet data. In this work, PPOD is therefore performed on data in their original
spatial coordinates (i.e. (x, y) = (s, n)), where the numbers of spatial grid points in x and
y are 35 and 45, respectively. Since three variables are considered at each grid point,
Ny =N; =3x35 Ny=N, =45 and Ny = Ny x Ny = 3 x 35 x 45. Additionally, the
velocity data are converted to locally cylindrical form (for reasons discussed in § 2.3).

Figure 11(a) shows the first three PPOD modes, together with their associated transverse
coefficient indicating the symmetry of each mode in figure 11(b). Based on the clear
diagonal pattern in the axial and radial velocity components together with the asymmetric
transverse profile, mode 1 describes an asymmetric inner shear layer structure appearing as
a staggered pattern of vortices advecting downstream in the combustor centre plane. These
vortices are the footprint of a three-dimensional spiral structure with an odd azimuthal
periodicity rotating about the flow centreline. Modes 2 and 3 also display diagonal
patterns, indicating advecting disturbances in the measurement plane, but are accompanied
by different transverse profiles compared with mode 1.

Figure 12(a) displays the Fourier transforms, plotting the amplitude of $ 1(x, f) as a
function of frequency and axial position in the form of a waterfall plot for the three velocity
components of mode 1, where the red profiles indicate the growth and decay along the
peak frequency. Moving from the nozzle exit in the downstream direction, the amplitude

930 A14-19


https://doi.org/10.1017/jfm.2021.908

https://doi.org/10.1017/jfm.2021.908 Published online by Cambridge University Press

H.M. Ek, V. Nair, C.M. Douglas, T.C. Lieuwen and B.L. Emerson

(@) Y “r “ (®)
) j_j,q,n I ‘J’J!" T 0 2
= "l,/, i I{(i!/;,f,(;, | Y
{[fh -1.0 /
2.8J il “’ T 1.0 _iﬁg Y
_ 1.5'II f' il ! } Jf Mo (1)'(5) ‘;
T s ”; M "‘ ” ‘|| ”" e o | I 04).5 jg . N
e ———
- 1.5‘ J. Jul I j"”' i, ll_ J J il (1):(5) ‘,....-)
£3 ! ’f' fli u'[ Jl ‘ly"f"”;ri | L I
05 h l' | "” l Al I.‘..”,II il F I il j; )
0 25 750 25 50 750 I 25 ( ;0 75 B '51.04).5\0 05 1.0

tuinler/ds tuinlet/ds tuinlet/ds aj (y)

Figure 11. Space-time dependence of the first three PPOD modes, d)j(x, 1), for case 2 (a), together with the
corresponding transverse coefficient, a;(y), for each mode (b).

initially grows, representing the spatial amplification of the advecting structure. The
amplitude then reaches a peak, followed by decay, which likely reflects the breakup of the
helical structure into a more complex and less coherent pattern (Grinstein & Fureby 2005;
Huang, Wang & Yang 2006). Figure 12(b) plots the amplitude of (2)1 (k, f) as a function of
frequency and axial wavenumber. This latter representation displays how the information
contained in the high-energy modes can be reduced to a relatively concentrated k—f region.

We next present the snapshot POD results. The three most energetic snapshot POD
modes are shown in figure 13, together with their respective frequency spectra. It is
apparent that modes 1 and 2 display similar spatial structures, phase-shifted 90° in the
streamwise direction, with the same temporal frequency. Although not plotted, these
modes are a phase-correlated pair with a phase portrait similar to modes 2 and 3 in figure 8.
In the measurement plane, these disturbances correspond to a train of advecting inner shear
layer vortices, which physically correspond to a rotating three-dimensional structure, as
mentioned in the discussion of the leading PPOD modes.

We next compare the convergence characteristic of snapshot POD and PPOD, keeping in
mind the caveat noted earlier of their different energy metrics, and the difference between
their eigenvalue problems and rank. As for case 1, E,. is evaluated for two different numbers
of temporal snapshots: N; = 3750, consistent with previous results, and N; = 45, which is
equal to the number of transverse locations (Ny = N,) and, hence, the number of PPOD
modes (M’). The results are displayed in figure 14, and observations similar to those for
the wake flow can be seen here. Again N; < N, and Ny < Ny x Ny, and hence N; and N,
govern the rank of the snapshot POD and PPOD problems, respectively. A reduction in
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Figure 12. Fourier reductions of the three velocity components for the first PPOD mode. (a) The amplitude
of (i)l (x, f) as a function of frequency and streamwise position, where the red profiles represent the streamwise

dependence at the peak frequency. (b) The amplitude of (;3 1(k,f) as a function of frequency and streamwise
wavenumber. The black lines indicate constant phase speed.

the number of temporal snapshots will therefore have an effect similar to what is observed
in § 3.2, where the rank of the snapshot POD problem is reduced, noting that N; = 45 is
not sufficient for a statistical representation of the flow. For PPOD, on the other hand, the
rank is unaffected.

Next, the leading, high-energy modes are reconstructed and compared for the two
methods. Figure 15 shows three consecutive instantaneous velocity fields ordered from
top to bottom (figure 15a), together with the corresponding reconstructions for snapshot
POD modes 1 and 2 (figure 15b) and PPOD mode 1 (figure 15¢). Both these snapshot
POD and PPOD reconstructions capture a majority of the large-scale inner shear layer
structures, providing strikingly similar results.

Although not displayed here, PPOD modes 2 and 3 also contribute to the advecting
structures, and we can conclude that the dominant high-energy PPOD modes contain
primarily advecting information. In the case of snapshot POD, the inclusion of additional
modes (for example modes 3—6) does not significantly alter the vortex shedding pattern as
compared to the reconstruction of modes 1 and 2. Rather, modes even further down in the
snapshot POD energy ranking must be identified and included in the reconstruction if a
more accurate description of the vortex dynamics is desirable. We will come back to this
for the JICF case study, where it becomes even more apparent that PPOD and snapshot
POD target different types of flow structures, with PPOD focusing on advecting structures
and shifting them up in the energy ranking.

3.3. Case 3: velocity fields from a non-reacting jet in vitiated cross-flow

This section presents three-component velocity data acquired in the centre plane of a
non-reacting JICF, detailed in Nair er al. (2020), using the same jet nozzle profile as
in Megerian et al. (2007). The main flow entering the test section has a velocity of
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Figure 13. (a) The first three snapshot POD modes, ¢;(x, y), for case 2, where the flow is going from left
to right, (x/dy, y/ds) = (0, 0) is the nozzle exit centreline, the in-plane velocity components are visualised as
streamlines and the background colour is the out-of-plane vorticity. (b) Below each mode is the corresponding
frequency spectrum, a;(f).

Uso = 14.5ms™! and a temperature of To, = 1250 K corresponding to a bulk Reynolds
number of Res, = 11 000 based on the cross-channel height. The jet temperature was
fixed (T; = 300 K) and the composition adjusted based on the required density ratio, § =
pj/ P, for the two different cases in table 2. The bulk-averaged velocity, u;, was set based
on the momentum flux ratio J = pju} / Poo ugo and S. The two test conditions correspond to
convectively (case 3A) and globally (case 3B) unstable conditions (Megerian et al. 2007,
Getsinger et al. 2014).

Stereo-PIV was used to obtain the velocity information in the near field of the jet.
Raw Mie-scattering image pairs were acquired at a rate of 40kHz. A representative
instantaneous velocity field is presented in figure 16(a), where the in-plane velocity
components are displayed as streamlines and the background colour corresponds to the
out-of-plane vorticity. The cross-flow enters the measurement region from the left, while
the jet is entering from the bottom. The point (x/d;, y/d;) = (0, 0) corresponds to the jet
exit centreline and the black solid trajectory represents the time-averaged jet centreline
defined as the midpoint between the maximum and minimum vorticity. The dotted outline
represents the subset of data displayed in figure 16(b), which have been mapped onto the
s, n coordinate system, where s is the coordinate along the time-averaged jet centreline and
n is the coordinate normal to it. Shear layer vortex (SLV) structures are evident in both the
representations shown in figure 16. The measurement region slices these three-dimensional
ring structures through the centre plane, resulting in a distinct windward and leeward shear
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Figure 14. Cumulative percent energy, E., as a function of the number of modes, m, for snapshot POD and
PPOD for case 2.

layer, which appears as a staggered, asymmetric pattern, caused due to tilting of the vortex
rings (Fric & Roshko 1994; Kelso, Lim & Perry 1996) across the jet centreline. While not
evident from a single instantaneous image, there is also a clear, lower-frequency bulk jet
flapping motion.

Similar to the previous case studies, the mean-subtracted velocity fields were analysed
using PPOD and snapshot POD. A total of N; = 3750 snapshots were used for the analysis
including all three velocity components. Both the PPOD and snapshot POD analyses are
conducted in the curvilinear orthogonal coordinate system, as motivated by the angle
between the jet centreline and y axis, which is negligible close to the jet exit, but increases
up to 24° and 39° in the downstream region for cases 3A and 3B, respectively. Additionally,
the velocity components were converted to locally cylindrical form to enforce consistent
symmetries across the jet centreline for the three velocity components associated with the
SLV structures, as discussed in § 2.3. Even though the flow is not axisymmetric, the sign
convention of the velocity components in locally cylindrical form prevents splitting of the
physical structure across PPOD modes due to disparate symmetries. The following results
are normalised by the frequency scale u;/d;, when applicable.

The normal velocity component, u,, of the most energetic PPOD mode, ¢, (s, #), and
the associated transverse coefficient, a; (n), are presented in figures 17(a,c) and 17(b,d) for
cases 3A and 3B, respectively. Mode 1 is the primary contributor to the high-frequency
SLV dynamics in both cases. The Fourier transformed representations of these PPOD
modes are shown in figure 17(e,f). Case 3A displays a high-amplitude band extending
diagonally in k—f space, approximately along a constant phase speed line. Case 3B, on
the other hand, has most of its high-amplitude information clustered in much narrower
frequency and wavenumber bands. These observations are consistent with the convective
and global stability characteristics for the two cases (Megerian et al. 2007).

Next, a comparative analysis is performed based on the snapshot POD results for case
3A. As observed in previous work on reacting (Nair et al. 2018) and non-reacting (Meyer,
Pedersen & Ozcan 2007) jets, the leading, high-energy modes represent jet flapping
normal to the jet centreline. Modes 1 and 2, which together capture 28 % of the energy,
both represent flapping. Mode 1 is displayed in figure 18(a) as an example of such a mode,
while modes 3, 4, 6 and 7 all contribute to the SLV dynamics, representing advecting
motion aligned with the jet centreline. Modes 3 and 4, which together account for 9.5 %
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Figure 15. Three consecutive instantaneous flow fields (a), together with the corresponding reconstructed flow
fields including mode 1 and 2 from snapshot POD (b) and mode 1 from PPOD (c). Note that the reconstructions
include the time-averaged flow.

Case uj (m s7h Re; S Yn,/YHe Ny N, Ny
3A 38 2900 1.75 0.79/0.21 3x68 34 3x68x34
3B 53 2200 1.0 0.452/0.548 3 x68 30 3 x68x30

Table 2. Test conditions and data properties for the two JICF cases; J = 12 for both cases.

of the energy, form the first advecting mode pair, primarily capturing large-scale vortex
structures starting at ~s/d; = 2.5 and extending downstream. Modes 6 and 7, which
together account for 5.5 % of the energy, form a second vortex shedding pair, capturing
closely spaced vortex structures closer to the jet exit, and their development downstream.
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Figure 16. Representative instantaneous velocity field from case 3A in the original Cartesian coordinate
system (a), where the streamlines provide the in-plane velocity information, the colour indicates the
out-of-plane vorticity, the black solid line is the time-averaged jet centreline and the black dotted outline
represents the section of data used for the POD analysis in the curvilinear orthogonal coordinate system shown
in ().
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Figure 17. (a,b) Space—time dependence of the first PPOD mode, ¢, (s, 1), (¢,d) the corresponding transverse

coefficient, aj(n), and (e, f) the amplitude of the two-dimensional Fourier reduction, {bl (k,f), together with
lines of constant phase speed, cp;,/u;, for the normal velocity component, u,, for case 3A (a,c,e) and case 3B

(b.d.f).

Frequency spectra of modes 1, 3 and 6 are displayed in figure 18(b), where the relatively
broadband nature of the peaks for spectra 3 and 6 are characteristic of a convectively
unstable JICF. The frequency and length scales of the two mode pairs indicate that
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Figure 18. (a) High-energy snapshot POD modes, ¢;(s,n), for case 3A, where the in-plane velocity

components are displayed as streamlines and the out-of-plane vorticity is displayed as the background colour.
(b) Frequency spectra from the time coefficients, a;(f), corresponding to modes 1, 3 and 6, where the spectra
for modes 4 and 7 are similar to those for modes 3 and 6, respectively.

these modes correspond to the fundamental and subharmonic shear layer instability mode
(Megerian et al. 2007).

These results clearly demonstrate that the leading-order PPOD and snapshot POD
modes capture different features of the jet dynamics — the advecting SLV structures in
the case of PPOD and the flapping jet motion for snapshot POD. These points can also be
seen by reconstructing the high-energy modes from the two methods. Figure 19(a) shows
three consecutive instantaneous flow fields (top to bottom) for case 3A. The corresponding
reconstructed flow fields based on snapshot POD modes 1-4 (~37 % of the energy) and
1-7 (~47 % of the energy) are displayed in figures 19(b) and 19(c), respectively. The
reconstruction of modes 1-4 is dominated by the contribution from the jet flapping modes
1 and 2 (as confirmed by reconstructing these modes separately), while the contribution
from the vortex shedding modes 3 and 4 adds only a subtle wave-like pattern in the
downstream region. A minimum of the first seven snapshot POD modes must be included
in the reconstruction for it to capture the SLV structures along the entire shear layer region,
including the smaller but yet distinct features closer to the jet exit. For PPOD, on the
other hand, the reconstruction of only mode 1 (~39 % of the energy), as displayed in
figure 19(d), captures the staggered SLV pattern, including the location of both windward
and leeward structures throughout the entire domain. In this manner, extraction of the SLV
dynamics in a JICF lends itself to analysis in a PPOD frame of reference, since the s, ¢
inner product of PPOD allows us to directly target coherent structures advecting along a
fixed direction.
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Figure 19. Three consecutive instantaneous flow fields (a), together with the corresponding reconstructed flow
fields for snapshot POD modes 1-4 (b), 1-7 (¢) and PPOD mode 1 (d) for case 3A. The reconstructions include
the time-averaged flow.

4. Concluding remarks

The PPOD formulation inherently targets s, t correlations by decomposing a given flow
field as ¢'(x, 1) = Zj aj(n)¢;(s, ), where s is along the bulk advection direction. This
decomposition is optimal in the s, ¢ inner product and therefore targets high-energy
advecting structures, while the commonly used space-only POD method is based on
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a spatial inner product and therefore targets high-energy spatial structures. The PPOD
approach exhibits several useful properties for analysis of advection-dominated flows as
showcased in this work. First, PPOD modes are not restricted to have any particular
time dependence. Hence, a single mode can capture a physical disturbance characterised
by multiple frequencies, while the coefficient provides insight about its normal profile.
Furthermore, the two-dimensional Fourier transform of a given PPOD mode provides an
amplitude map in the k—w space, which provides a compact visualisation of disturbance
advection velocity or dispersion, and in certain cases can be compared with results from
local linear hydrodynamic stability analysis. Note also that the phase speed information
in the wavenumber—frequency representation, which can display frequency and space
dependencies when applicable, is an output of the decomposition rather than a quantity
to be determined a priori.

These properties were considered through the analysis of three case studies using
experimental data from high-Reynolds-number canonical flows. Scalar image data from
a reacting wake, which is characterised by a broad range of spectral and wavenumber
content, showed that the most energetic PPOD and snapshot POD modes appear to be
focusing on similar features (also true for the swirling annular jet). However, considering
the low-rank approximations of the wake flow, there are in this case clear differences in the
methods’ fidelity in capturing spatial and temporal information: space-only POD clearly
provides higher-fidelity spatial reconstructions with a smaller number of modes, while
PPOD provides more higher-order temporal-spectra content (e.g. the inclusion of the first
four harmonics seen in figure 10c). In contrast, the high-energy PPOD and snapshot POD
modes for the JICF cases capture completely different types of flow structures. The most
energetic snapshot POD modes capture side-to-side flapping of the jet column (standing
wave), while the leading PPOD mode(s) captures advecting shear layer structures. This
example, in particular, shows that the different energy metrics of PPOD and space-only
POD, tied to their different inner products (the s, ¢ inner product and the spatial inner
product, respectively), clearly target different features in flows consisting of both advecting
and stationary disturbances.

Taken together, these results demonstrate that there is no ‘best’ method for decomposing
these complex, high-degree-of-freedom turbulent flows. Rather, these different approaches
provide fascinating insights and ‘lenses’ into different features of the flow that, taken
together, provide a deeper understanding of the system dynamics.

Acknowledgements. Any opinions, findings, conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the FAA.

Funding. This work was partially supported by the Air Force Office of Scientific Research under award
no. FA9550-20-1-0215 (contract monitor Dr C. Li), the National Science Foundation under contract no.
1705649 (contract monitor Dr H. Chelliah) and the FAA Center of Excellence for Alternative Jet Fuels and
the Environment (award no. 13-C-AJFE-GIT-008) under the supervision of Cecilia Shaw.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Hanna M. Ek https://orcid.org/0000-0001-7574-1338;

Vedanth Nair https://orcid.org/0000-0002-4810-1519;
Christopher M. Douglas https://orcid.org/0000-0002-5968-3315;
Timothy C. Lieuwen https://orcid.org/0000-0002-5040-4789.

930 A14-28


https://orcid.org/0000-0001-7574-1338
https://orcid.org/0000-0001-7574-1338
https://orcid.org/0000-0002-4810-1519
https://orcid.org/0000-0002-4810-1519
https://orcid.org/0000-0002-5968-3315
https://orcid.org/0000-0002-5968-3315
https://orcid.org/0000-0002-5040-4789
https://orcid.org/0000-0002-5040-4789
https://doi.org/10.1017/jfm.2021.908

https://doi.org/10.1017/jfm.2021.908 Published online by Cambridge University Press

Permuted POD for analysis of advecting structures

REFERENCES

ALOMAR, A.IL., NICOLE, A., Sipp, D., RIALLAND, V. & VUILLOT, F. 2020 Reduced-order model of a
reacting, turbulent supersonic jet based on proper orthogonal decomposition. Theor. Comput. Fluid Dyn.
34, 49-77.

BERKOOZ, G., HOLMES, P. & LUMLEY, J.L. 1993 The proper orthogonal decomposition in the analysis of
turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539-575.

BisHoP, C.M. 2006 Pattern Recognition and Machine Learning. Springer.

BRUNTON, S.L. & KuTz, J.N. 2019 Data-Driven Science and Engineering: Machine Learning, Dynamical
Systems, and Control. Cambridge University Press.

CHTEREV, I., ROCK, N., EK, H., EMERSON, B., SEITZMAN, J., JIANG, N., ROy, S., LEE, T., GORD, J.
& LIEUWEN, T. 2017 Simultaneous imaging of fuel, OH, and three component velocity fields in high
pressure, liquid fueled, swirl stabilized flames at 5 kHz. Combust. Flame 186, 150-165.

EDWARDS, J.T. 2017 Reference jet fuels for combustion testing. In 55th AIAA Aerospace Sciences Meeting,
AIAA Paper 2017-0146.

EK, H., PrROSCIA, W., LIEUWEN, T. & EMERSON, B. 2019 Re-oriented POD for feature extraction from time
resolved reacting flow datasets. In Proceedings of ASME Turbo Expo, 17-21 June 2019, Phoenix, AZ, USA.
Paper no. GT2019-90954. ASME.

EMERSON, B. & LIEUWEN, T. 2015 Dynamics of harmonically excited, reacting bluff body wakes near the
global hydrodynamic stability boundary. J. Fluid Mech. 779, 716-750.

EMERSON, B., MURPHY, K. & LIEUWEN, T. 2013 Flame density ratio effects on vortex dynamics
of harmonically excited bluff body stabilized flames. In ASME Turbo Expo 2013: Turbine Technical
Conference and Exposition, 3—7 June 2013, San Antonio, TX, USA. Paper no. GT2013-94284. American
Society of Mechanical Engineers Digital Collection.

FEDELE, F., ABESSI, O. & ROBERTS, P.J. 2015 Symmetry reduction of turbulent pipe flows. J. Fluid Mech.
779, 390-410.

Fric, T.F. & ROSHKO, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 1-47.

GETSINGER, D.R., GEVORKYAN, L., SMITH, O.I. & KARAGOZIAN, A.R. 2014 Structural and stability
characteristics of jets in crossflow. J. Fluid Mech. 760, 342-367.

GLAVASKI, S., MARSDEN, J.E. & MURRAY, R.M. 1998 Model reduction, centering, and the
Karhunen-Loeve expansion. In Proceedings of the 37th IEEE Conference on Decision and Control (Cat.
No. 98CH36171), vol. 2, pp. 2071-2076. IEEE.

GRINSTEIN, F.F. & FUREBY, C. 2005 Les studies of the flow in a swirl gas combustor. Proc. Combust. Inst.
30 (2), 1791-1798.

HOLMES, P., LUMLEY, J.L., BERKOOZ, G. & ROWLEY, C.W. 2012 Turbulence, Coherent Structures,
Dynamical Systems and Symmetry. Cambridge University Press.

HUANG, Y., WANG, S. & YANG, V. 2006 Systematic analysis of lean-premixed swirl-stabilized combustion.
AIAA J. 44 (4), 724-740.

JOLLIFFE, I.T. 2002 Principal Component Analysis, 2nd edn. Springer.

KELsO, R.M., LM, T.T. & PERRY, A.E. 1996 An experimental study of round jets in cross-flow. J. Fluid
Mech. 306, 111-144.

KIRBY, M. & ARMBRUSTER, D. 1992 Reconstructing phase space from PDE simulations. Z. Angew. Math.
Phys. 43 (6), 999-1022.

LUMLEY, J.L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric turbulence and radio
wave propagation (ed. A.M. Yaglom & V.I. Tartarsky), pp. 166—177. Nauka.

LUMLEY, J.L. 1970 Stochastic Tools in Turbulence. Academic Press.

MEGERIAN, S., DAVITIAN, J., DE B ALVES, L.S. & KARAGOZIAN, A.R. 2007 Transverse-jet shear-layer
instabilities. Part 1. Experimental studies. J. Fluid Mech. 593, 93—129.

MEYER, K.E., PEDERSEN, J.M. & OzcCAN, O. 2007 A turbulent jet in crossflow analysed with proper
orthogonal decomposition. J. Fluid Mech. 583, 199-227.

NAIR, V., DouGLAS, C., WILDE, B., EMERSON, B. & LIEUWEN, T. 2018 High-frequency imaging of a
reacting jet in crossflow. Bull. Am. Phys. Soc. 63 (13), A30.6.

NAIR, V., SIRIGNANO, M.D., SCHMIDHEISER, S., DILLON, L., FUGGER, C.A., YI, T., JIANG, N.,
Hsu, P.S., SLIPCHENKO, M.N. & RovY, S. 2020 Tomographic PIV characterization of the near field
topology of the reacting jet in crossflow. In AIAA Scitech 2020 Forum, AIAA Paper 2020-1420.

PERRY, A.E., CHONG, M.S. & Lim, T.T. 1982 The vortex-shedding process behind two-dimensional bluff
bodies. J. Fluid Mech. 116, 77-90.

PRASAD, A. & WILLIAMSON, C.H.K. 1997 The instability of the shear layer separating from a bluff body.
J. Fluid Mech. 333, 375-402.

930 A14-29


https://doi.org/10.1017/jfm.2021.908

https://doi.org/10.1017/jfm.2021.908 Published online by Cambridge University Press

H.M. Ek, V. Nair, C.M. Douglas, T.C. Lieuwen and B.L. Emerson

REISS, J., SCHULZE, P., SESTERHENN, J. & MEHRMANN, V. 2018 The shifted proper orthogonal
decomposition: a mode decomposition for multiple transport phenomena. SIAM. J. Sci. Comput. 40 (3),
A1322-A1344.

Rock, N., CHTEREV, 1., EMERSON, B., WON, S.H., SEITZMAN, J. & LIEUWEN, T. 2019 Liquid fuel
property effects on lean blowout in an aircraft relevant combustor. Trans. ASME J. Engng Gas Turbines
Power 141 (7), 071005.

ROWLEY, C.W. & DAWSON, S.T.M. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid
Mech. 49, 387-417.

ROWLEY, C.W., KEVREKIDIS, I.G., MARSDEN, J.E. & LUST, K. 2003 Reduction and reconstruction for
self-similar dynamical systems. Nonlinearity 16 (4), 1257.

ROWLEY, C.W. & MARSDEN, J.E. 2000 Reconstruction equations and the Karhunen-Log¢ve expansion for
systems with symmetry. Physica D 142 (1-2), 1-19.

ScHMID, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.
656, 5-28.

ScHMIDT, O.T. & ScHMID, P.J. 2019 A conditional space—time pod formalism for intermittent and rare
events: example of acoustic bursts in turbulent jets. J. Fluid Mech. 867, R2.

SESTERHENN, J. & SHAHIRPOUR, A. 2019 A characteristic dynamic mode decomposition. Theor. Comput.
Fluid Dyn. 33 (3—4), 281-305.

SHANBHOGUE, S.J., SEELHORST, M. & LIEUWEN, T. 2009 Vortex phase-jitter in acoustically excited bluff
body flames. Intl J. Spray Combust. Dyn. 1 (3), 365-387.

SIEBER, M., PASCHEREIT, C.O. & OBERLEITHNER, K. 2016 Spectral proper orthogonal decomposition.
J. Fluid Mech. 792, 798-828.

SIROVICH, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths
45 (3), 561-571.

SIROVICH, L., KIRBY, M. & WINTER, M. 1990 An eigenfunction approach to large scale transitional
structures in jet flow. Phys. Fluids A 2 (2), 127-136.

TAIRA, K., BRUNTON, S.L, DAwWSON, S.T.M., ROwWLEY, C.W., CoLoNIUS, T., MCKEON, B.J.,
SCcHMIDT, O.T., GORDEYEYV, S., THEOFILIS, V. & UKEILEY, L.S. 2017 Modal analysis of fluid flows:
An overview. AIAA J. 55 (12), 4013-4041.

TAMMISOLA, O. & JUNIPER, M.P. 2016 Coherent structures in a swirl injector at Re = 4800 by nonlinear
simulations and linear global modes. J. Fluid Mech. 792, 620-657.

TOWNE, A., SCHMIDT, O.T. & CoLoNIUs, T. 2018 Spectral proper orthogonal decomposition and its
relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821-867.

930 A14-30


https://doi.org/10.1017/jfm.2021.908

	1 Introduction
	2 Overview of space-only POD and permuted POD properties
	2.1 Space-only POD properties
	2.2 Permuted POD properties
	2.3 Coordinate transformations
	2.4 Model problem with advecting structures

	3 Case studies
	3.1 Case 1: scalar imaging of a forced, reacting wake flow
	3.2 Case 2: velocity fields from a reacting swirling annular jet
	3.3 Case 3: velocity fields from a non-reacting jet in vitiated cross-flow

	4 Concluding remarks
	References

