Environmental Data Science (2025), 4: €35, 1-20 CAMBRIDGE

doi:10.1017/eds.2025.10010
UNIVERSITY PRESS

POSITION PAPER

Opportunities and challenges of quantum computing for
climate modeling

Mierk Schwabe' @, Lorenzo Pastori'! @, Inés de Vegaz, Pierre Gentine® @, Luigi Iapichino4 .
Valtteri Lahtinen’, Martin Leib”, Jeanette Miriam Lorenz™’ @ and Veronika Eyring'**

"Deutsches Zentrum fiir Luft- und Raumfahrt (DLR), Institut fiir Physik der Atmosphire, Oberpfaffenhofen, Germany

2IQM Germany GmbH, Miinchen, Germany

3Center for Learning the Earth with Artificial Intelligence and Physics (LEAP), Columbia University, New York, NY, USA
“4Quantum Computing and Technologies Department, Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften
(LRZ), Garching b. Miinchen, Germany

Quanscient Oy, Tampere, Finland

SFraunhofer-Institut fiir Kognitive Systeme IKS, Miinchen, Germany

"Faculty of Physics, Ludwig-Maximilians-Universitit Miinchen, Miinchen, Germany

8University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany

Corresponding author: Mierk Schwabe; Email: mierk.schwabe@dlr.de

Received: 16 December 2024; Revised: 02 May 2025; Accepted: 04 June 2025

Keywords: climate modeling; data-driven parameterizations; model tuning; quantum computing

Abstract

Adaptation to climate change requires robust climate projections, yet the uncertainty in these projections performed
by ensembles of Earth system models (ESMs) remains large. This is mainly due to uncertainties in the representation
of subgrid-scale processes such as turbulence or convection that are partly alleviated at higher resolution. New
developments in machine learning-based hybrid ESMs demonstrate great potential for systematically reduced errors
compared to traditional ESMs. Building on the work of hybrid (physics + AI) ESMs, we here discuss the additional
potential of further improving and accelerating climate models with quantum computing. We discuss how quantum
computers could accelerate climate models by solving the underlying differential equations faster, how quantum
machine learning could better represent subgrid-scale phenomena in ESMs even with currently available noisy
intermediate-scale quantum devices, how quantum algorithms aimed at solving optimization problems could assist in
tuning the many parameters in ESMs, a currently time-consuming and challenging process, and how quantum
computers could aid in the analysis of climate models. We also discuss hurdles and obstacles facing current quantum
computing paradigms. Strong interdisciplinary collaboration between climate scientists and quantum computing
experts could help overcome these hurdles and harness the potential of quantum computing for this urgent topic.

Impact Statement

Recently, quantum computing has been making rapid progress, with the first demonstrations of quantum
advantage for selected problems. At the same time, climate change is becoming increasingly severe, and robust
local information provided by climate models becomes more crucial. In this position paper, we explore how
quantum computing methods could potentially help improve and accelerate climate models, and which obstacles
remain.
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1. Introduction

According to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report
(Masson-Delmotte et al.,2021), the effects of human-induced climate change are already felt in every
region across the globe (Eyring et al., 2021a). There is an urgent need for better climate models that
make regional projections possible and thus allow for more precise efforts at mitigation and
adaptation (Shokri et al., 2022). Climate models do improve with each generation (Bock et al.,
2020), however, systematic biases compared with observations still remain due to the limited
horizontal resolution of the models, typically of the order of tens of kilometres (Eyring et al.,
2021b). Models with a horizontal resolution of a few kilometres can explicitly represent deep
convection and other dynamical effects (Hohenegger et al., 2020) and thus alleviate a number of
biases (Sherwood et al., 2014), but have high computational costs. Even considering the expected
increase in computing power (Ferreira da Silva et al., 2024; Stevens et al., 2024), a hierarchy of
ideally hybrid ESMs, incorporating machine learning (ML) methods and physical modelling, will
continue to be required (Eyring et al., 2024b). It is thus imperative to take advantage of novel
technologies to both improve and accelerate climate models.

Quantum computers provide alternative computing paradigms, and have seen tremendous progress in
the last years, see Figure 1. Size and quality of quantum hardware are steadily increasing, as well as the
number of proposed quantum algorithms (Sevilla and Riedel, 2020), and a few experiments have claimed
to have achieved quantum advantage (Arute et al., 2019; Lau et al., 2022; Madsen et al., 2022; Zhu et al.,
2022; King etal., 2024). On the algorithmic side, a growing number of methods targeted to current devices
are being developed and implemented, and new applications are envisioned.

In this perspective, we discuss how we foresee leveraging the potential of quantum computing in the
context of climate modeling. First, we give an introduction to data-driven, ML-based climate modeling
and to quantum computing. Then, we discuss the potential of quantum computers for climate modeling,
especially pointing out algorithms available for current noisy intermediate-scale quantum (NISQ)
devices. Finally, we discuss the next steps towards developing a climate model improved with quantum
computing.
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Figure 1. Evolution of the number of physical qubits of quantum computing and quantum simulation
platforms by several companies and university research groups. The underlying data was collected from
online sources and journal publications(D:Wave, 2023; IBM, 2023; PASQAL, 2023; rigetti, 2023;
Google QAL 2023; AQT, 2023; Quantinuum, 2023; Zhong et al., 2020; Scholl et al., 2021; Wu et al.,
2021, Semeghini et al., 2021; Joshi et al., 2022; Ebadi et al., 2022). The shaded data points for future
years were collected from the companies’ roadmaps (D:Wave, 2023; PASQAL, 2023; IBM, 2023; IonQ,
2023).
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2. Climate modeling

Climate models are three-dimensional models based on fundamental laws of physics (Jacobson, 2005),
see Box 1. The atmosphere is discretized over a horizontal grid covering the surface of the Earth, and
vertical columns above each grid cell. In each grid box, state variables describe the physical properties,

Box 1. Fundamental equations of earth system models (ESMs)

ESMs describe the evolution of the Earth system with time, given external forcings such as solar
radiation and anthropogenic influences. They consist of coupled models of, e.g., the atmosphere,
ocean, and land, Figure 2. For example, the state of the atmosphere is described by the equation of state

p=pRT 1)

with pressure p, density p, the gas constant R, and temperature 7. The barometric law describes the
variation of pressure with altitude z

p(z) =p(0) GXP(*%) 2)

with the atmospheric scale height H.
The dynamical properties of the atmosphere determine the evolution of mass, momentum, and
energy. Mass conservation is expressed as the continuity equation

9
a—’l;-i-V-(pv):O 3)

with the three-dimensional wind v. The conservation of momentum in the system rotating with angular
velocity Q is described by the Navier—Stokes equation
ov 1 2
E+(V~V)v:—2[§2xv]——Vp+g+vV v 4)
p

with apparent gravitational acceleration g and kinematic viscosity v. Finally, the first law of
thermodynamics results in the conservation of energy

dr d (1
CVEWE(;) —0 )

with the specific heat at constant volume ¢j and the diabatic heating term Q, which can be driven by
absorption and emission of radiative energy or condensation and evaporation of water.

Surface

Land

Figure 2. Schematic of an Earth system model (ESM). The ESM represents the state of the
atmosphere, ocean and sea ice, and land using a grid covering the globe. For each component,
physical properties such as water content in the atmosphere and soil or salinity of the ocean, the
kinetic energy contained in the wind and currents, and the thermal energy contained in the
temperature are represented. Following Gettelman and Rood (2016).
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see Box 1. During a time step of the simulation, the evolution of energy and mass and the motions of air
and tracers are solved. Earth system models (ESMs) simulate the interactive carbon and other biogeo-
chemical cycles in addition to the atmosphere, land, ocean, and sea ice physical states (Eyring et al.,
2021b). Climate models and ESMs can simulate the mean state of the system, as well as natural variability,
and how it may change given an external forcing (e.g., increasing the concentration of greenhouse gases).
Not all relevant processes can be described by solving the fundamental equations, either because the
resolution is not high enough (e.g., for shallow convection) or because the processes are not described by
the equations (e.g., the formation of clouds and their influence on radiation transfer). Parameterizations
represent the effects on the grid scale of the unresolved (subgrid-scale) processes as a function of the
coarse-scale state variables. There have been many attempts to develop kilometre-resolution models that
require fewer parameterizations and produce better input states for the remaining ones (Neumann et al.,
2019; Stevens et al., 2019, 2024), yet even these do not eliminate the need for running ensembles of
climate models nor can they completely resolve all key processes (e.g., shallow clouds). Besides the large
computational costs, storing the output of high-resolution models is problematic. Even today, the cost and
bandwidth of storage systems do not keep up with the available computing power (Schér et al., 2020).
Especially the output of large ensembles of high-resolution climate models is impossible to store in its
entirety, so that data needs to be coarse-grained or directly analysed while the simulations are running, and
simulations need to be rerun when a specific analysis is required, trading storage for computation (Schir
et al., 2020). Therefore, to enable high-resolution ensemble runs, there is an urgent need to accelerate
climate models.

Even high-resolution simulations require the use of some parameterizations, such as for microphysics
and turbulence, and these still cause biases (Stevens etal., 2019; Eyring et al., 2024b). These, as well as the
parameterizations used in coarser-scale climate models, could be improved with ML methods (Bracco
etal., 2025; Eyring et al., 2024b) that learn from short high-resolution model simulations or observations
to represent processes that are unresolved by coarse climate models. Challenges remain (Eyring et al.,
2024a) among which: 1) instabilities when ML-based parameterizations are coupled to the climate model,
often due to the models learning spurious causal relationships (Brenowitz et al., 2020); 2) difficulty in
generalizing beyond the training regime (Rasp et al., 2018), which is highly relevant in a changing
climate, where the mean and extremes of climate variable distributions are shifting (Gentine et al., 2021).
These challenges demonstrate the need for more expressive models (i.e., models that can learn a large
variety of functions) that can be trained efficiently using potentially limited datasets.

All classical parameterizations as well as some data-driven ones (Grundner et al., 2024; Pahlavan et al.,
2024), have parameters that need to be estimated to reduce the mismatch between observations and model
results (Hourdin et al., 2017). This tuning is a very time-consuming process requiring considerable expert
knowledge and computing time, which motivates the development of automatic algorithms to improve its
efficiency and reproducibility (Hourdin et al., 2017; Bonnet et al., 2024). The tuned model should be
evaluated against other climate models and against observations, in which novel techniques can be used to
classify data sets and develop better-suited products (Kaps et al., 2023).

Summing up, there is an urgent need for faster and better climate models capable of running at high
resolution, for more accurate and generalizable parameterizations, and for fast, reliable tuning and
evaluation methods, also beyond classical ML algorithms.

3. Quantum computing: current status and challenges

The field of quantum computation deals with developing and controlling quantum systems to store and
process information in ways that go beyond the capabilities of standard (classical) computers (Nielsen and
Chuang, 2010), see Box 2. Quantum computers hold the promise of efficiently executing tasks intractable
even for the largest supercomputer, including simulations of complex materials and chemicals, and
solving optimization problems (Grumbling and Horowitz, 2019). Despite extraordinary theoretical and
experimental developments in the last decades, we are still in the era of NISQ devices— noisy
intermediate-scale quantum devices counting up to few hundreds qubits, with several limitations caused
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Box 2. Qubits, quantum gates, and entanglement

The fundamental quantum information unit is the qubit. The state |y) of a qubit is a vector in a
two-dimensional complex vector space, written as a superposition |y) = ¢y|0) +¢;|1) of the two
computational basis states |0) and |1) (Figure 3). Measuring the qubit in this basis yields 0 or 1 with
probability |co|* or |¢; |, respectively, with subsequent collapse of |y) in the associated basis state.
Qubits can be manipulated by means of quantum gates, which are unitary operators acting on the state
vectors.

The superposition principle extends to the case of many qubits. The state of N qubits has the form
lw)=>",cslo), where ¢ denotes one of the 2V possible bitstrings indexing the computational basis
states, and |cg|2 the probability of obtaining & as the outcome of a measurement in the same basis. An
example of a two-qubit state has the form |y) = (|01) +|10))/+/2. This is an example of an entangled
state, where the qubits share non-local quantum correlations which result in correlated outcomes once
they are measured (Nielsen and Chuang, 2010). Entanglement is generated using quantum gates that
make selected qubits interact, and is a key ingredient for quantum computational advantage. The
entanglement content of a quantum state is related to the computational complexity of representing it
by classical means (Eisert et al., 2010), which generally requires computational resources scaling
exponentially with the number of qubits NV. Classically intractable quantum states can be prepared on
quantum computers, and their properties can be measured. This translates to the ability of preparing
and sampling from otherwise intractable probability distributions |¢, \2, which can encode the solution
to given problems.

<Y

|11

Figure 3. Representation of a qubit state as a vector on the Bloch sphere. The poles correspond to the
basis states |0) and |1).

by noise (Preskill, 2018). Despite these limitations, NISQ devices can already be used to tackle problems
of academic interest, and it is foreseeable that quantum error correction methods will bring us fault-
tolerant quantum computers in the future (Devitt etal., 2013; Campbell etal., 2017), see Figure 1. Itis thus
important to ask now whether the algorithms developed for quantum computers could help address the
challenges faced by climate modelling (Singh et al., 2022; Nivelkar et al., 2023; Otgonbaatar et al., 2023;
Rahman et al., 2024; Bazgir and Zhang, 2024). In the following, we review several relevant quantum
computing paradigms and algorithms.

3.1. Quantum linear algebra solvers

Quantum linear algebra solvers make use of the fact that quantum computation using N qubits is
mathematically described by linear operators in vector spaces of (large) dimension 2V . Linear problems
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of size M can be encoded in quantum states and operators using only logarithmically many qubits (in M).
Provided this encoding, quantum solvers offer exponential improvements in terms of resources needed to
solve a problem, requiring only O(polylogM) qubits and gates compared to the O(polyM) operations
required for classical algorithms (Harrow et al., 2009). They can therefore significantly speed up large
matrix operations, e.g., in the resolution of (partial) differential equations using finite difference/elements
methods (Berry, 2014; Lloyd et al., 2020; Li et al., 2023). This exponential speedup depends on the ability
of efficiently (i.e., with costs scaling polynomially in the number of qubits) encoding the problem data in
the states and operators on the quantum device, and on the efficient readout of the properties of interest
from the quantum state encoding the solution. These challenges, together with the limitations due to noise,
restrict the current applicability of these routines to small-scale problems (Cai et al., 2013; Barz et al.,
2014; Zheng et al., 2017).

3.2. Quantum annealing for optimization problems

Quantum annealing offers a way of solving optimization problems on quantum devices (Das and
Chakrabarti, 2008; Albash and Lidar, 2018). Quantum annealers address combinatorial problems with
a discrete solution space. The solution to a given problem is encoded in the ground state of an Ising
Hamiltonian (Das and Chakrabarti, 2008). This Hamiltonian is then realized on a quantum device, the
annealer, and its ground state prepared by slowly steering an initial state towards it. In this way, the
implemented quantum state globally explores the optimization landscape before tunnelling towards
the optimal solution. Quantum annealers consisting of thousands of qubits are already available for use
in academic and industrial applications (Yarkoni et al., 2022). This approach is potentially scalable to
large problems, and the first claims of quantum advantage with quantum annealers have been made (King
etal., 2024). However, noise is an open problem for quantum annealers (also due to the lack of fully fault-
tolerant quantum annealing schemes (Pudenz et al., 2014)).

3.3. Parameterized quantum circuit models

Parameterized quantum circuits (PQCs) are sequences of quantum gates depending on tunable parameters
0 that are optimized for the quantum device to solve a given problem. Applications include variational
quantum eigensolvers (Peruzzo et al., 2014), quantum approximate optimization algorithms (Farhi et al.,
2014), and quantum machine learning (QML) (Schuld and Petruccione, 2018; Schuld et al., 2015;
Biamonte et al., 2017; Dunjko and Briegel, 2018; Schuld and Petruccione, 2018; Cerezo et al., 2022).
PQCs are NISQ-friendly due to their limited depth, supplemented by the optimization of the parameters
that is achieved iteratively in a hybrid quantum-classical manner (Cerezo et al., 2021; Bharti et al., 2022):
a cost function is measured on the quantum device and fed to a classical routine that proposes new @ for the
next iteration. This results in shorter and classically optimized circuits that can run within the coherence
time of NISQ devices.

In the context of QML, PQCs find applications in regression, classification, and generative modeling
tasks (Cerezo et al., 2022). In regression and classification, PQCs are used as function approximators and
are often referred to as quantum neural networks (QNNs) (Farhi and Neven, 2018). Classical input data x
first is encoded in a quantum state |#(x)). Then the output is calculated as the expectation value of an
observable in the output state |y(x;0)) = Uglé(x)), where Uy denotes the action of the PQC. The
embedding x — |¢(x)) needs to be carefully chosen as it strongly influences the model performance
(Schuld and Petruccione, 2018; Pérez-Salinas et al., 2020; Schuld et al., 2021), and potentially requires
compression strategies (Dilip et al., 2022). The higher expressivity of QNNs (Du et al., 2020, 2021; Yu
et al., 2023b), makes them interesting ansatzes for ML tasks. Furthermore, several works have investi-
gated their generalization properties, with promising results (Cong et al., 2019; Abbas et al., 2021; Caro
et al., 2022, 2023). Regarding their trainability, while suitably designed QNNs show desirable geomet-
rical properties that may lead to faster training (Abbas et al., 202 1), in general, the training of PQCs can be
hindered by the presence of barren plateaus (Ragone et al., 2024) and potentially requires advanced

https://doi.org/10.1017/eds.2025.10010 Published online by Cambridge University Press


https://doi.org/10.1017/eds.2025.10010

Environmental Data Science e35-7

initialization strategies (Zhang et al., 2022). However, in quantum convolutional neural networks
(QCNN ), barren plateaus do not seem to be a problem (Pesah et al., 2021).

The embedding x — |#(x)) can be thought of as a feature map from the input x to the (large) Hilbert space
of quantum states (Schuld and Killoran, 2019; Havlicek et al., 2019). This observation constitutes the basis
of quantum kernel methods (Schuld and Killoran, 2019; Havlicek et al., 2019), where quantum kernels are
constructed from inner products (¢ (x)|#(x’)) measured on the quantum device. The constructed kernels are
then used in subsequent tasks, e.g., in data classification (Havliek et al., 2019), or Gaussian process
regression (Otten et al., 2020; Rapp and Roth, 2024). Despite their advantage on specific datasets (Huang
etal.,2021), quantum kernel methods may also suffer from trainability issues analogous to barren plateaus in
QNN (Thanasilp et al., 2022), which highlights the requirement of a careful design.

PQCs also find a natural application as generative models (Amin et al., 2018; Dallaire-Demers and
Killoran, 2018; Coyle et al., 2020). The output state of a PQC indeed corresponds to a probability
distribution over an exponentially large computational basis, via the relation Py (o) = |{a| i\]g|¢0)|2, with &
indexing the computational basis states, and |@,) a predefined reference state. For generative tasks, the
parameters @ are optimized for Py to approximate the probability distribution underlying a set of training
data. The PQC is then used to sample the distribution Py. These models have improved representational
power over standard generative models (Du et al., 2020), but also require careful design to avoid
trainability issues (Rudolph et al., 2023).

We finally remark that despite the several hints to potential advantages on specific tasks, it is not yet
clear whether a practical advantage of QML on real-world classical datasets can be demonstrated. Among
the practical hurdles are the aforementioned trainability issues, as well as the necessity of efficient
coupling with HPC and the inevitable presence of noise.

3.4. Integrated high-performance quantum computing

PQC:s are based on the interplay between a quantum and a classical component within a hybrid algorithm.
NISQ systems thus need to be integrated with classical computing resources at the hardware level. As
quantum circuits become more complex, the classical component in PQCs and thus the required
computing resources will grow as well, to the scale of an HPC problem. Given the trend towards
heterogeneous development of modern HPC systems, e.g., increasingly using hardware accelerators like
graphics processing units (Schulz et al., 2021), this leads to consider quantum hardware as a new class of
accelerators for dedicated tasks within HPC workflows (Humble et al., 202 1; Riifenacht et al., 2022). The
high performance computing—quantum computing (HPCQC) integration is an interdisciplinary chal-
lenge with aspects at the hardware, software, programming, and algorithmic level. The hardware
integration is crucial to reduce latencies, especially in iterative variational algorithms (Riifenacht et al.,
2022). Moreover, the development of a single software stack for integrated systems, including the
offloading of tasks to quantum accelerators and the scheduling of those resources, is necessary for
ensuring operation and a smooth user experience (Schulz et al., 2022).

The HPCQC integration is not a concept limited to the NISQ development phase of quantum hardware,
but is also relevant for future, fault-tolerant systems. At that point, we expect that the HPC computational
resources will have to take over further tasks related to the operation of the quantum hardware, like circuit
compilation and error control (Davenport et al., 2023; Maronese et al., 2022).

3.5. Error correction and mitigation

Current NISQ devices are still modest in qubit counts (tens to hundreds), circuit depths (accommodating
up to a thousand gate operations), and coherence times (from microseconds to seconds, depending on the
platform (Byrd and Ding, 2023)). The achievable circuit depth and the repetition rate influence the
complexity and the practical applicability of QML models, respectively. Hardware noise may negatively
impact QML trainability and is also one of the main limiting factors for quantum annealing and for fault-
tolerant applications.
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Achieving fault-tolerance is the goal of quantum error correction methods, in which one logical qubit
is represented using several physical ones, to detect and correct errors at runtime (Devitt etal., 2013). This
is a crucial requirement for quantum algorithms relying on extensive numbers of quantum operations,
such as quantum linear algebra subroutines. Given the substantial resource overhead needed for quantum
error correction (Davenport et al., 2023), its practical implementation can be considered in its infancy
despite recent rapid advances (Google Quantum Al and Collaborators, 2025).

Other techniques to reduce noise-induced biases, without correcting for faulty qubits or operations, go
under the name of error mitigation and are based on post-processing measurements collected from a
suitably defined ensemble of quantum computation runs (Cai et al., 2023). Many mitigation techniques
are currently being researched, such as zero-noise extrapolation and probabilistic error cancellation (Cai
et al., 2023). These are particularly relevant for NISQ-targeted applications, as they can be implemented
with little overhead in the number of gates and qubits. Hence, they are promising for “de-noising” the
predictions from PQC-based methods.

4. Quantum computing for climate modeling

We now move on to considering the potential that the quantum algorithms presented in the previous
sections can have for climate modelling. We discuss potential applications in solving the underlying
differential equations, in model tuning, analysis, and evaluation, and in improving subgrid-scale param-
eterizations (Figure 4).

4.1. Accelerating the resolution of high-dimensional differential equations

Solving differential equations is at the root of climate modelling, especially in the atmosphere and ocean
components. Dynamical conservation laws are represented by PDEs, and chemical reactions are
described by ordinary differential equations (ODEs) (Alvanos and Christoudias, 2019; Sander et al.,
2005; Zlatev et al., 2022). The resources needed for solving them grow rapidly with increasing resolution
of the models. This calls for methods for efficiently encoding and processing the climate state variables in

Parameterised
quantum
circuits (PQCs)

Quantum
annealing

P(x)

i Vp+ +F
pIJl_ P+rg

x

Differential Analysis and
equations evaluation
Qt‘:antum Quantum-

lin.alg. .
Ivers inspired
s0 methods
and others

Parameterisations

Figure 4. Overview of the climate modeling tasks and the category of matching quantum computing
algorithms. (Image of the Earth by NASA/Apollo 17).
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all the model cells. Several quantum algorithms seeking an exponential reduction of the needed resources
have been recently proposed in the context of computational fluid dynamics (Gaitan, 2020; Steijl and
Barakos, 2018).

Methods for time-dependent fluid-flow problems have been developed in the framework of gate-based
quantum computing (Steijl and Barakos, 2018; Mezzacapo et al., 2015; Gaitan, 2020) and quantum
annealers (Ray et al., 2019). For example, using spatial discretization of the PDEs, Gaitan (2020) reduces
the one-dimensional Navier—Stokes equations to a system of ODEs

du
E:f(U), (6)

with U being a vector depending on p, v, and 7T, and the driver function f(U) depending on the
discretization procedure. Kacewicz (2006) showed that an almost optimal quantum algorithm exists
for finding an approximate solution to a set of nonlinear ODEs. As shown by Gaitan (2020), the solution
of Eq. (6) is approximated by discretizing it in both the spatial and time domains, and then determining the
approximate solution using quantum amplitude estimation (QAEA) (Brassard et al., 2002). These hybrid
approaches for Navier—Stokes equations (Gaitan, 2020) could thus potentially achieve up to exponential
speed-up compared to deterministic classical algorithms, due to the quantum subroutine (Brassard et al.,
2002). However, the stability of such algorithms with respect to the spatial discretization still remains an
open issue, and these methods inherit the challenges that quantum linear solvers may face, related to the
data encoding and readout, and to the implementation of the linear operator defining the problem
(Aaronson, 2015).

Quantum lattice—Boltzmann methods (QLBM) offer alternatives to quantum linear solvers, circum-
venting solving linear systems directly (Budinski, 2021, 2022; Schalkers and Méller, 2022). The lattice—
Boltzmann method, a mesoscopic stream-and-collide method for probability densities of fluid particles,
lends itself to quantum solution natively and efficiently (Budinski et al., 2023; Li et al., 2023). QLBM
algorithms can be fully quantum (Budinski, 202 1), or hybrid, such as Budinski’s Navier—Stokes algorithm
(Budinski, 2022), where quantum-classical communication is needed to incorporate non-linearities.
Other approaches for non-linearities in QLBM exist, e.g., by using Carleman linearization (Itani and
Succi, 2022). Koopman operators can also be used to induce linearity (Bondar et al., 2019). Also, QLBM
faces the challenge related to data readout and encoding: for some QLBM models, this must be repeated at
all time steps, which makes efficient time-marching a problem of prime importance for QLBM.

Data-driven quantum-assisted approaches are also a possibility to predict the evolution of climate
systems, as demonstrated by Jaderberg et al. (2024) in the context of weather models.

In summary, the encoding and readout of classical variables is one of the primary limitations that need
to be addressed for applying the aforementioned routines to problems on scales of a climate model. Even
though 30 logical qubits could be sufficient to store one billion climate variables (Tennie and Palmer,
2023) and to implement their time evolution using quantum circuits of polynomial depth, it is still unclear
what type of climate states can be efficiently encoded in quantum states, and which properties of the
climate can be efficiently measured. Although full quantum state reconstruction is not experimentally
feasible for large quantum systems (it requires a number of measurements growing exponentially in the
number of qubits (Struchalin et al., 202 1)), fundamental insights on the properties that can be efficiently
read out from quantum states exist in the framework of shadow tomography (Huang et al., 2020): these
results will need to be adapted to the specific use-case of climate simulation and subsequent evaluation.

4.2. OML-based parameterizations

QML models, such as QNNs, can be used to develop data-driven parameterizations by training them with
data from short high-resolution simulations, as shown in Figure 5, in analogy to what is currently done
with classical machine learning (Gentine etal., 202 1; Eyring et al., 2024a). The properties of QML models
(Yuetal., 2023b; Abbas et al., 2021; Caro et al., 2022; Huang et al., 202 1) may lead to highly expressive
parameterization models requiring less parameters, hence potentially requiring less training data if
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Figure 5. Hybrid quantum-classical approach for QML-based parameterizations. (a) Offline training:
variables from cloud-resolving models are coarse-grained to the scale of the target climate model. The
subgrid part of the variables of interest (e.g., fluxes) is calculated and used as a target for training QML-
based parameterizations, possibly complemented with ML-based pre- and post-processing steps. The
training of the QML model is typically assisted by a classical computer. The result is a replacement for a
conventional parameterization and is coupled to the target climate model. (b) Processes occurring while
the coarse-scale climate model (summarized by variables x) is advanced from time step t to t + At. First,
the dynamical core D is run, followed in parallel or sequentially by the various parameterizations,
denoted here with P, to P4. The QML-parameterization QP is run online, replacing the corresponding
traditional parameterization P.
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matched by good generalization capabilities. These attributes would be crucial for developing stable and
reliable long-term climate projections. First quantum-enhanced ML algorithms for the emulation of
climate model data have recently been demonstrated by Bazgir and Zhang (2024) using the ClimSim
dataset (Yu et al., 2023a): Using a subset of the dataset, they used three different quantum models to
predict target values such as snow and rain rates and various solar fluxes using surface pressure,
insolation, and the surface latent and sensible heat fluxes as input. The quantum models they tested
were a QCNN, a quantum multilayer perceptron (QMP), and a quantum encoder—decoder (QED), each
compared to their classical counterparts. The quantum models typically outperformed the classical
models. In another work (Pastori et al., 2025), some of the authors of the present manuscript recently
demonstrated a QML-based parameterization of cloud cover for a climate model. The practical
assessment of QML advantages in such tasks requires, however, addressing several open points.
Encoding climate variables in quantum states constitutes a critical step, given the efficiency require-
ments in the NISQ era and the absence of quantum random access memory. Specifically tailored
classical data-compression routines before the encoding stage in a QNN could include techniques based
on feature selection (Miicke et al., 2023), variational encoding sequences (Behrens et al., 2022), or
tensor networks, which can be naturally translated to quantum circuits (Dilip et al., 2022; Cichocki
et al., 2016).

The choice of the QNN structure is problem dependent and needs to match the hardware constraints.
Also, it is desirable to encode conservation laws and physical constraints at the level of the underlying
PQC, e.g., via the use of equivariant gate sets (Meyer et al., 2023), or by directly encoding the physical
laws into the model (Markidis, 2022).

Another point to consider is the probabilistic nature of the measurement outcomes. While the inherent
quantum noise could prove to have some benefits for climate simulations (Tennie and Palmer, 2023), the
accuracy of the model prediction depends on the number of circuit evaluations, thus influencing the
runtime. For nowadays’ implementations, the runtime of such QNN parameterizations constitutes a
limiting factor in their usages when coupled with the climate model, since they need to be run at each time-
step for all model cells. Considering a time requirement of 10us per QNN run, and approximately 100
required measurement runs (Pastori et al., 2025), the evaluation of a QNN parameterization for a climate
model with 1 million grid cells would take 1000 s per model time-step, which is clearly prohibitive.
Expected advances in quantum hardware and its coupling with HPC will also increase the potential for
integrating QML routines in climate models.

4.3. Improving climate model tuning

QML models and quantum optimization routines could also be used to improve the accuracy and speed
of climate model tuning following an automatic tuning procedure (Figure 6). First, the tuning goals and
parameters are chosen. Then, emulators are constructed to approximate the model output and to speed
up the calibration process (Bellprat et al., 2012; Watson-Parris et al., 2021). Potentially optimal
parameter regimes are inferred (Couvreux et al., 202 1; Watson-Parris et al., 2021; Allen et al., 2022;
Zhang et al., 2015; Cinquegrana et al., 2023; Bonnet et al., 2024), and new climate model outputs are
evaluated in the proposed parameter regime. The procedure is iterated until the tuning goals are
achieved.

The main quantum computing applications that we envision here concern the emulator construction
and its optimization. Typical choices of emulators in automatic tuning schemes are neural networks and
Gaussian processes (Watson-Parris et al., 2021). The former choice suggests the use of QNN emulators,
while the latter option implies the choice of an underlying kernel function, suggesting the use of quantum
kernels in Gaussian process regression (Otten et al., 2020). For example, Rapp and Roth (2024) develop a
quantum Bayesian optimization algorithm based on quantum Gaussian processes. They construct a kernel
by embedding data into the Hilbert space of a quantum system

|$(x:0)) = U(x:0)|0). @
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Figure 6. General steps of an automatic tuning protocol for climate models. In Step (i), the tuning goals
and parameters are chosen. Then, in Step (ii) and (iii), emulators are constructed to approximate the
model output and to speed up the calibration process. Potentially optimal parameter regimes are inferred
in steps (iv) and (v), and new climate model outputs are evaluated in the proposed parameter regime. The
procedure is iterated until the tuning goals are achieved.

The unitary operator U(x; @) encodes the classical data x into a quantum state and can depend on trainable
parameters #. It implements the quantum feature map ¢ and defines the density matrix

p(x) = U(x)|0)(0|UT (x). The quantum kernel then, is given by
k(x,x') =Tr[p(x)p(x)]. ®)

The corresponding Gram matrix is then substituted as a covariance matrix into a classical Gaussian
process, and the feature map is optimized using maximum likelihood estimation. The resulting algorithm
is used for a hyperparameter optimization of a machine learning model.

Exploring the potential of QML for constructing emulators is of great interest since highly expressive
models, if matched by good generalization properties, could benefit from fewer trainable parameters and
training data, and hence fewer climate model simulations. The optimization of the acquisition function
resulting from the emulator yields potentially optimal parameter sets and can be tackled with quantum
heuristics such as quantum annealing, quantum-approximate optimization algorithms, or variational
quantum eigensolvers, upon suitable discretization of the function to be optimized. Several works have
recently explored the performance of these methods on continuous variable optimization problems (Izawa
et al., 2022; Koh and Nishimori, 2022; Abel et al., 2022). Furthermore, continuous variable quantum
computers, e.g., photonic platforms, could offer alternatives to avoid parameter space discretization
(Enomoto et al., 2023).

4.4. Assisting model analysis and evaluation

Improved climate model analysis and evaluation routines lead to better identification of climate model
biases. An important task towards these goals involves learning the probability distributions underlying
the models’ outputs. Classical generative methods are able to produce high-fidelity, realistic examples of
climate data, e.g., with dynamics consistent with diurnal cycles (Besombes et al., 2021; Behrens et al.,
2022). Given the ability of quantum systems to efficiently, i.e., with few parameters, describe complex
probability distributions (Du et al., 2020; Wu et al., 2021; Hangleiter and Eisert, 2023), quantum
generative models are natural candidates for achieving good extrapolating abilities using a small amount
of training data. Quantum generative models can be built using PQCs, and trained either by minimizing
the divergence between the target and the PQC distribution (Coyle et al., 2020) or in an adversarial manner
(Dallaire-Demers and Killoran, 2018). Once trained, new samples following climate variable distribu-
tions can be efficiently generated and used for further analysis.
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QML could also offer improvements in the classification of climate data, which is useful for improving
and complementing observational products to subsequently use them for model evaluation (Kaps et al.,
2023). PQCs again offer alternative ansatzes to classical ML with potential benefits (Du et al., 2020, 2021;
Abbas et al., 2021; Caro et al., 2022). Existing QML methods for classification include quantum kernels
and variants thereof (Schuld and Killoran, 2019; Havlicek et al., 2019; Huang et al., 2021), and QNNs
(Farhi and Neven, 2018; Abbas etal., 2021; Huretal., 2022). Among these, quantum convolutional neural
networks (Cong et al., 2019) have shown remarkable trainability and generalization capabilities when
used on quantum data (Cong et al., 2019; Pesah et al., 2021; Du et al., 2021), although recent works have
suggested the possibility of their classical simulability (Cerezo et al., 2023).

5. Ways ahead

Building on ML-hybrid modeling, in this perspective, we highlight the potential of quantum computing
and QML to address challenges in climate modeling. The potential benefits of these applications currently
come with limitations that need to be overcome, particularly concerning the short coherence times in
NISQ devices, the need for an efficient coupling to HPC facilities, the large amount of data needed for
typical climate applications, and the limited capacity for read-out. Nevertheless, it is crucial to start
exploring the applications proposed here, to timely adapt them to future quantum devices, and to enable
co-design approaches bringing together hardware engineers, software developers, and potential users in
the climate modelling community. In the following, we outline some possible first steps. For each task, the
role of the climate modeling community is to provide simplified problem instances and models on which
routines and solvers can be tested. From the quantum side, it is crucial to identify which problems most
naturally lend themselves to quantum solutions and to critically assess the potential advantages of suitable
quantum algorithms. Furthermore, a task for both communities, involving also the computer science
community, is to efficiently couple quantum computers and HPC facilities.

Quantum algorithms for solving partial differential equations could be applied to speed up the
dynamical core of climate models. However, due to the limited read-out capacities, only few variables
could be extracted from these runs. Already, with current HPC systems, it is cheaper to rerun the model if
additional analyses are needed instead of storing the entire output. Quantum computers might follow this
trend to an extreme degree, resulting in only a very limited output for each run, but repeating the runs a
large number of times. In the near future, work could be started by solving simple equations such as the 1D
shallow water equations, followed by adapting simplified climate models for quantum computers using
only a few grid points, vertical levels, and prognostic variables.

Another, potentially near-term, use of quantum computers is to improve subgrid-scale parameteriza-
tions. Running QML-based parameterizations coupled to the climate model requires considerable
quantum and classical runtime with overheads due to the quantum-classical coupling, since the quantum
computer needs to run the QML parameterization. Recently proposed options that could help circumvent
this challenge are surrogates or shadows of QML models (Schreiber et al., 2023; Jerbi et al., 2024). These
are classical models emulating the outputs of previously trained QML models, thus potentially retaining
some of the potential benefits while requiring a quantum device only during the training stage.

Tuning the free parameters of a climate model is a very time-consuming process that could be
improved using quantum-assisted automatic routines. A first step towards developing an automatic
calibration method could be tuning the Lorenz-96 model (Lorenz, 2006), which resembles the non-
linear behavior of the climate system (Mouatadid et al., 2019).

Finally, for the analysis and evaluation of the resulting models, QML methods could provide
potentially better classification of climate data, and alternative generative models efficiently reproduce
realistic distributions of climate variables. The first steps for this would be to adapt the existing small-scale
applications of quantum classifiers (Schuld and Killoran, 2019; Havlicek et al., 2019; Huang et al., 2021,
Farhi and Neven, 2018; Abbas etal., 2021; Hur etal., 2022) and quantum generative models (Coyle et al.,
2020; Dallaire-Demers and Killoran, 2018; Zoufal et al., 2019) to climate data, e.g., to simplified cloud
classification problems.

https://doi.org/10.1017/eds.2025.10010 Published online by Cambridge University Press


https://doi.org/10.1017/eds.2025.10010

e35-14 Mierk Schwabe et al.

All these research efforts are still in their infancy and face numerous challenges. Nevertheless, they
offer exciting potential to significantly boost climate modelling to allow more robust regional climate
projections and thus help manage the challenge posed by climate change, in addition to current efforts on
hybrid ESMs (Eyring et al., 2024b) and high resolution modelling (Stevens et al., 2024).
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