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Abstract

In this paper we consider a classic problem concerning the high excursion probabilities of a
Gaussian random field f living on a compact set T . We develop efficient computational
methods for the tail probabilities P{supT f (t) > b}. For each positive ε, we present
Monte Carlo algorithms that run in constant time and compute the probabilities with
relative error ε for arbitrarily large b. The efficiency results are applicable to a large
class of Hölder continuous Gaussian random fields. Besides computations, the change
of measure and its analysis techniques have several theoretical and practical indications
in the asymptotic analysis of Gaussian random fields.
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1. Introduction

In this paper we consider the design and the analysis of efficient Monte Carlo methods for
the high excursion events of Gaussian random fields. Consider a probability space (�, F , P)

and a Gaussian random field
f : T × � → R

living on a d-dimensional compact subset T ⊂ Rd . Most of the time, we omit the second
argument and write f (t). Let M = supt∈T f (t). In this paper, we are interested in the efficient
computation of the high excursion probabilities, i.e.

w(b) � P{M > b} as b → ∞.

On computing small probabilities converging to 0, it is sensible to consider the relative accuracy
that is defined as follows.

Definition 1. For some positive ε and δ, a Monte Carlo estimator Z of w is said to admit ε − δ

relative accuracy if
P{|Z − w| < εw} > 1 − δ. (1)

We propose a Monte Carlo estimator admitting ε − δ relative accuracy for computing the
tail probabilities w(b). One notable feature of this estimator is that the total computational
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788 X. LI AND J. LIU

complexity to generate one such estimator is bounded by a constant C(ε, δ) that is independent
of the excursion level b. Thus, to compute w(b) with any prescribed relative accuracy as in (1),
the total computational complexity remains bounded as the event becomes arbitrarily rare. With
such an algorithm, the computation of rare-event probabilities is at the same level of complexity
as the computation of regular probabilities. This efficiency result is applicable to a large class
of Hölder continuous Gaussian random fields and, thus, is very generally applicable.

The analysis mainly consists of two components. First, we consider a change of measure on
the continuous sample path space (denoted by Qb). The corresponding importance sampling
estimator given in (9) is unbiased. The first step of the analysis is to show that this estimator ad-
mits a standard deviation on the order O(w(b)). Such estimators are said to be strongly efficient,
which is a common efficiency concept in the rare-event simulation literature; see [6], [13].

The second part of the analysis concerns the implementation. The simulation of the es-
timators in the previous paragraph requires the generation of the entire sample path of f .
In that context, the process f is a continuous function. A computer can only generate finite-
dimensional objects, so we need to seek an appropriate discretization scheme in order to perform
the simulations. For instance, a natural approach is to choose a subset

Tm = (t1, . . . , tm) ⊂ T

and to use the discrete field on Tm to approximate the continuous field. Thanks to continuity
and under certain regularity conditions of Tm, one can show that P{supTm

f (t) > b}/w(b) → 1
as m → ∞, i.e. the bias vanishes as the size of the discretization increases. However, it is
well understood that this convergence is not uniform in b. The smaller w(b) is, the slower it
converges. Thus, the set Tm needs to grow in order to maintain a prefixed relative bias. In
fact, as discussed in [3], for any deterministic subset Tm, the size m must increase at least
polynomially with b to ensure a given relative accuracy. In this paper we introduce a random
discretization scheme adapted to (correlated with) the random field f . This adaptive scheme
substantially reduces the computation complexity to a constant level.

The high-level excursion of Gaussian random fields is a classic topic in probability. There is a
wealth of literature that contains general bounds on P{sup f (t) > b} as well as sharp asymptotic
approximations as b → ∞. For an incomplete list of references; see [10], [11], [12], [18], [19],
[25], [28], and [30]. Several methods have been introduced to obtain bounds and asymptotic
approximations, each of which imposes different regularity conditions on the random fields. A
general upper bound for the tail of max f (t) was developed in [11] and [14], which is known
as the Borel–TIS (Borel–Tsirelson–Ibragimov–Sudakov) lemma. For asymptotic results, there
are several methods. The double sum method [27] requires an expansion of the covariance
function around its global maximum and also locally stationary structure. The Euler–Poincaré
characteristics of the excursion set approximation (denoted by χ(Ab), where Ab is the excursion
set) uses the fact that P{M > b} ≈ E{χ(Ab)} and requires the random field to be at least
twice differentiable; see [1], [2], [31], [32]. The tube method [29] uses the Karhunen–Loève
expansion and imposes differentiability assumptions on the covariance function (fast decaying
eigenvalues) and regularity conditions on the random field. The Rice method [7], [8] represents
the distribution of M (density function) in an implicit form. For other convex functionals, the
exact tail approximation of integrals of exponential functions of Gaussian random fields was
developed in [21], [22], and [23]. Recently, Adler et al. [4] studied the geometric properties of
high-level excursion sets for infinitely divisible non-Gaussian fields as well as the conditional
distributions of such properties given the high excursion. In their recent paper, Alder et al. [3]
studied numerical methods and proposed importance sampling estimators of w(b). In particular,
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the authors show that the proposed estimator is a fully polynomial randomized approximation
scheme, i.e. to achieve the ε − δ relative accuracy, the total computation complexity is of order
O(ε−q1δ−q2 |log w(b)|q); see [26], [33], and [35]. When w(b) is very small, the complexity
O(|log w(b)|q) could be computationally heavy.

The algorithm in this paper is built upon a change of measure initially introduced in [3]. Nev-
ertheless, the results are nontrivial and are substantial generalizations of [3]. The contributions
are as follows. Firstly, we show that the continuous importance sampling estimator proposed
in [3] given as in (9) is strongly efficient to compute w(b) for Hölder continuous fields and under
mild regularity conditions. This generalizes the results in [3] who established that their relative
error grows polynomially fast with b unless the process is twice differentiable for which the
exact Slepian model is available. Second, we introduce an adaptive discretization scheme that
reduces the overall computational cost to a constant level. This is a substantial improvement
on [3] who require the discretization size grow polynomially in b for both differentiable and
non-differentiable fields.

The rest of this paper is organized as follows. In Section 2, we present the problem settings
and some existing results that we will refer to in the later analysis. In Section 3, we present
the Monte Carlo methods and the computed efficiency results. Numerical implementations are
included in Section 4. Sections 5 and 6 include the proofs of the theorems.

2. Preliminaries: Gaussian random fields and rare-event simulation

2.1. Gaussian random fields

Throughout this paper, we consider a Gaussian random field living on a d-dimensional
compact subset T ⊂ Rd , i.e. for any finite subset (t1, . . . , tn) ⊂ T , (f (t1), . . . , f (tn)) is a
multivariate Gaussian random vector. For each s, t ∈ T , we define the following functions:

μ(t) = E{f (t)}, C(s, t) = cov(f (s), f (t)), μT = sup
t∈T

|μ(t)|,

σ 2(t) = C(t, t), σ 2
T = sup

t∈T

σ 2(t), r(s, t) = C(s, t)

σ (s)σ (t)
.

Let Aγ be the excursion set over the level γ ,

Aγ = {t ∈ T : f (t) > γ }
and, thus, w(b) = P{Ab �= ∅}. Furthermore, we define the concept of a slowly varying
function.

Definition 2. A function L is said to be slowly varying at 0 if limx→0(L(tx)/L(x)) = 1 for
all t ∈ (0, 1).

Throughout this paper, we impose the following technical conditions.

(A1) The process f (t) is almost surely continuous in t .

(A2) For some α1 ∈ (0, 2], the correlation function satisfies the following local expansion:

1 − r(s, t) ∼ 	sL1(|t − s|)|t − s|α1 as t → s,

where 	s ∈ (0, ∞) is continuous in s and L1 is a slowly varying function at 0.
Furthermore, there exist nonnegative constants κr , β0, and positive constant β1 > 0
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satisfying β0 + β1 ≥ α1 such that

|r(t, t + s1) − r(t, t + s2)| ≤ κrL1(|s1|)|s1|β0 |s1 − s2|β1 for |s1| ≤ |s2|. (2)

(A3) The correlation function is nondegenerate, i.e. r(s, t) < 1 for all s �= t .

(A4) The standard deviation σ(t) belongs to either of the following two types.

Type 1. Where σ(t) = 1 for all t ∈ T .

Type 2. Where σ(t) has a unique maximum attained at t∗ and satisfies the following
conditions:

|σ(t) − σ(s)| ≤ κσ L2(|t − s|)|t − s|α2 for all s, t ∈ T ;
σ(t∗) − σ(t) ∼ �L2(|t∗ − t |)|t∗ − t |α2 as t → t∗,

where α2 ∈ (0, 1], � > 0, and L2 is a slowly varying function at 0 such that the
limit limx→0+(L1(x)/L2(x)) exists.

(A5) There exists κμ > 0 such that if σ(t) is of Type 1 then |μ(s) − μ(s + t)| ≤
κμ

√
L1(|t |)|t |α1/2; if σ(t) is of Type 2 then |μ(s) − μ(s + t)| ≤ κμ

√
L2(|t |)|t |α2/2.

(A6) There exist κm and ε small enough, such that mes(B(t, ε)∩T ) ≥ κmεdωd for any t ∈ T ,
where B(t, ε) is the ε-ball centered around t and ωd is the volume of the d-dimensional
unit ball.

Condition (A2) ensures that the normalized process (f (t) − μ(t))/σ (t) is Hölder continuous
with coefficient α1/2. The bound in (2) imposes slightly more conditions on the normalized
process. For instance, in the 1−r(s, t) = |t −s|α1 case, we can choose β0 = α1 −1 and β1 = 1
if α1 ≥ 1; β0 = 0 and β1 = α1 if 0 < α1 < 1. Condition (A3) excludes the degenerated case
as it is not essential and makes the technical development more concise. Conditions (A4) and
(A5) require that the mean and the standard deviation functions are also Hölder continuous. In
Condition (A4), we can adjust the constant � such that the limit limx→0+ L1(x)/L2(x) belongs
to the set {0, 1, ∞}. Condition (A5) ensures that the variation of the mean function is bounded
by those of f (t) and σ(t). In the later technical development, the analysis is divided into two
cases: α1 < α2 and α1 ≥ α2.

Throughout this paper, we use the following notation for the asymptotics. We write h(b) =
o(g(b)) if h(b)/g(b) → 0 as b → ∞; h(b) = O(g(b)) if h(b) ≤ κg(b) for some κ > 0;
h(b) = �(g(b)) if h(b) = O(g(b)) and g(b) = O(h(b)); h(b) ∼ g(b) if h(b)/g(b) → 1 as
b → ∞.

2.2. Rare-event simulation and importance sampling

2.2.1. Rare-event simulation. The research focus of rare-event simulation is on estimating w =
P{B}, where P{B} ≈ 0. It is customary to introduce a parameter, say b > 0, with a meaningful
interpretation from an applied standpoint such that w(b) → 0 as b → ∞. Consider an estimator
Zb such that EZb = w(b). A popular efficiency concept in the rare-event simulation literature
is the so-called strong efficiency, see [6], [13], [17], that is defined as follows.

Definition 3. A Monte Carlo estimator Zb is said to be strongly efficient in estimating w(b) if
E{Zb} = w(b) and there exists a κ0 ∈ (0, ∞) such that

sup
b>0

var(Zb)

w2(b)
< κ0.
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Strong efficiency measures mean squared error in relative terms for an unbiased estimator.
Suppose that a strongly efficient estimator of w(b) has been constructed, denoted by Zb, and
n independent and identically distributed (i.i.d.) replicates of Zb are generated Z

(1)
b , . . . , Z

(n)
b .

Let Z̄b,n � (1/n)
∑n

i=1 Z
(i)
b be the averaged estimator that has variance var(Zb)/n. By means

of the Chebyshev inequality, we obtain

P{|Z̄b,n − w(b)| > εw(b)} ≤ var(Zb)

nε2w2(b)
.

For any δ > 0, to achieve the ε − δ accuracy, we need to generate

n = var(Zb)

δε2w2(b)
≤ κ0

δε2

replicates of Zb. This choice of n is uniform in the rarity parameter b. We will later show that
the proposed continuous importance sampling estimator is strongly efficient.

2.2.2. Importance sampling and variance reduction. Importance sampling is based on the basic
identity,

P{B} =
∫

1{ω∈B} dP{ω} =
∫

1{ω∈B}
dP

dQ
(ω) dQ(ω) (3)

for a measurable set B, where we assume that the probability measure Q is such that Q{· ∩ B}
is absolutely continuous with respect to the measure P{·∩B}. We denote the indicator function
by 1{·}. If we use E

Q to denote expectation under Q then (3) trivially yields the random variable
Z(ω) = 1{ω∈B}(dP/dQ)(ω) is an unbiased estimator of P{B} > 0 under the measure Q, or
symbolically, E

QZ = P{B}.
A central component lies in the selection of Q in order to minimize the variance of Z. It is easy

to verify that if we choose Q∗{·} = P{· | B} = P{·∩B}/P{B} then the corresponding estimator
has 0 variance and, thus, it is usually referred to as the zero-variance change of measure.
However, Q∗ is clearly a change of measure that is of no practical value, since P{B} – the
quantity that we are attempting to evaluate in the first place – is unknown. Nevertheless, when
constructing a good importance sampling distribution for a family of sets {Bb : b ≥ b0} for
which 0 < P{Bb} → 0 as b → ∞, it is often useful to analyze the asymptotic behavior of Q∗
as P{Bb} → 0 in order to guide the construction of a useful Q.

2.2.3. The change of measure. We now present a change of measure defined on the continuous
sample path space denoted by Qb. This measure was initially proposed by Alder et al. [3].
We should be able to compute the Radon–Nikodym derivative and also be able to simulate
the process f under Qb. We describe the measure Qb from two aspects. First, we present its
Radon–Nikokym derivative with respect to P,

dQb

dP
(f ) =

∫
T

hb(t)
qb,t (f (t))

ϕt (f (t))
dt, (4)

where hb(t) is a density function on the set T , qb,t (x) is a density function on the real line, and
ϕt (x) is the density function of f (t) under the measure P evaluated at f (t) = x. We will need
to choose hb(t) and qb,t (x) such that the measure Qb satisfies the absolute continuity condition
to guarantee the unbiasedness.

We will present the specific forms of hb(t) and qb,t (x) momentarily. Before that, we will
complete the description of Qb by presenting the simulation method of f under Qb.
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Algorithm 1. (Continuous simulation.) To generate a random sample path under the measure
Qb, we need a three-step procedure.

Step 1. Generate a random index τ ∈ T following the density hb(t).

Step 2. Conditional on the realization of τ , sample f (τ) from the density qb,τ (x).

Step 3. Conditional on the realization of (τ, f (τ )), generate {f (t) : t �= τ } from the original
conditional distribution P{f ∈ · | f (τ)}.

It is not difficult to verify that the above three-step procedure is consistent with the Radon–
Nikodym derivative given as in (4). The process f (t) mostly follows the distribution under P

except at one random location τ where f (τ) follows an alternative distribution qb,τ (x). The
overall Radon–Nikodym derivative is an average of the likelihood ratio qb,t (f (t))/ϕt (f (t))

with respect to the density hb(t).

Now, we present the specific forms of hb(t) and qb,t (x) for the computation of w(b). For
some positive constant a, let γ be

γ = b − a

b
. (5)

We choose

qb,t (x) = ϕt (x)
1{f (t)>γ }

P{f (t) > γ } , (6)

i.e. the conditional distribution of f (t) given that f (t) > γ . The distribution of τ is chosen as

hb(t) = P{f (t) > γ }∫
T

P{f (s) > γ } ds
. (7)

The choice of a in (5) does not affect the efficiency results, nor the complexity analysis. To
simplify the discussion, we fix a to be unity, i.e.

γ = b − 1

b
.

The random index τ indicates the location where the distribution of the random field is changed.
Furthermore, qb,t (x) is chosen to be the conditional distribution given a high excursion. The
index τ basically localizes the maximum of f (t). Thus, as an approximation of the zero-
variance change of measure, the distribution hb(t) should be chosen close to the conditional
distribution of the maximum t∗ � arg supt f (t) given that f (t∗) > b. This is our guideline to
choose hb(t). For each t ∈ T , the conditional probability that f (t) > b given M > b is

P{f (t) > b | M > b} = P{f (t) > b}
P{M > b} .

The denominator P{M > b} is free of t and, thus, P{f (t) > b | M > b} ∝ P{f (t) > b}. Our
choice of hb(t) ∝ P{f (t) > γ } approximates P{f (t) > b | M > b} by replacing b with γ

mostly for technical convenience. With such choices of hb(t) and qb,t (x), the Radon–Nikodym
takes the following form:

dQb

dP
=

∫
T

1{f (t)>γ } dt∫
T

P{f (t) > γ } dt
= mes(Aγ )∫

T
P{f (t) > γ } dt

, (8)
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where

mes(Aγ ) =
∫

1{t∈Aγ } dt

is the Lebesgue measure of Aγ . According to Fubini’s theorem, the denominator of (8) is∫
T

P{f (t) > γ } dt = E[mes(Aγ )].

Remark 1. For different problems, we may choose different hb(t) and qb,t (x) to approximate
various conditional distributions. For instance, qb,t (x) was chosen to be in the exponential
family of ϕt (x) in [24] for the derivation of tail approximations of

∫
ef (t) dt .

2.3. The bias control

In addition to the variance control, we also need to account for the computational effort
required to generate Zb. This issue is especially important in this paper. The random objects
in this analysis are continuous processes. For the implementation, we need to use a discrete
object to approximate the continuous process. Inevitably, discretization induces bias, though
it vanishes as the discretization mesh increases. To ensure the ε − δ relative accuracy, the bias
needs to be controlled to a level less than εw(b).

In [3], it was established that, to ensure a bias of order εw(b), the size of the discretization
must grow at a polynomial rate of b for both differentiable and non-differentiable fields. The
authors also provided an optimality result. For twice differentiable and homogeneous fields,
the size of a prefixed/deterministic set Tm must be at least of order O(bd) so that the bias can
be controlled to the level εw(b). In this paper, we adopt an adaptive discretization scheme that
substantially reduces the necessary size of Tm to a constant.

3. Main results

The main results of this paper consist of a random discretization scheme of T associated
with the change of measure Qb and the efficiency results of the importance sampling estimators
and the overall complexity.

3.1. An adaptive discretization scheme and the algorithms

3.1.1. The continuous estimator and the challenges. Based on the change of measure Qb, an
unbiased estimator for w(b) is given by

Zb � 1{M>b}
dP

dQb

= 1{M>b}
∫
T

P{f (t) > γ } dt

mes(Aγ )
. (9)

We call Zb the continuous estimator. It is straightforward to obtain Eb{Zb} = w(b), where we
use Eb{·} to denote the expectation under the measure Qb. The second moment of Zb is

Eb{Z2
b} = Eb

{ {∫
T

P{f (t) > γ } dt}2

mes2(Aγ )
; M > b

}
,

where f (t) is generated from Algorithm 1. We will later show that Zb (under regularity
conditions) is strongly efficient, i.e. Eb{Z2

b} = O(w2(b)).
For the implementation, we are not able to simulate the continuous field f and, therefore,

have to adopt a simulatable estimator, Ẑb, that approximates the continuous estimator Zb.
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A natural approach is to consider the random field on a finite set Tm = {t1, . . . , tm} ⊂ T and to
use P{maxTm f (ti) > b} as an approximation of w(b) = P{supT f (t) > b}. The bias is given
by

P

{
sup
T

f (t) > b
}

− P

{
max
Tm

f (t) > b
}

= P{Tm ∩ Ab = ∅, M > b}.
We explain without rigorous derivation that the above scheme usually induces a heavy

computational overhead. To simplify the discussion, we consider that f is a stationary process
and its covariance function satisfies the local expansion (slightly abusing the notation)

C(t) � cov(f (s), f (s + t)) = 1 − |t |α + o(|t |α). (10)

Then, the process is Hölder continuous with coefficient α/2. Under this setting, standard
results yield an estimate of the excursion set E{mes(Ab) | M > b} = �(b−2d/α). Thanks to
stationarity, Ab is approximately uniformly distributed over the domain T .

Note that the bias term P{Tm ∩Ab = ∅, M > b} is the probability that Tm does not intersect
with Ab. Therefore, if m � b2d/α , Tm is too sparse such that it is not able to catch the set
Ab no matter how Tm is distributed over T . It is necessary to have a lattice of size at least of
order O(b2d/α). This heuristic calculation was made rigorous for smooth fields in [3]. Thus,
the computational complexity to generate the process f on the set Tm grows at a polynomial
rate with b. In this paper, we aim to further reduce the discretization size to a constant level
while still maintaining the ε-relative bias. For this reason, we propose to randomly sample an
appropriate discrete set that is correlated with f .

3.1.2. A closer look at the excursion set Aγ . The proposed adaptive discretization scheme is
closely associated with the three-step simulation procedure. Of the three steps in Algorithm 1,
Step 1 and Step 2 are implementable. It is Step 3, generating {f (t) : t �= τ } conditional on
(τ, f (τ )), that requires discretization. In order to estimate w(b) and to generate the estimator
Zb, we need only to simulate the random indicator 1{M>b} and the volume of the excursion set
mes(Aγ ) conditional on (τ, f (τ )). The term

∫
T

P{f (t) > γ } dt is a deterministic number that
can be computed via routine numerical methods.

In what follows, we focus on the simulation and approximation of 1{M>b} and mes(Aγ ). For
the purposes of illustration, we discuss the stationary case with covariance function satisfying
the expansion in (10). We define ζ = b2/α and the normalized process

g(t) = b

(
f

(
τ + t

ζ

)
− b

)
. (11)

Note that b(f (τ) − γ ) asymptotically follows an exponential distribution. Conditional on
f (τ) = γ + z/b the g process has expectation Eb{g(t) | f (τ) = γ + z/b} = z − 1 − (1 +
o(1))|t/ζ |α[b2 + (z − 1)]. For all z = o(b2), we have

Eb

{
g(t) | f (τ) = γ + z

b

}
= z − 1 − (1 + o(1))|t |α as b → ∞.

In addition, the covariance of g(t) is cov(g(s), g(t)) = (|s|α + |t |α − |s − t |α) + o(1) where
o(1) → 0 as b → ∞. Therefore, g(t) converges in distribution to a Gaussian process with the
above mean and covariance function. In addition, f (τ + t/ζ ) ≥ γ if and only if g(t) > −1.
The excursion set Aγ can be written as

Aγ = τ + ζ−1A
g
−1 � {τ + ζ−1t : t ∈ A

g
−1},
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where A
g
−1 = {t : g(t) > −1}. Note that the process g(t) is a Gaussian process with standard

deviation O(|t |α/2) and a negative drift of order O(−|t |α). Therefore, in expectation, g(t) goes
below −1 when z � |t |α , where z is asymptotically an exponential random variable. Thus, the
excursion set A

g
−1 is of order O(1). Furthermore, Aγ is a random set within O(ζ−1) distance

from the random index τ . The volume mes(Aγ ) is of order O(ζ−d). This heuristic calculation
is well understood; see [5], [9]. The above discussion quantifies the intuition that τ localizes
the global maximum of f . It also localizes the excursion set Aγ . Therefore, upon considering
approximating/computing mes(Aγ ) and 1{M>b}, we should focus on the region around τ .

Conditional on a specific realization of the process f , we formulate the approximation of
mes(Aγ ) as an estimation problem. The ratio mes(Aγ )/mes(T ) ∈ [0, 1] corresponds to the
following probability:

mes(Aγ )

mes(T )
= P{U ∈ Aγ },

where U is a uniform random variable on the set T with respect to the Lebesgue measure.
Estimating mes(Aγ ) constitutes another rare-event simulation problem.

3.1.3. An adaptive discretization scheme. Based on the understanding of the excursion set Aγ ,
we construct a discretization scheme adaptive to the realization of τ . To proceed, we provide
the general form of ζ in the presence of slowly varying functions

ζ � max{|s|−1 : L1(|s|)|s|α1 ≥ b−2 or L2(|s|)|s|α2 ≥ b−2}.
In the case of constant variance, we formally define α2 = ∞ and, thus, ζ is defined as ζ �
max{|s|−1 : L1(|s|)|s|α1 ≥ b−2}. We further define two other scale factors,

ζi � max{|s|−1 : Li(|s|)|s|αi ≥ b−2}, i = 1, 2. (12)

It is straightforward to verify that ζ = max(ζ1, ζ2). Consider an isotropic distribution (centered
around 0) with density k(t), i.e. k(t) = k(s) if |s| = |t |. We choose k(t) to be reasonably
heavy-tailed such that for some ε1 > 0,

k(t) ∼ |t |−d−ε1 as t → ∞.

In addition there exists a κ1 > 0 such that k(t) ≤ κ1 for all t . For instance, we can choose k(t)

to be, but not necessarily restricted to, the multivariate t-distribution. Furthermore, conditional
on τ , we define the rescaled density

kτ,ζ (t) = ζ dk(ζ(t − τ)) (13)

that centers around τ and has scale ζ−1. We construct a τ -adapted random subset of T by
generating i.i.d. random variables from the density kτ,ζ (t), denoted by t1, . . . , tm. Then, define

m̂es(Aγ ) � 1

m

m∑
i=1

1{f (ti )>γ }
kτ,ζ (ti)

(14)

that is an unbiased estimator of mes(Aγ ) in the sense that for each realization of f ,

Eτ,ζ {m̂es(Aγ ) | f } = mes(Aγ ),

where Eτ,ζ {· | f } is the expectation with respect to t1, . . . , tm under the density kτ,ζ for a
particular realization of f . Notationally, if ti /∈ T then 1{f (ti )>γ } = 0.
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Similar to the approximation of mes(Aγ ), we use the same τ -adapted random subset to
approximate 1{M>b}, i.e.

1{maxm
i=1 f (ti )>b} ≈ 1{M>b} .

Based on the above discussions, we present the final algorithm.

Algorithm 2. The algorithm consists of the following steps.

Step 1. Generate a random index τ ∈ T following the density hb(t) in (7).

Step 2. Conditional on the realization of τ , sample f (τ) from qb,t (x) in (6).

Step 3. Conditional on the realization of τ , generate i.i.d. random indices t1, . . . , tm following
density kτ,ζ (t).

Step 4. Conditional on the realization of (τ, f (τ )), generate multivariate normal random vector
(f (t1), . . . , f (tm)) from the original/nominal conditional distribution of P{· | f (τ)}.

Step 5. Output

Ẑb = 1{maxm
i=1 f (ti )>b}

m̂es(Aγ )

∫
T

P{f (t) > γ } dt,

where m̂es(Aγ ) is given as in (14).

We will call Ẑb the discrete estimator.

3.2. The main results

We present the efficiency results of the proposed algorithms.

Theorem 1. Consider a Gaussian random field f that satisfies conditions (A1)–(A6) of Defi-
nition 2. Let Zb be given as in (9) and Algorithm 1. Then, Zb is strongly efficient in estimating
w(b), i.e. there exists κ0 such that

Eb{Z2
b} ≤ κ0w

2(b) for all b > 0.

Theorem 2. Consider a Gaussian random field f that satisfies conditions (A1)–(A6) of Defi-
nition 2. Let Ẑb be the estimator given by Algorithm 2. There exists λ > 0 such that for any
ε > 0 if we choose m = λε−d(2/min(α1,α2)+2/β1) then

|Eb{Ẑb} − w(b)| ≤ εw(b) for all b > 0.

Furthermore, there exists κ0 such that

Eb{Ẑ2
b} ≤ κ0w

2(b).

With the above results, we generate n i.i.d. replicates of Ẑb, denoted by Ẑ
(1)
b , . . . , Ẑ

(n)
b ,

with m chosen as in Theorem 2 such that the averaged estimator, (1/n)
∑n

i=1 Ẑ
(i)
b , has its bias

bounded by εw(b)/2 and its variance bounded by κ0w
2(b)/n. To achieve ε relative error with

(1 − δ) confidence, we need to choose n = 4κ0/ε
2δ, i.e.

P

{∣∣∣∣ 1

m

n∑
i=1

Ẑ
(i)
b − w(b)

∣∣∣∣ > εw(b)

}
< δ.

The total computational complexity is of order O(m3ε−2δ−1), where m3 is the complexity of
the Cholesky decomposition of the covariance matrix for the generation of an m-dimensional
Gaussian random vector.
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4. Numerical analysis

We present four numerical examples in order to demonstrate the performance of our algo-
rithm. First, we consider a one-dimensional Gaussian field whose tail probability is known in a
closed form. For the discretization, we deploy m = 20 points when d = 1, and 40 points when
d = 2. To make sure that the bias is small enough, we have performed the simulations with ten
times more points and the results did not change substantially. We only report the results for
the cases with fewer points to illustrate the efficiency.

Example 1. Consider f (t) = X cos t + Y sin t, T = [0, 3
4 ], where X and Y are independent

standard Gaussian variables. The probability P{supt∈T f (t) > b} is known in closed form
(see [1]),

P

{
sup

0≤t≤3/4
f (t) > b

}
= 1 − �(b) + 3

8π
e−b2/2. (15)

In Table 1, we list the simulation results.

The following three examples consider random fields over a two-dimensional square.

Example 2. Consider a mean 0, unit variance, stationary, and smooth Gaussian field over
T = [0, 1]2 with covariance function

C(t) = e−|t |2 .

In Table 2, we list the simulation results.

Example 3. Consider a continuous inhomogenous Gaussian field on T = [0, 1]2 with mean
and covariance function

μ(t) = 0.1t1 + 0.1t2, C(s, t) = e−|t−s|2 .

In Table 3, we list the simulation results.

Example 4. Consider the continuous Gaussian field living on T = [0, 1]2 with mean and
covariance function

μ(t) = 0.1t1 + 0.1t2, C(s, t) = e−|t−s|/4.

In Table 4, we list the simulation results.

Table 1: Simulation results for the cosine process in Example 1, where n = 1000 and m = 20, and where
k(t) is chosen to be the density function of the t-distribution with degrees of freedom 3. The ‘True value’
is calculated from (15), ‘Est.’ is the estimated value, ‘Std. dev.’ is the standard deviation of the averaged
Monte Carlo estimator over n i.i.d. samples, and the ‘Coefficient of variation’ is the ratio between the

standard deviation of a single Monte Carlo estimator and its expectation.

b True value Est. Std. dev. Coefficient of variation

3 2.68 × 10−3 2.55 × 10−3 1.09 × 10−4 1.35
4 7.17 × 10−5 7.17 × 10−5 3.22 × 10−6 1.42
5 7.31 × 10−7 7.33 × 10−7 3.41 × 10−8 1.47
6 2.80 × 10−9 2.84 × 10−9 1.35 × 10−10 1.51
7 4.01 × 10−12 4.07 × 10−12 1.98 × 10−13 1.54
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Table 2: Simulation results for Example 2, where n = 1000, m = 40, and k(t) = (25/32π)(1 +
0.64|t |2)−3.

b Est. Std. dev. Coefficient of variation

3 9.32 × 10−3 3.63 × 10−4 1.23
4 3.39 × 10−4 1.51 × 10−5 1.41
5 4.20 × 10−6 1.71 × 10−7 1.28
6 1.93 × 10−8 8.15 × 10−10 1.33
7 3.25 × 10−11 1.27 × 10−12 1.23
8 1.87 × 10−14 7.11 × 10−16 1.20

Table 3: Simulation results for Example 3, where n = 1000, m = 40, and k(t) is the same as that of
Example 2.

b Est. Std. dev. Coefficient of variation

3 1.25 × 10−2 5.61 × 10−4 1.42
4 4.95 × 10−4 1.95 × 10−5 1.24
5 7.16 × 10−6 2.80 × 10−7 1.24
6 3.51 × 10−8 1.36 × 10−9 1.22
7 6.69 × 10−11 2.72 × 10−12 1.29
8 4.50 × 10−14 1.91 × 10−15 1.34

Table 4: Simulation results for Example 4, where n = 1000, m = 40, and k(t) = (1/8π)(1 + |t |2)−3.

b Est. Std. dev. Coefficient of variation

3 1.35 × 10−2 6.63 × 10−4 1.55
4 7.40 × 10−4 4.36 × 10−5 1.86
5 1.54 × 10−5 7.53 × 10−7 1.55
6 9.93 × 10−8 5.23 × 10−9 1.66
7 2.87 × 10−10 1.33 × 10−11 1.47
8 2.60 × 10−13 1.41 × 10−14 1.71

For all the examples, the ratios of standard error over the estimated value do not increase as b

increases. This is consistent with our theoretical analysis. Also note that m does not increase
as the level increases, which reduces the computational complexity significantly. Overall, the
numerical estimates are very accurate.

5. Proof of Theorem 1

Throughout the proof, we will use κ as a generic notation to denote large and not-so-important
constants whose value may vary from place to place. Similarly, we use ε0 as a generic notation
for small positive constants.

The first result we cite is the Borel–TIS inequality (see [2], [11], [14]) that will be used very
often in our technical development.
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Proposition 1. Let f (t) be a centered Gaussian process almost surely bounded in T . Then,
E{ supt∈T f (t)} < ∞ and

P
(

sup
t∈T

f (t) − E{ sup
t∈T

f (t)} ≥ b
)

≤ exp

(
− b2

2σ 2
T

)
.

In order to show strong efficiency, we need to establish a lower bound of the probability

w(b) = Eb

{
1

mes(Aγ )
; M > b

} ∫
T

P{f (t) > γ } dt

and an upper bound of the second moment

Eb(Z
2
b) = Eb

{
1

mes2(Aγ )
; M > b

}[∫
T

P{f (t) > γ } dt

]2

.

The central analysis lies in the following two quantities:

I1 = Eb

{
1

mes(Aγ )
; M > b

}
, I2 = Eb

{
1

mes2(Aγ )
; M > b

}
.

We will show that there exist constants κ and ε0 such that

I1 ≥ ε0ζ
d, I2 ≤ κζ 2d .

If these inequalities are proved then lim supb→∞ I2/I
2
1 < ∞ is in place and we conclude our

proof for Theorem 1. For the rest of the proof, we establish these two inequalities.
To proceed, we describe the conditional Gaussian random field given f (τ). First, if we write

f (τ) = γ + z/b then (conditional on τ ) z asymptotically follows an exponential distribution
with expectation σ 2(τ ). Conditional on f (τ) = γ + z/b, let

f (t + τ) = E

{
f (t + τ) | f (τ) = γ + z

b

}
+ f0(t), (16)

where f0(t) is a zero-mean Gaussian process. By means of conditional Gaussian calculation,
the conditional mean and conditional covariance function are given by

μτ (t) = E

{
f (t + τ) | f (τ) = γ + z

b

}
= μ(t + τ) + σ(τ + t)

σ (τ )
r(τ + t, τ )

(
γ + z

b
− μ(τ)

)
, (17)

C0(s, t) = cov(f0(s), f0(t))

= σ(τ + s)σ (τ + t)[r(s + τ, t + τ) − r(τ + t, τ )r(τ + s, τ )].
The next lemma controls the conditional variance.

Lemma 1. Under conditions (A1)–(A6) of Definition 2, there exists a constant λ1 > 0 such
that, for all τ ∈ T and large enough b, the following statements hold.

(i) For all t + τ ∈ T ,
C0(t, t) ≤ λ1L1(|t |)|t |α1 .
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(ii) For s, t ∈ T ,

var(f0(s) − f0(t)) ≤ λ1 max(L1(|t − s|)|t − s|α1 , L2(|t − s|)|t − s|α2).

(iii) For any ε > 0, there exists δ > 0 (independent of b) such that for each t ,

E

{
sup

|s−t |≤δζ−1
f0(s)

}
≤ ε

b
.

The proofs for (i) and (ii) are an application of conditions (A2), (A3), and (A6) of Definition 2 and
elementary calculations. Part (iii) is a direct corollary of (ii) and Dudley’s entropy bound [16,
Theorem 1.1]. We omit the detailed derivations. We proceed to the analysis of I1 and I2 by
considering the Type 1 and Type 2 standard deviation functions (condition (A4)) separately.

Here, we provide the proof only when σ(t) is of Type 1 in condition (A4), i.e. a constant
variance. The proof of the non-constant case is similar; see [20]. The constant variance case
corresponds to α2 = ∞. The scaling factor is given by ζ = ζ1. We aim to show that I2 ≤ κζ 2d

1
and I1 ≥ ε0ζ

d
1 .

5.1. The I2 term

For some y0 > 0 chosen to be sufficiently small (independent of b) and to be determined in
the later analysis, the I2 term is bounded by

Eb

{
1

mes2(Aγ )
; M > b

}
≤ y−2d

0 ζ 2d
1 + Eb

{
1

mes2(Aγ )
; mes(Aγ ) < yd

0 ζ d
1 , M > b

}
. (18)

To control the second term of the above inequality, we need to provide a bound on the following
tail probability for 0 < y < y0:

Qb{mes(Aγ ) < ydζ−d
1 , M > b} =

∫
P

{
mes(Aγ ) < ydζ−d

1 , M > b | f (τ) = γ + z

b

}
× hb(τ )

qb,τ (γ + z/b)

b
dτ dz. (19)

The probability inside the integral is with respect to the original measure P because, con-
ditional on f (τ), f (t) follows the original conditional distribution. We develop bounds for
P{mes(Aγ ) < ydζ−d

1 , M > b | f (τ) = γ + z/b} under two situations: z > 1 and 0 < z ≤ 1.
Situation 1. Where z > 1. Define a constant cd = ω

−1/d
d , where ωd is the volume of the d-

dimensional unit ball. The event {mes(Aγ ) < ydζ−d
1 } implies the event {inf |t−τ |≤cdyζ−1

1
f (t) ≤

γ }. Otherwise, if {inf |t−τ |≤cdyζ−1
1

f (t) > γ } then {|t − τ | ≤ cdyζ−1
1 } ⊆ Aγ and mes(Aγ ) ≥

ydζ−d
1 . Thus, we have the bound

P

{
mes(Aγ ) ≤ ydζ−d

1 , M > b | f (τ) = γ + z

b

}
≤ P

{
inf

|t−τ |≤cdyζ−1
1

f (t) ≤ γ | f (τ) = γ + z

b

}
.

Using the representation in (16), the right-hand side of the above probability can be expressed
as

P

{
inf

|t |≤cdyζ−1
1

f0(t) + μτ (t) ≤ γ
}
. (20)

https://doi.org/10.1239/aap/1444308882 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308882


Rare-event simulation for Gaussian random fields 801

Note that μτ (0) = γ + z/b > γ + 1/b. For the constant variance case, (17) can be written as

μτ (t) = μ(t + τ) + r(τ + t, τ )

(
γ + z

b
− μ(τ)

)
. (21)

According to condition (A5), we have |μτ (t) − μτ (0)| = O(bL1(t)|t |α1) + O(
√

Lt(t)|t |α1).
According to the choice of ζ1 in (12), we have

bL1(t)|t |α1 ≤ κbL1(cdyζ−1
1 )yα1ζ

−α1
1 = κb−1 L1(cdyζ−1

1 )

L1(ζ
−1
1 )

yα1 for |t | ≤ cdyζ−1
1 ,

According to [20, Lemma 5(i)], the ratio L1(cdyζ−1
1 )/L1(ζ

−1
1 ) varies slower than any polyno-

mial of y. Thus, we have
|μτ (t) − μτ (0)| ≤ yα1/2b−1. (22)

By choosing y small, we have

μτ (t) ≥ γ + 1

2b
for |t | ≤ cdyζ−1

1 . (23)

Furthermore, by Lemma 1(i) the conditional variance is C0(t, t) ≤ λ1L1(cdyζ−1
1 )c

α1
d yα1ζ

−α1
1 .

Following the same argument as that of (22), we obtain

C0(t, t) = O(yα1/2b−2) for |t | ≤ cdyζ−1
1 . (24)

By Lemma 1(iii), E{sup|t |≤cdy0ζ
−1
1

bf0(t)} = o(1) as y0 → 0. So we can choose y0 small
enough such that

E

{
sup

|t |≤cdy0ζ
−1
1

f0(t)
}

≤ 1

4b
. (25)

By the Borel–TIS inequality (see Proposition 1), (20), (23), (24), and (25), there exists a positive
constant ε0, such that

P

{
mes(Aγ ) ≤ ydζ−d

1 , M > b | f (τ) = γ + z

b

}
≤ P

{
inf

|t |≤cdyζ−1
1

|f0(t)| >
1

2b

}
≤ exp(−ε0y

−α1/2).

Situation 2. Where 0 < z ≤ 1. With y0 defined to satisfy (23) and (25), we let c = cdy0
and define a finite subset T̃ = {t1, . . . , tN } ⊂ T such that

1. For i �= j, |ti − tj | ≥ c/2ζ1.

2. For any t ∈ T , there exists i, such that |t − ti | ≤ c/ζ1.

Furthermore, let

Bi = {t ∈ T : |t − ti | ≤ cζ−1
1 } for i ∈ {1, 2, . . . , N}

and, thus,
⋃

i Bi = T . Note that

P

{
mes(Aγ ) ≤ ydζ−d

1 , M > b | f (τ) = γ + z

b

}
≤

N∑
i=1

P

{
mes(Aγ ) ≤ ydζ−d

1 , sup
t∈Bi

f (t) > b | f (τ) = γ + z

b

}
.
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With cd as previously chosen, each of the summands in the above equation is bounded by

P

{
mes(Aγ ) ≤ ydζ−d

1 , sup
t∈Bi

f (t) > b | f (τ) = γ + z

b

}
≤ P

{
sup

t∈Bi,|s−t |≤cdyζ−1
1

|f (t) − f (s)| >
1

b
, sup
t∈Bi

f (t) > b | f (τ) = γ + z

b

}
. (26)

The above inequality is derived from the following argument. Suppose that f (t0) > b.
In order to have mes(Aγ ) ≤ ydζ−d

1 , with the same argument as that of (20), we must
have inf |s−t0|≤cdyζ−1

1
f (s) ≤ b − 1/b. Thus, there exist |s0 − t0| ≤ cdyζ−1

1 and |f (s0) −
f (t0)| > 1/b. Therefore, the event {mes(Aγ ) > ydζ−d

1 , supt∈Bi
f (t) > b} is a subset of

{sup
t∈Bi,|s−t |≤cdyζ−1

1
|f (t) − f (s)| > 1/b, supt∈Bi

f (t) > b}, which yields (26).
Selecting δ0, δ1 > 0 small enough, and λ large enough, we provide a bound for (26) under

the following four cases.

Case 1. When 0 < |ti − τ | < y−δ0ζ−1
1 .

Case 2. When y−δ0ζ−1
1 < |ti − τ | < δ1.

Case 3. When |ti − τ | ≥ δ1, y < b−λ.

Case 4. When |ti − τ | ≥ δ1, y ≥ b−λ.

To facilitate the discussion, define xi � ζ1|ti − τ |.
Case 1. When 0 < |ti − τ | < y−δ0ζ−1

1 . We provide a bound for (26) via the conditional
representation (16) and the calculation in (17). According to conditions (A2) and (A5) of
Definition 2, for |t − s| ≤ cdyζ−1

1 and t ∈ Bi , we have

|μτ (t) − μτ (s)| ≤ κμζ
−α1/2
1

√
L1

(
y

ζ1

)
yα1/2 + κr(xi + 1)β0L1((xi + 1)ζ−1

1 )yβ1ζ
−α1
1 b.

According to the definition of ζ1 in (12) and [20, Lemma 5(i)], the above equation can be
bounded by

|μτ (t) − μτ (s)| ≤ 2κμyα1/4 + 2κry
−δ0β0+β1−ε0

b
.

We choose δ0 small such that it is further bounded by |μτ (t) − μτ (s)| ≤ κyε0b−1 for some
possibly different ε0 > 0. Furthermore, we choose y0 > 0 small enough such that for 0 < y <

y0 and |s − t | < cdyζ−1
1 ,

|μτ (s) − μτ (t)| ≤ 1

2b
.

The above inequality provides a bound on the variation of the mean function over the set Bi

when ti is within y−δ0ζ−1
1 distance close to τ . The probability in (26) can be bounded by

(26) ≤ P

{
sup

t∈Bi,|t−s|≤cdyζ−1
1

|f0(t) − f0(s)| >
1

2b

}
.

Note that, by Lemma 1(ii), for |s − t | < cdyζ−1
1 and for y < y0, we have

var(f0(s) − f0(t)) ≤ λ1
L1(cdyζ−1

1 )

L1(ζ
−1
1 )

yα1b−2 = O(yα1/2b−2).
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We apply the Borel–TIS inequality (see Proposition 1) to the double-indexed Gaussian field
ξ(s, t) � f0(s) − f0(t) and show that there exists a positive constant ε0 such that

P

{
1

mes(Aγ )
> y−dζ d

1 , sup
t∈Bi

f (t) > b | f (τ) = γ + z

b

}
≤ P

{
sup

t∈Bi,|t−s|≤cdyζ−1
1

|f0(t) − f0(s)| >
1

2b

}
≤ exp(−ε0y

−α1/2).

Combining all the Bi such that |ti − τ | < y−δ0ζ−1
1 , we obtain

P

{
1

mes(Aγ )
> y−dζ d

1 , sup
|t−τ |≤y−δ0 ζ−1

1

f (t) > b | f (τ) = γ + z

b

}
= O(y−δ0d exp(−ε0y

−α1/2))

≤ exp(−y−ε0),

possibly redefining ε0.
Case 2. When y−δ0ζ−1

1 < |ti − τ | < δ1. For this case, we implicitly require that y−δ0ζ−1
1 <

δ1. For t ∈ Bi and y small enough, we have

P

{
sup

t∈Bi,|s−t |≤cdyζ−1
1

|f (t) − f (s)| >
1

b
, sup
t∈Bi

f (t) > b | f (τ) = γ + z

b

}

≤ P

{
sup
t∈Bi

f (t) > b | f (τ) = γ + z

b

}
.

According to condition (A2) and (21), we have the bound

μτ (t) ≤ b − 	τ

2

L1(xiζ
−1
1 )

L1(ζ
−1
1 )

x
α1
i b−1 for τ + t ∈ Bi.

According to Lemma 1 and the definition of ζ1, the variance of f0(t) is controlled by

C0(t, t) ≤ 2λ1
L1(xiζ

−1
1 )

L1(ζ
−1
1 )

x
α1
i b−2.

According to Proposition 1 and [20, Lemma 5(ii)], we have L1(xiζ
−1
1 )/L1(ζ

−1
1 )x

α1
i > x

α1/2
i

for y−δ0 < xi < δ1ζ1. It follows that

P

{
sup
t∈Bi

f (t) > b | f (τ) = γ + z

b

}
≤ P

{
sup

t+τ∈Bi

f0(t) >
	τ

2

L1(xiζ
−1
1 )

L1(ζ
−1
1 )

x
α1
i b−1

}
≤ exp

(
− 	2

τ

8λ1

L1(xiζ
−1
1 )

L1(ζ
−1
1 )

x
α1
i

)
≤ exp

(
− 	2

τ

8λ1
x

α1/2
i

)
.
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Combining all the Bi such that y−δ0 < xi < δ1ζ1, we have

P

{
1

mes(Aγ )
> y−dζ d

1 , sup
y−δ0 ζ−1

1 <|t−τ |<δ1

f (t) > b | f (τ) = γ + z

b

}

≤
∞∑

k=0

κ(y−δ0 + k)d−1 exp

[
− 	2

τ

8λ1
(y−δ0 + k)α1/2

]
≤ exp(−y−ε0)

for some constant ε0 > 0.
Case 3. When |ti − τ | ≥ δ1 and y < b−λ. Since C(s, t) is uniformly Hölder continuous,

we can always choose λ large such that for |s − t | ≤ cdyζ−1
1 ≤ cdb−λζ−1

1 ,

|μτ (t) − μτ (s)| ≤ 1

4b
.

By Lemma 1(ii) and [20, Lemma 5(i)], for |s−t | ≤ cdyζ−1
1 , the conditional variance var(f0(s)−

f0(t)) is bounded by

var(f0(s) − f0(t)) ≤ λ1
L1(cdyζ−1

1 )

L1(ζ
−1
1 )

yα1b−2 = O(yα1/2b−2).

Thus, there exists a constant ε0 > 0 such that

P

{
sup

t∈Bi,|s−t |≤cdyζ−1
1

|f (t) − f (s)| >
1

b
, sup
t∈Bi

f (t) > b | f (τ) = γ + z

b

}

≤ P

{
sup

t∈Bi,|s−t |≤cdyζ−1
1

|f0(t) − f0(s)| >
1

2b

}
≤ 2 exp(−ε0y

−α1).

Note that ζ1 � b4/α1 , so for y < b−λ, we have

P

{
1

mes(Aγ )
> y−dζ d

1 , sup
|t−τ |>δ1

f (t) > b | f (τ) = γ + z

b

}
≤ O(ζd

1 ) sup
i

P

{
sup

t∈Bi,|s−t |≤cdyζ−1
1

|f (t) − f (s)| >
1

b
, sup
t∈Bi

f (t) > b | f (τ) = γ + z

b

}
≤ O(b4d/α1) exp(−ε0y

−α1/2)

≤ O(y−4d/α1λ) exp(−ε0y
−α1/2)

≤ exp(−y−ε0)

for some possibly different constant ε0.
Case 4. Where |ti − τ | ≥ δ1 and y ≥ b−λ. Note that condition (A3) implies that for any

δ1 > 0, there exists ε > 0 such that for |s − t | > δ1, we have r(s, t) < 1 − ε. Thus, according
to (21), there exists ε > 0 such that μτ (t) ≤ (1 − ε)b. According to Proposition 1, we have
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for large enough b and some ε > 0,

P

{
1

mes(Aγ )
> y−dζ d

1 , sup
|t−τ |≥δ1

f (t) > b | f (τ) = γ + z

b

}
≤ P

{
sup

|t |≥δ1

f0(t) + μτ (t) > b
}

≤ P

{
sup

|t |≥δ1

f0(t) > εb
}

≤ exp

(
−ε2b2

2σ 2
T

)
≤ exp(−y−ε0).

Combining Cases 1–4, for some constants ε0 and y0 chosen to be small, we have for y ∈ (0, y0],

P

{
1

mes(Aγ )
> y−dζ d

1 , M > b | f (τ) = γ + z

b

}
≤ exp(−y−ε0). (27)

Together with (19), we have

Qb

{
1

mes(Aγ )
> y−dζ d

1 , M > b

}
≤ exp(−y−ε0). (28)

Thus, according to (18), for some κ > 0, we have

E
Q

{
1

mes(Aγ )2 ; M > b

}
≤ (κ + y−2d

0 )ζ 2d
1 . (29)

5.2. The I1 term

To provide a lower bound of

I1 = E
Qb

{
1

mes(Aγ )
; M > b

}
,

we basically need to prove that mes(Aγ ) cannot always be very large. Thus, it is sufficient to
show that f (t) drops below γ when t is reasonably far away from τ . In the next lemma we
show that for any δ > 0, the process f (t) drops below γ almost all the time when |t − τ | > δ.

Lemma 2. Under conditions (A1)–(A6), for a standard deviation of Type 1, we have

Qb

{
sup

|t−τ |>δ

f (t) ≥ γ
}

≤ e−ε0b
2

for some ε0 > 0.

Lemma 3. Under conditions (A1)–(A6), there exist δ small and κ large (independent of b),
such that for x > κ , we have

Qb

{
sup

xζ−1≤|t−τ |≤δ

f (t) ≥ γ
}

< e−ε0x
α1/4

.
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For the proof of Lemma 2 and Lemma 3; see [20]. We proceed to developing a lower bound
for I1. First, note that the event {M > b} is a regular event under Qb, i.e.

Qb{M > b} ≥ Qb{f (τ) > b} > 1
2 e−1.

The final step is based on an asymptotic calculation of the overshoot distribution of a standard
Gaussian random variable. According to Lemmas 2 and 3, we choose x such that

Qb

{
sup

|t−τ |>xζ−1
1

f (t) ≥ γ
}

< 1
2 e−2.

Let ωd be the volume of the d-dimensional unit ball. Thus, we have

I1 ≥ E
Qb

{
1

mes(Aγ )
; M > b, mes(Aγ ) < ωdxdζ−d

1

}
≥ ω−1

d x−dζ d
1 Qb{mes(Aγ ) < ωdxdζ−d

1 , M > b}
≥ ω−1

d x−dζ d
1 [Qb{M > b} − Qb{mes(Aγ ) ≥ ωdxdζ−d

1 }]
≥ ω−1

d x−dζ d
1

[
Qb{M > b} − Qb

{
sup

|t−τ |>xζ−1
1

f (t) ≥ γ
}]

≥ 1
2ω−1

d x−dζ d
1 (e−1 − e−2). (30)

Summarizing (29) and (30), we have

Eb{Z2
b} ≤ κζ 2d

1

(∫
P{f (t) > γ } dt

)2

, P{M > b} > ε0ζ
d
1

∫
P{f (t) > γ } dt,

and, therefore,

sup
b

E
QbZ2

b

P2{M > b} < ∞.

6. Proof of Theorem 2

Let Tm = {t1, . . . , tm} be generated in Step 3 of Algorithm 2. We start the analysis with the
following decomposition:

Ẑb − Zb =
[

1{sup f (t)>b}
mes(Aγ )

− 1{maxm
i=1 f (ti )>b}

m̂es(Aγ )

]
E{mes(Aγ )}

= E{mes(Aγ )}
[

1{sup f (t)>b}
mes(Aγ )

− 1{maxm
i=1 f (ti )>b}

mes(Aγ )

+ 1{maxm
i=1 f (ti )>b}

mes(Aγ )
− 1{maxm

i=1 f (ti )>b}
m̂es(Aγ )

]
,

where m̂es(Aγ ) is defined as in (14). According to the result in Theorem 1, it is sufficient to
show that |EQb {Ẑb − Zb}| ≤ εP{M > b} and var(Ẑb − Zb) = O(P2{M > b}). We define the
following notation:

J1 = 1{sup f (t)>b}
mes(Aγ )

− 1{maxm
i=1 f (ti )>b}

mes(Aγ )
, J2 = 1{maxm

i=1 f (ti )>b}
mes(Aγ )

− 1{maxm
i=1 f (ti )>b}

m̂es(Aγ )
.

We establish upper bounds for the first and second moments for each of the two terms,
respectively.
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6.1. The J1 term

Note that J1 is nonnegative and

Eb{J1} = Eb

{
1

mes(Aγ )
; M > b; m

max
i=1

f (ti) ≤ b

}
.

From the proof of Theorem 1, in particular (28), it follows that 1{M>b}/ζ dmes(Aγ ) is uniformly
integrable in the parameter b, where ζ = max(ζ1, ζ2). Thus, for any δ small enough, we have

sup
Qb(B)≤δ

Eb

{
1

mes(Aγ )
; M > b; B

}
≤ (−log δ)1/ε0δζ d . (31)

Therefore, it is sufficient to derive a bound for

Qb

{
M > b; m

max
i=1

f (ti) ≤
}
.

Let x be large and δ′ be small, we have the following:

Qb

{
M > b; m

max
i=1

f (ti) ≤ b
}

(32)

≤ Qb

{
sup

xζ−1<|t−τ |<δ′
f (t) > b; m

max
i=1

f (ti) ≤ b
}

+ Qb

{
sup

|t−τ |<xζ−1
f (t) > b, sup

|t−τ |>xζ−1
f (t) ≤ b; m

max
i=1

f (ti) ≤ b
}

+ Qb

{
sup

|t−τ |≥δ′
f (t) > b; m

max
i=1

f (ti) ≤ b
}
.

We will provide a specific choice of m such that

Qb

{
sup f (t) > b; m

max
i=1

f (ti) ≤ b
}

≤ δ � ε1+ε0 ,

where ε is the relative bias preset in the statement of the theorem. We consider each of the three
terms in (32).

6.1.1. The first term in (32). We choose x = min{(−log δ)4/α, δ′ζ }, where α = min{α1, α2}.
According to Lemma 3, the first term in (32) is bounded by

Qb

{
sup

xζ−1<|t−τ |<δ′
f (t) > b; m

max
i=1

f (ti) ≤ b
}

≤ Qb

{
sup

xζ−1<|t−τ |<δ′
f (t) > b

}
≤ δ.

Notationally, we define supt∈∅
f (t) = −∞. Thus, when x = δ′ζ , the above probability is 0.

6.1.2. The second term in (32). Simple derivations yield

Qb

{
sup

|t−τ |<xζ−1
f (t) > b, sup

|t−τ |>xζ−1
f (t) ≤ b,

m
max
i=1

f (ti) ≤ b
}

= Eb

{
Qb

{
m

max
i=1

f (ti) ≤ b | f
}
; sup

|t−τ |<xζ−1
f (t) > b, sup

|t−τ |>xζ−1
f (t) ≤ b

}
≤ Eb

{
(1 − β(Ab))

m; sup
|t−τ |<xζ−1

f (t) > b
}
, (33)

https://doi.org/10.1239/aap/1444308882 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308882


808 X. LI AND J. LIU

where β(Ab) = ζ dmes(Ab ∩ B(τ, x/ζ ))inf |t |≤x k(t) is a lower bound of the probability that
Qb{ti ∈ Ab | f } and B(τ, x) is the ball centered around τ with radius x. In what follows,
we need to show that mes(Ab) cannot be too small on the set {sup|t−τ |<xζ−1 f (t) > b} and,
therefore, β(Ab) cannot be too small. We write E1 = {sup|t−τ |<xζ−1 f (t) > b} and write (33)
as

Eb{(1 − β(Ab))
m; E1} = Eb{(1 − β(Ab))

m; E1, D
c
λ3,δ1

} + Eb{(1 − β(Ab))
m; E1, Dλ3,δ1},

where for some λ3 and δ1 positive, we define

Dλ3,δ1 =
{

sup
|s−t |≤λ3ζ

−1s,t∈B(τ,xζ−1)

|f (s) − f (t)| ≤ δ1b
−1

}
.

For some ε0 small, we choose δ1 = ε0δ and λ3 = ε0δ
2/α+1/β1+ε0
1 . We apply the Borel–TIS

lemma to the double-indexed process ξ(s, t) = f (s) − f (t) whose variance is bounded by
Lemma 1(ii). Thus, we obtain the following bound:

Eb{(1 − β(Ab))
m; E1, D

c
λ3,δ1

} ≤ Qb{Dc
λ3,δ1

} ≤ δ.

Therefore, (33) is bounded by

δ + Eb(1 − β(Ab))
m; E1, Dλ3,δ1}.

We further split the expectation

Eb{(1 − β(Ab))
m; E1, Dλ3,δ1}

≤ Eb

{
(1 − β(Ab))

m; Dλ3,δ1; sup
|t−τ |<xζ−1

f (t) > b + δ1b
−1, E1

}
+ Qb

{
Dλ3,δ1; b < sup

|t−τ |<xζ−1
f (t) ≤ b + δ1b

−1, E1

}
.

We derive a bound of the second term by considering the standardized process g(t) = b(f (τ +
t/ζ ) − b) conditional on f (τ) = γ + z/b. g(t) can be written as

g(t) = C(t/ζ + τ, τ )

C(τ, τ )
z + l(t), (34)

where l(t) is a random field whose distribution is independent of z. So, we have

Qb

{
b < sup

|t−τ |<xζ−1
f (t) < b + δ1b

−1
}

= Qb

{
sup
|t |≤x

C(t/ζ + τ)

C(τ, τ )
z + l(t) ∈ (0, δ1)

}
= O(δ1).

The last equality holds because z has a density bounded everywhere (asymptotically exponen-
tial), and 1

2 < C(t/ζ + τ)/C(τ, τ ) < σ 2
T /σ 2(τ ). Given a realization of l(t) ,

sup
|t |≤x

C(t/ζ + τ)

C(τ, τ )
z + l(t) ∈ (0, δ1)

implies that z has to fall in an interval with length less than 2δ1. Thus, if we choose ε0 small
and δ1 = ε0δ, then

Qb

{
b < sup

|t−τ |<xζ−1
f (t) < b + δ1ζ

−1
}

< δ.
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Therefore, (33) is bounded by

2δ + E
Qb

{
(1 − β(Ab))

m; Dλ3,δ1; sup
|t−τ |<xζ−1

f (t) > b + δ1b
−1, E1

}
.

Note that, on the set Dλ3,δ1 , mes(Ab ∩ B(τ, xζ−1)) is controlled by the overshoot

sup
|t−τ |<xζ−1

f (t) − b,

i.e. if sup|t−τ |<xζ−1 f (t) > b + δ1/b then mes(Ab ∩ B(τ, xζ−1)) ≥ ε0λ
d
3ζ−d . In addition, the

density kτ,ζ (t) is bounded from below by x−d−ε1 for t ∈ B(τ, xζ−1). Thus, the probability
β(Ab) has a lower bound

β(Ab) ≥ ε0x
−d−ε1λd

3 ≥ ε0δ
2d/α+d/β1+2ε0 .

The final step of the above inequality follows from the fact that x = min{(−log δ)4/α, δ′ζ }.
Thus, (33) is bounded by

2δ + (1 − ε0δ
2d/α+d/β1+2ε0)m.

For some large κ , m = κδ−2d/α−d/β1−3ε0 and, therefore,

Qb

{
sup

|t−τ |<xζ−1
f (t) > b, sup

|t−τ |>xζ−1
f (t) ≤ b; m

max
i=1

f (ti) ≤ b
}

≤ 4δ.

6.1.3. The last term in (32). According to the result in Lemma 2, we can choose ε0 and δ′ such
that

Qb

{
sup

|t−τ |≥δ′
f (t) ≥ γ

}
≤ e−ε0b

2
.

There are two cases: δ > e−ε0b
2

and δ ≤ e−ε0b
2
.

Case 1. Where δ > e−ε0b
2
. In this case, the last term in (32) is bounded trivially by

Qb

{
sup

|t−τ |≥δ′
f (t) > b; m

max
i=1

f (ti) ≤ b
}

≤ Qb

{
sup

|t−τ |≥δ′
f (t) ≥ γ

}
≤ δ.

Case 2. Where δ < e−ε0b
2
. We need a similar analysis to that of the second term. We now

split the probability for δ2 = δ1+ε0 ,

Qb

{
sup

|t−τ |≥δ′
f (t) > b; m

max
i=1

f (ti) ≤ b
}

≤ Qb

{
sup

|t−τ |≥δ′
f (t) ∈ [b, δ2b

−λ]
}

+ Qb

{
sup

|t−τ |≥δ′
f (t) > b + δ2b

−λ; m
max
i=1

f (ti) ≤ b
}
.

We now consider the first term and split the set {t : |t − τ | > δ′} into two parts. Define the set

F =
{
t : C(t, τ )

C(τ, τ )
>

1

(−log δ2)2

}
,

We start with the small overshoot probability on the set F ,

Qb

{
b < sup

|t−τ |>δ′,t∈F

f (t) ≤ b + δ2

b

}
.
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Using (34) and applying a similar analysis to that of the second term, we have

Qb

{
b < sup

|t−τ |≥δ′,t∈F

f (t) < b + δ2b
−1

}
≤ Qb

{
sup

|t/ζ |>δ′,t/ζ+τ∈F

C(t/ζ + τ)

C(τ, τ )
z + l(t) ∈ (0, δ2)

}
= O((−log δ2)

2δ2)

≤ δ. (35)

The last two steps are based on the fact that z is a random variable independent of l(t) and has
bounded density. Thus, the above probability is bounded by

sup
x

P{x < z < x + (log δ2)
2δ2} = O((log δ2)

2δ2).

We will return to this estimate soon.
We now consider t in Fc. For some κ0 large, we have Qb{z > −κ0 log δ2} < δ2. Thus,

we only consider z < −κ0 log δ2. Conditional on f (τ) = γ + z/b, the conditional mean
is supt∈Fc μτ (t − τ) ≤ C > 0. In addition, the conditional variance of f (t) on the set Fc

is almost σ 2(t). Thus, we can apply classic results on the density estimation of the sup f (t)

(cf. [34, Theorem 2]). That is, conditional on f (τ) = γ +z/b, sup|t−τ |≥δ′,F cf (t) has a bounded
density over [b, b + δ2b

−λ] for some λ ≥ 1 and, thus,

Qb

{
sup

|t−τ |≥δ′,t∈Fc

f (t) ∈ [b, b + δ2b
−λ] | f (τ) = γ + z

b

}
= O(δ2).

Summarizing the above results, we have

Qb

{
sup

|t−τ |≥δ′
f (t) ∈ [b, b + δ2b

−λ]
}

≤ Qb

{
sup

|t−τ |≥δ′,t∈F

f (t) ∈ [b, b + δ2b
−λ]

}
+ Qb{z ≥ −κ0 log δ2}

+ Qb

{
sup

|t−τ |≥δ′,t∈Fc

f (t) ∈ [b, b + δ2b
−λ], z ≤ −κ0 log δ2

}
≤ 3δ.

The last term in (32) is bounded by

Qb

{
sup

|t−τ |≥δ′
f (t) > b; m

max
i=1

f (ti) ≤ b
}

≤ 3δ + Qb

{
sup

|t−τ |≥δ′
f (t) > b + δ2b

−λ; m
max
i=1

f (ti) ≤ b
}
.

For the second term, we apply the old trick of choosing λ4 = δ
2/α+1/β1+ε0
2 b−2λ/α−λ/β1 , and,

thus,
Qb

{
sup

|s−t |<λ4

|f (s) − f (t)| > δ2b
−λ

}
< δ2. (36)

Note that b2 ≤ −ε−1
0 log δ2. We can choose a different ε0 so that λ4 can be simplified to

λ4 = δ
2/α+1/β1+ε0
2 .
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If sup|s−t |<λ4
|f (s) − f (t)| < δ2b

−λ and sup|t−τ |≥δ′f (t) > b + δ2b
−λ, we have β(Ab) ≥

ε0λ
d
4ζ−d−ε1 . With a different choice of ε0, we choose

m = −2λ−d
4 ζ d+ε1 log δ = O(δ−d(2/α+1/β1)−ε0), (37)

then, we have

Eb

{
(1 − β(Ab))

m; sup
|s−t |<λ4

b < |f (s) − f (t)| < δ2b
−λ, f (t) > b + δ2b

−λ
}

≤ δ. (38)

Therefore, combining the bounds in (35), (36), and (38), if ε < e−ε0b
2

and we choose m as in
(37), then

Qb

{
sup

|t−τ |>δ′
f (t) > b; m

max
i=1

f (ti) ≤ b
}

≤ 5δ.

Combining the bounds for all the three terms in (32), we have

Qb

{
M > b; m

max
i=1

f (ti) ≤ b
}

≤ 5δ.

If we choose δ = ε1+ε0 and

m = O(δ−d(2/α+1/β1+ε0)) = O(ε−d(2/α+1/β1)−2dε0)

then according to the bound in (31), we have

E
QbJ1 ≤ ζ dε.

Similarly, according to the uniform integrability of ζ−2d/mes2(Aγ ), by choosing the same m,
there exists a κ0 such that

E
Qb {J 2

1 } ≤ κ0ζ
2d .

6.2. The J2 term

We now proceed to

J2 = 1{maxm
i=1 f (ti )>b}

[
1

mes(Aγ )
− 1

m̂es(Aγ )

]
.

We study the behavior of J2 by means of the scaled process g(t) defined as in (11). For the
analysis of J2, we translate everything to the scale of g(t). Recall the process g(t) given by
(11) is

g(t) = b

(
f

(
τ + t

ζ

)
− b

)
for each t , f (τ + t/ζ ) > γ if and only if g(t) > −1.

Conditional on τ, t1, . . . , tm are i.i.d. with density kτ,ζ (t) defined as in (13). Let si = (ti−τ)ζ

and, thus, s1, . . . , sm are i.i.d. following density k(s). We can then rewrite the estimator in (14) as

m̂es(Aγ ) = ζ−d

m

m∑
i=1

1{g(si )>−1}
k(si)

.
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Thus, m̂es(Aγ ) is an unbiased estimator of mes(Aγ ), i.e. E(m̂es(Aγ ) | f ) = mes(Aγ ).
Conditional on a particular realization of f (t) (or equivalently, g(t)), the variance of m̂es(Aγ )

is

var(m̂es(Aγ ) | f ) = κf ζ−2d

m
,

where

κf = var

[
1{g(S)>−1}

k(S)

∣∣∣∣ f

]
≤ k−2(tf )

andtf = max(|t | : g(t) > −1). By means of the inequality 1/(1 + x) − 1 ≥ −x, we have

1

mes(Aγ )
− 1

m̂es(Aγ )
≤ m̂es(Aγ ) − mes(Aγ )

mes2(Aγ )
.

Therefore,

E

{(
1

mes(Aγ )
− 1

m̂es(Aγ )

)2

; m̂es(Aγ ) > mes(Aγ )

∣∣∣∣ f

}
≤ κf ζ−2d

m mes4(Aγ )
.

It is the expectation on the set {m̂es(Aγ ) < mes(Aγ )} that induces complications in that the
factor 1/m̂es(Aγ ) can be very large when there are not many ti in the excursion set Aγ . We
now proceed to this case. Conditional on a particular realization of f (and, equivalently, the
process g(t)), the analysis consists of three steps.

Step 1. Define the f -dependent probability

pf � Qb{ti ∈ Aγ : f } =
∫

Aγ

kτ,ζ (t) dt =
∫

A
g
−1

k(t) dt.

Using standard exponential change of measure techniques for large deviations [15], we obtain

Qb

{ m∑
i=1

1{ti∈Aγ } ≤ pf (1 − δ3)m

∣∣∣∣ f

}
≤ e−mIδ3,pf for all δ3 ∈ (0, 1),

where the rate function Iδ3,pf
= θ∗pf (1−δ3)−ϕ(θ∗), ϕ(θ) = log(1−pf +pf eθ ), and θ∗ =

log(1 − δ3/(1 − pf (1 − δ3))). By elementary calculus, if we choose δ3 = 1
2 then we have, for

some ε0 > 0,
Iδ3,pf

≥ ε0pf for all pf > 0.

Furthermore, we have

E

{(
1

mes(Aγ )
− 1

m̂es(Aγ )

)2

; m̂es(Aγ ) ≤ mes(Aγ ),
m

max
i=1

f (ti) > b,

m∑
i=1

1{ti∈Aγ } ≤ pf m

2

∣∣∣∣ f

}

≤ E

{
4

m̂es2(Aγ )
; m̂es(Aγ ) ≤ mes(Aγ ),

m
max
i=1

f (ti) > b,

m∑
i=1

1{ti∈Aγ } ≤ pf m

2

∣∣∣∣ f

}
.
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There is at least one ti in the excursion set Aγ . Therefore, the estimator m̂es(Aγ ) ≥
m−1ζ−dk−1(tf ). Thus, the above expectation is upper bounded by

≤ κk−2(tf )m2ζ 2de−ε0mpf .

Step 2. We consider the situation when
∑

1{ti∈Aγ } > pf m/2. The unbiasedness of m̂es(Aγ )

suggests that

mes(Aγ ) = E

{
1

ζ dk(S)

∣∣∣∣ S ∈ A
g
−1

}
pf ,

where S is a random index following density k(s). Note that on the set Ag
−1, k(tf ) ≤ k(S) ≤ κ1.

Thus, if we let λf = κ−1
1 k(tf ) then on the set {∑ 1{ti∈Aγ } > pf m/2}, we have

m̂es(Aγ ) ≥ λf mes(Aγ )

2
.

Thus, using a Taylor expansion, we have

Eb

{(
1

mes(Aγ )
− 1

m̂es(Aγ )

)2

; m̂es(Aγ ) < mes(Aγ );
∑

1{ti∈Aγ } >
pf m

2

∣∣∣∣ f

}
≤ Eb

{
24(mes(Aγ ) − m̂es(Aγ ))2

λ4
f mes4(Aγ )

; m̂es(Aγ ) < mes(Aγ );
∑

1{ti∈Aγ } >
pf m

2

∣∣∣∣ f

}

≤ 24κf ζ−2d

mλ4
f mes4(Aγ )

.

Step 3. Combining the previous analysis, we obtain

Eb{J 2
2 | f } ≤ 24ζ−2d

mes4(Aγ )

κ2
1

k2(tf )m
+ κf ζ−2d

mmes4(Aγ )
+ k(tf )−2m2ζ 2de−ε0mpf . (39)

The density k(t) has a heavy tail that is k(t) ∼ 1/|t |d+ε1 and k(t) ≤ κ1 for all t . In Step 3, we
provide a bound on the distributions of tf and pf .

We start with tf . For each s > 0, tf > s if and only if sup|t−τ |>s g(t) > −1. According to
the results in Lemmas 2 and 3, for sufficiently large s, there exists some ε0 > 0 such that

Qb{tf > s} = Qb

{
sup

|t−τ |>s

g(t) > −1
}

≤ exp{−sε0} for s < δ′ζ

and
Qb{tf > s} ≤ exp(−ε0b

2) for s > δ′ζ .

Therefore, all moments of k−1(tf ) are bounded. We have

Eb{k−l (tf )} ≤ Eb{t (d+ε1)l
f } ≤ κl

for some constant κl possibly depending on l. Thus, by the Cauchy–Schwarz inequality, the
expectation of the first two terms in (39) can be bounded as follows:

E

{
24ζ−2d

mes4(Aγ )

κ2
1

k2(tf )m
; M > b

}
≤ O(1)

m

√
E

{
ζ−4d

mes8(Aγ )

}
E{k−4(tf )} ≤ κζ 2d

m
,

E

{
κf ζ−2d

m × mes4(Aγ )

}
≤ O(1)

m

√
E

{
ζ−4d

mes8(Aγ )

}
E{k−4(tf )} ≤ κζ 2d

m
.
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We now proceed to the third term in (39) concerning pf . The expectation of this term is
bounded by

Eb{m2k(tf )−2e−mε0pf ; M > b} ≤
√

Eb{m4e−2mε0pf ; M > b}
√

Eb{k−4(tf )}.

The second term
√

Eb{k−4(tf )} is O(1). We proceed to the first term,

Eb{m4e−2mε0pf ; M > b} = Eb{m4e−2mε0pf ; pf ≥ m−1/2}
+ Eb{m4e−2mε0pf ; pf ≤ m−1/2, M > b}

≤ m4e−2ε0
√

m + m4Qb{pf ≤ m−1/2, M > b}.

We now proceed to control Qb{pf ≤ m−1/2, M > b}. Note that pf ≥ k(tf )mes(Ag
−1). For

each x > 0,

Qb{pf < x, M > b} ≤ Qb{k(tf ) <
√

x or mes(Ag
−1) <

√
x, M > b}

≤ Qb{tf > x−1/2(d+ε1)} + Qb{mes(Ag
−1) <

√
x, M > b}.

According to the bounds in (27), for some δ0 > 0 and ε0 > 0, we have

Qb{mes(Ag
−1) <

√
x, M > b} = Qb{mes(Aγ ) < ζ−d

√
x, M > b} ≤ exp(−x−ε0/d)

for sufficiently small x. According to the previous result, we have

Qb{tf > x−1/2(d+ε1)} ≤ e−x−ε0 for x−1/2(d+ε1) < δ′ζ

and
Qb{tf > x−1/2(d+ε1)} ≤ e−ε0b

2
for x−1/2(d+ε1) ≥ δ′ζ .

Thus, for large enough λ and small enough ε0, we have

Qb{pf ≤ m−1/2, M > b} ≤ e−mε0 for m < bλ;
for m > bλ (with sufficiently large λ), tf > m1/4(d+ε1) implies that τ+tf /ζ /∈ T , i.e. m1/4(d+ε1)

is too large and, thus,
Qb{pf < m−1/2} = 0 for m > bλ.

Therefore, we have m4Qb{pf ≤ m−1/2, M > b} ≤ κm4e−mε0 for sufficiently large m and,
furthermore,

Eb{m4k(tf )−2e−mε0pf ; M > b} ≤ κm4e−mε0 /2.

Summarizing the results in all the three steps, we have Eb{J 2
2 } ≤ κζ−2d/m. If we choose

m = κ max {ε−2, ε−d(2/α+1/β1+3ε0)} = O(ε−d(2/α+2/β1)) then

Eb|Ẑb − Zb| = Eb|J1 + J2|
∫

T

P{f (t) > γ } dt ≤ εζ d

∫
T

P{f (t) > γ } dt

and

Eb{Ẑb − Zb}2 ≤ κζ 2d

(∫
T

P{f (t) > γ } dt

)2

.
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