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1. Introduction. Real functions 
oo oo 

x(t) = X] ocnf{—\ < / < 1) with |[x|[i = 23 \%n\ < °° 
0 0 

may be identified with elements x = (x0, Xi, X2, . . . ) of the sequence space h. 
Since the unit sphere Sœ of h is compact under the weak* topology1 = topology 
of co-ordinatewise convergence, a countably additive measure on Sœ is 
induced by a positive linear functional E (integral) on C(Sœ), the weak* 
continuous real-valued functions on Sœ. There exists a natural integral over 
Sœ reducing to 

£(/) =lf_ttx„)dxo 

when / is a function of Xo alone. The partial sums Sn — Sn(x) of the power 
series for x(f) then form a martingale and zero-or-one phenomena appear. In 
particular, if R(x) is the radius of convergence of the series and e is the base 
of the natural logarithms, it turns out that R(x) = e for almost all x in Sœ. 
Applications of the integral to the theory of numerical integration, the original 
motivation, will appear in a later paper. 

2. The integral. The linear space of real sequences x = (xo, XI, X2, . . .) 
admits as subspaces the Banach spaces Co, h, m consisting respectively of 
sequences x such that lim xn = 0 and 

\\x\\œ = SUp \xn\, \\x\\i = 2 ] \xn\ < oo, 
n 0 

and 
| | x | | œ = SUp \xn\ < oo. 

n 

We write < x, y > = Yloœxnyny whenever the series converges. Then h = Co*, 
m = /i*, where * denotes the conjugate space as usual. Now the unit sphere 
•Soo = [x:||x||i < 1] of h is compact under the weak* topology of /x. It is well 
known and readily verified that the weak* topology of Sœ may be identified 
with the topology of co-ordinatewise convergence, which is induced by the 
metric p(x,y) = £o°°2-w \xn—yn\/(l + \xn — yn\). Let C(Sœ) denote the Banach 
algebra and lattice of weak* continuous real-valued functions on Sœ with 
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^ o r the standard facts on linear spaces and integration employed in th is paper, see (3). 
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||/IL=sup|/(*)|. 
xeSoo 

Now the elements ej = (80j, 81 jt 82 j , . . .) (J = 0, 1, 2, . . .) (Kronecker delta) 
are just the extreme points of Sœ and form a naturally ordered basis for l\. 
The integral we define in terms of them is similar to one defined by Banach (1) 
over the unit sphere of the Hilbert space /2, but Banach's integral is unsatis­
factory in that Hilbert space admits no distinguished basis; every point on 
the boundary of the unit sphere is an extreme point. 

DEFINITION. If y is a sequence set Pny = (3/0, y\, . . . , yn, 0, 0 , . . .). A function 
f on a sequence space is a cylinder function of degree n if f(x) = f(Pnx) {all x). 
Let LN denote the set of cylinder functions of degree N. 

The notion of a cylinder function/ of degree n is just a precise form of the 
statement t h a t / "depends on the first n + 1 variables only." It is clear that 
Zo C £1 C £2 C . . . . Set Lœ = U n Ln. 

Consider now possible integrals on C{Sœ) which are such that 

Uj E(f) = 0 ft** to 

whenever/ Ç L0 H C{Sœ). Then £(1) = 1. The simplest way to extend E to 
£1 ^ C(Sœ) is to set 

I z o l + k i K i 

When / is in L0 ^ C(Sœ) this reduces to the previous definition. To extend 
E to L2 r\ C{SJ set 

EVf\ = _L P p P fdx2dxidx0 

*[J) " 2" J J J rr-"|xTfrf_ (Vol 
Ç0  

[1 - |x0|][l - (|*"o| +]xT\)]' 
\X0\+\XI\+\X2\<1 

This coincides with the previous definition on L\ C\ C(5œ). 
It is clear that for / in the general Ln C\ C{Sœ) we must set 

p,r\ 1__ P P /dxpdxi . • . dxn  

lxol + . . . + la?„l<l 

Then E is well defined for a l l / in Lœ P\ C(Sœ), the weak* continuous cylinder 
functions on Sœ. Moreover, it is clear that E is a positive linear functional 
with | |E| | = 1. 

Let x in Sœ be arbitrary. Then 
00 

p(x,P„x) = Z 2" ' |* , | / (1 + |*,|) < 2-n. 
j=n+1 

Since a continuous function on a compact metric space is uniformly continuous 
it follows that for every / in C(Sœ) the cylinder functions fn(x) = f{Pnx) 
approach f{x) uniformly in x—that is, 
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l i m | | / - / , | | œ = 0. 
n 

Since | |£ | | = 1 on L C\ C(5œ), it is clear that 

lim E(fn) 
n 

exists and may be taken as the definition of E(J). It follows that E(J) is properly 
defined for a l l / in C(Sœ) by the formula 

j?m - v _JL_ f f /(XQ, xi, . . . , xn, 0, 0, . . .)dxp. . . dxn 

*[t)~IZ2n+1 J ...J \r-Rr~Tr-TixoT+ ~ +'i**-ii)i• 
|a;ol + . . . + l a : n | < l 

It is convenient to introduce the notation E(J) = J sœf(x) dEx. 
The integral E may now be extended in standard fashion and induces a 

countably additive measure. It is clear that the above formula serves to 
define E for bounded Baire functions / on Sœ. 

3. Some integral formulae. We show first that the measure is concen­
trated on the (strong) boundary [x:||x||i = 1] of Sœ. Let 

nK J_ f P [1 - (|xol + • . • + \xn\]
Kdx0 . . . dxn ( _ , 

V* T+1 J . . . J T l - | x o | ] . . . [1 - ( |Xc | + . . . + IXn-xl)]^ > }' 

It follows by induction that Qn
K = l/(K + l)n+1. For 

C? = | J (1 - \x0\)
Kdxo = J (1 - x0)

Kdxo = 1/(K + 1), 

while 

oK - - 1 - f f 

{J. 
b o l + . . . + b m l < l 

1—(llO \ + ...+ \Xm\) M / I . . I _| I L | \ „ 1 ^ 

" (LXm+i IL~ (|xo| + ... + lxm|) — xm+ï] 
[l - ]x"oir. • ] I " ( M ~ + • ~ + i*»i)i ' 

CLXQ . . . dxni 

1 1 P P [1 — (|xo| + . . . + \xm\)]Kdx0 . . . dx, 

~K + I2m+j J ...J [i~i^n;.."ff-i\xoY+... + \xm: 

+ 1^= \K+l) 
•d Baire 

f [1 - \\x\\1fdEx = lim Qf, 

+ 1 2m+1 J ...J [1 - |x0|] . . . [1 - (|xo| + . . . + |*m_!|] 
\X0\ + ...+ \Xm\<l 

Since llxlli is a bounded Baire function and 

THEOREM. 

[1 - |H|i]*rf*a = 0 (K> 0). J 
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Now [1 — \\x\\i] > Oon the Borelset [x:||x||i < 1]. It follows that the measure 
is concentrated on the boundary [x:||x||i = 1]. 

Consider now the projections xn. 

THEOREM. 

(K> - 1 ) . jsJxn\
KdEx- \Y+~l) 

Proof. The verification is direct if n = 0. If n > 1, 

J l \K 7 1_ ( I \xn\ dxo. . . dxn-idxn 

\Xn\ dEX - r+T J _ _ J f l — \Z0\+-...+ \Xn\<l 
[1 — \xo\] . . . [1 — (\XQ\ + . . . + |*»-l|)] 

= 1 1 P P [1 - (\xo\ + . . . + \xn-i\)]
Kdxo. . . dxn-i 

K~+~Ï2" J ...J ~[f-~\xo}] .". ."[1 - (|x0| + . . . + \xnS2\)] 
\X0\+...+ \Xn-l\<l 

K + 1 Vw"1 \K+lJ ' 

It is clear that jsœxndEx = 0. Now the expression (x, y) (x G Sœ) is 
bounded and in the first Baire class for all y Ç m. (It is well known that it is 
continuous in x if and only if y Ç Co.) Then 

THEOREM. 

J (x, y)dEx = 0 (y 6 m). 
Sœ 

J (x, y)2dEx. 

J xmxndEx = 0 if m T^ n. 

J' r n ~| 2 w / • n r* n 2 

2Lf xmym dEx = ^^ 3Wz I xmXidEx = ^ , 3V I xmdEx = 2-J 'ôm+ï* 

Consider now 

Since clearly 

we have 

THEOREM. 

J" °° -v2 

o <*, y?dEX = X) ônîî 
(whenever the series converges). 

4. A martingale theorem. Now identify the elements x = (x0, x0, xi, . . .) 
of Sœ with the power series x(t) = Y,oœxJn converging absolutely on the unit 
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circle. Then the partial sums Sn = Sn(x) form a martingale: the defining 
conditions (cf.2) that 

J XodEx = 0 

and 

J <p(xo, Xit, . . . , xnf)xn+itn dEx = 0 

for every bounded Baire function (p are clearly satisfied. It is natural to expect 
the appearance of zero-or-one phenomena. We single out the most striking. 
Let R(x) be the radius of convergence of the power series for x(t). Then 

R(x) = 1/ifan \xn\
1/n 

n 

and R(x) > 1 by hypothesis. 

THEOREM. R(X) = e for almost all x in Sœ. 

Proof. 

J [\xn\
1,n - e-'fdzx = Js [\xn\

2,n - 2e-1\xX'n + e~2] d EX 

X £/C 2 9 2 9 

n+j — TTJTTTJVHFÏ + ^ —> e ~ — 2e + e " = 0(ra—»<»). (1 + 2/n)n+i (1 + l/n) 

Thus 
r I I l / n - 1 

hm |xw| = e 

in L2 (£). But then there exists a subsequence (w )̂ such that 

lim |^wi|
1Mi = e~l 

for almost all x in Sœ, implying that 

lim \xn\
1/n > e~l 

n 

for almost all x. Hence R(x) < e for almost all x. 
To establish that R(x) ^ e for almost all x in 5 œ let 0 < r < e. Since 

e = 1 

there exists an integer M such that 

r < 

or 
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Set 
|~ n ~\\/M 

Jn\pC) / J \%>m\' 
L o J 

Then 

\ fn(x)dEx = J ]£ W r J dEx 

< / J E \xm\1/Mrm/M]dEx 
n m/M -t n / 1/M \ m 

= V TT+TTMT^ = '(T+T/~M) v \T+T/M) 

L _ v (- Y-~ \ = 

It follows from Fatou's lemma that 

i' oo ^ 1/M 

) H \xm\rm( = \imfn(x) 

exists for almost all x in Sm and is integrable. Applying the above argument 
to a sequence rn î e and discarding a countable number of exceptional sets 
of measure 0, one for each rn, we find that R(x) > e for almost all x in Sœ. 
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CORRECTION TO THE PAPER 

"SUBMETHODS OF REGULAR MATRIX SUMMABILITY METHODS"* 

It has been pointed out to the authors by Dr. F. R. Keogh that the con­
struction for the matrix C in Theorem III is incorrect. 

*Casper Goffman and G. M. Petersen, Can. J. Math., 8 (1956), 40-46. 

https://doi.org/10.4153/CJM-1962-029-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1962-029-4

