AN INTEGRAL OVER FUNCTION SPACE
W. F. EBERLEIN

1. Introduction. Real functions

o) e}

x(t) = Zoj X" (—1 <t < 1) with [[x][1 = 2 [xa] < @

0
may be identified with elements x = (xq, x1, 2, . . . ) of the sequence space /,.
Since the unit sphere S, of /; is compact under the weak* topology! = topology
of co-ordinatewise convergence, a countably additive measure on S, is
induced by a positive linear functional E (integral) on C(S,), the weak*
continuous real-valued functions on .S,. There exists a natural integral over
S, reducing to

G =3 seos,

when f is a function of xy alone. The partial sums S, = S,(x) of the power
series for x(¢) then form a martingale and zero-or-one phenomena appear. In
particular, if R(x) is the radius of convergence of the series and e is the base
of the natural logarithms, it turns out that R(x) = e for almost all x in S.,.
Applications of the integral to the theory of numerical integration, the original
motivation, will appear in a later paper.

2. The integral. The linear space of real sequences x = (xo, x1, %2, - - .)
admits as subspaces the Banach spaces Cy, I, m consisting respectively of
sequences x such that lim x, = 0 and

e}

[l = sup [, [lelf1 = 20 [l < =,

0
and
[[%]]o = sup [x,] < .

We write < x, vy > = > ¢"%,¥,, whenever the series converges. Then /; = Co*,
m = [;*, where * denotes the conjugate space as usual. Now the unit sphere
S, = [x:]]x||]1 £ 1] of /1 is compact under the weak* topology of /;. It is well
known and readily verified that the weak* topology of S,, may be identified
with the topology of co-ordinatewise convergence, which is induced by the
metric p(x,y) = 2027 |2, —ya|/ (1 + |x, — 2|). Let C(S,,) denote the Banach
algebra and lattice of weak* continuous real-valued functions on S,, with
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IFor the standard facts on linear spaces and integration employed in this paper, see (3).
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1Al = sup @)}

Now the elements ¢; = (8o, 81, 825, ...) (7 = 0,1,2,...) (Kronecker delta)
are just the extreme points of S, and form a naturally ordered basis for /.
The integral we define in terms of them is similar to one defined by Banach (1)
over the unit sphere of the Hilbert space s, but Banach’s integral is unsatis-
factory in that Hilbert space admits no distinguished basis; every point on
the boundary of the unit sphere is an extreme point.

DEFINITION. If yisa sequence set Pry = (Yo, Y1y« -+ Y0y 0,0, .. .). A function
f on a sequence space is a cylinder function of degree n if f(x) = f(Pnx) (all x).
Let Ly denote the set of cylinder functions of degree N.

The notion of a cylinder function f of degree # is just a precise form of the
statement that f “‘depends on the first # + 1 variables only.” It is clear that
LiCL,CL,C....SetL,=\J,L,.

Consider now possible integrals on C(S,) which are such that

1 1
5 =1 ) i
—1
whenever f € Ly C(S,). Then E(1) = 1. The simplest way to extend E to
LN C(S,) is to set

-5 [ [ £ enncs.

lzo |+ 121 1<1

When f is in Lo M C(S,) this reduces to the previous definition. To extend
E to L.\ C(S,) set

— _1,_ f dxodxdxg
rn=3 JJ)J [T Tl = (ol D]

lzo |+ 121 1+ 22 I<1

This coincides with the previous definition on L; M C(S,).
It is clear that forf in the general L, M C(S,) we must set

n} - f dedxl . o dx,,
B = n+1 f f (1 — fwol]... [L = (Jxo] +...+ [20—1])]

lzo I+.. +|zn[<1

Then E is well defined for all fin L, M C(S,,), the weak® continuous cylinder
functions on S,. Moreover, it is clear that £ is a positive linear functional
with ||E|| = 1.

Let x in .S, be arbitrary. Then

wnw—zzwwwwm 27,

Since a continuous function on a compact metric space is uniformly continuous
it follows that for every f in C(S,) the cylinder functions f,(x) = f(P.x)
approach f(x) uniformly in x—that is,
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lim [|f = fullo = 0

Since ||E|| = 1 on L N C(S,), it is clear that
lim E(f,)

exists and may be taken as the definition of E(f). It follows that E(f) is properly
defined for all fin C(S,) by the formula

flxo, %1y« %4, 0,0, .. )dxo . ..dx,
E(f)‘i‘j?ozﬂﬂ f f TR DO i (ot i S 1Y

lzo+.. +|zn1<1

It is convenient to introduce the notation E(f) = fsmf(x) dgx.

The integral E may now be extended in standard fashion and induces a
countably additive measure. It is clear that the above formula serves to
define E for bounded Baire functions f on S..

3. Some integral formulae. We show ﬁrst that the measure is concen-
trated on the (strong) boundary [x:||x]||; = 1] of S,. Let

1 [1— (Jwo] + ...+ |xn|]deo ..
"“ f f L=|xol]- .- (1 = (Joco| + .. [xn_1|)] (K> —1).

lzol+.. +[zn|<1

It follows by induction that Q,* = 1/(K + 1)"*!. For

Q0 = %J‘_l(l — |wo| ) dxo = J:, (1 = x0)dxo = 1/(K + 1),

while

=g |

lzo 4. +12m|<1

{fl—(lzol+...+lzml) (1 — (vl + ...+ |xa]) — xm+l]K i }
(1= Jeoll. oo (1= (ol + oo 4 D]

dxo...dxn,
_ f J - (lxol + o 2o . . . dxy,
(1 — [xol] .. 1 = (Jxo] + ...+ [xma]]

lzol+.. +|xml<1

1 < 1 >m+ 2
“xrie - \g¥i) -

Since ||x||1 is a bounded Baire function and

fs (1 — ||x][1)%dex = lirrln Qx,

o

THEOREM.

fs [1 — ||x|[1]dex = 0 (K > 0).

o
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Now [1 — ||%||1] > 0 on the Borel set [x:||x||; < 1]. It follows that the measure
is concentrated on the boundary [x:||x|[, = 1].
Consider now the projections x,,.

J‘S 2, | ¥d g = <I—€}‘—_—1>" (K > —1).

Proof. The verification is direct if n = 0. It n > 1,

!xnl"dxo - Ay —1dx,
f lxnl dgx = 2n+1 f J [1— lx‘)| 1 - (]xo] 4+ xe])]

lzol+ .. +la:n\<1

f f (1 — (Jxo] + ...+ |xaes))]%dxo . . . dx,s
(1 — [xol] ... [L = (Jco| + ... + |xaza])]

lzol+.. +\In 11<1

THEOREM.

=
+l~
l\DI,_.

It is clear that fsmxndgx = 0. Now the expression (x, y) (x € S,) is
bounded and in the first Baire class for all y € m. (It is well known that it is
continuous in x if and only if ¥y € Co.) Then

THEOREM.
fsm<x, yipx =0  (y €m).
Consider now
fsm@y ) dgx.
Since clearly
fs XmXnlgx = 0 if m # n,

)

we have

gl n 2 n n 2
‘J [Z xmym] dgx = D ymyzf sy = 3 ymf hdsy = Y .
Sl 0 = e S 3"

m=0 m=0

THEOREM.
S i = 3 20

(whenever the series converges).

4. A martingale theorem. Now identify the elements x = (xo, ¢, %1, . . .)
of S,, with the power series x(¢) = > ¢"x,f" converging absolutely on the unit

https://doi.org/10.4153/CJM-1962-029-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1962-029-4

AN INTEGRAL OVER FUNCTION SPACE 383

circle. Then the partial sums S, = S,(x) form a martingale: the defining
conditions (cf.2) that
J‘ xdgx = 0
S,

o

and
fS (p(xo, X1ty .o ooy xnl")x,,+1t"+ldEx =0

for every bounded Baire function ¢ are clearly satisfied. It is natural to expect
the appearance of zero-or-one phenomena. We single out the most striking.
Let R(x) be the radius of convergence of the power series for x(¢). Then

R(x) = 1/lim |x,|""
and R(x) > 1 by hypothesis.
THEOREM. R(x) = e for almost all x in S..

Proof.
I T I (L MR
e—l

_ 1 _ 2
42/ (14 1/n)
Thus

it e loe =204+ =0 (n—> ).
lim |x,|"" = ¢7*

in L? (E). But then there exists a subsequence (n;) such that

1/nj - e—l

lim x|
nj

for almost all x in S, implying that

lim [, |" > ¢
n

for almost all x. Hence R(x) < e for almost all x.
To establish that R(x) = e for almost all x in S_ let 0 < r < e. Since

1 n
e=lim|1+4 —)
n n
there exists an integer M such that

1 M
"<<1+]1—4)

M < <1 + A—l) )

or

https://doi.org/10.4153/CJM-1962-029-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1962-029-4

384 W. F. EBERLEIN

Set
£ = 5 el ]

Then

n /M
S S 0
< fs [Z Ixm[”Mr'”/M]dEx
0

0!

M
n rm/

n 1/M m
B S VT it v 1/M) 2 <1 o+ 1/M>
1 e < 7'1/M >m
<arumn e i) T4
It follows from Fatou’s lemma that
© \I/M
{Z enlr"y = dim fu ()
0 n

exists for almost all x in S and is integrable. Applying the above argument
to a sequence 7, T e and discarding a countable number of exceptional sets
of measure 0, one for each 7,, we find that R(x) > e for almost all x in .S...
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CORRECTION TO THE PAPER

“SUBMETHODS OF REGULAR MATRIX SUMMABILITY METHODS *

It has been pointed out to the authors by Dr. F. R. Keogh that the con-
struction for the matrix C in Theorem III is incorrect.

*Casper Goffman and G. M. Petersen, Can. J. Math., 8 (1956), 40-46.
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