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Abstract

We show that for a Henstock-Kurzweil integrable function / for every e > 0 one can choose an upper
semicontinuous gage function &, used in the definition of the HK-integral if and only if | /1 is bounded by
a Baire 1 function. This answers a question raised by C. E. Weil.

1991 Mathematics subject classification (Amer. Math. Soc): 26A39.

1. Introduction

It is known that if / is a Henstock-Kurzweil integrable function then the gage function
<5, appearing in the definition of the HK-integral, can be chosen to be nearly upper
semicontinuous, that is, 8 equals an upper semicontinuous function almost everywhere.
This result was obtained for R1 in Pfeffer [3] and for Rm in Buczolich [2]. C. E. Weil
asked the author whether it is possible to find a characterization of those HK-integrable
functions / : Rm —*• R for which the HK-integral can be defined by using upper
semicontinuous gage functions.

In Pfeffer [3] it was shown that if a function is bounded and Lebesgue integrable then
S can be selected so that it is upper semicontinuous, that is, / is upper semicontinuously
integrable. Thus boundedness seems to play an important role in characterizations of
upper semicontinuously integrable functions. Indeed, in our theorem we verify that
/ is upper semicontinuously integrable if and only if there exists a Baire 1 function
g such that g > | / 1 . This property is also equivalent to the fact that any non-empty
closed set has a portion on which / is bounded. The proof of the one-dimensional
case is somewhat simpler than the higher dimensional one. The higher dimensional
version is related to some interesting combinatorial problems, namely to the chromatic
number of maps consisting of certain non-overlapping interval systems in Rm. The
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details of this combinatorial question can be found in the statement of Lemma A.

2. Preliminaries

By Rm we denote m-dimensional Euclidean space. Given a set A c Rm we denote
by c\(A), intA, dA and \A\ the closure, the interior, the boundary and the Lebesgue
measure of A. If X c Y C Rm then we denote the boundary and the interior of
X with respect to the subspace topology of Y by dYA and intYA respectively. The
open ball of radius r centered atJt e I " is denoted by B(x, r). (In this paper we use
the Euclidean metric; some papers use different but equivalent metrics in Rm. The
integral defined via any of these metrics is the same.) An m -dimensional interval is a
set of the form [aub\] x • • • x [am, bm]. A collection P = {(A,, JC,-) : / = 1 , . . . , p]
is a subpartition of the interval A if the intervals A,- C A are non-overlapping and
Xj € A,. The subpartition P is a partition when U?=1 A, = A. Given a positive
function S : A -> (0, +00) and a subpartition P = {(A,, *,) : / = 1 , . . . , p] of A we
say that P is 8-fine when A, c B(x,, S (*,-)).

If / : A ->• R and P is a subpartition of A we put

DEFINITION. Given an interval A c Km a function / : A -> IR is HK-integrable
and its HK-integral, (HK)/^ / , equals / e R when for every e > 0 there exists a
function S : A —>• (0, +00) such that |cr(/, P) — I\ < e holds for any 5-fine partition
P of A. In this paper we shall write fA f instead of (HK)/^ / .

If / : A ->• R is HK-integrable and e > 0 we denote by A ( / , A, e) the set of those
gage functions S for which \a{f, P) — I\ < e holds for any S-fine partition /> of A.

LEMMA (HENSTOCK). A™me ?/*a? A c Rm is an interval, f is HK-integrable on
A, and € > 0 is given. Then there is a gage function S : A —> (0, 00) SMC/Z

(1)
1=1

/ (*/) I A,-1- f f

/or a// 5-^«e subpartitions P = {(A,, JC,-) : j = 1,... ,/?} 0/ A.

For the one-dimensional proofs see Pfeffer [4, Lemma 2.5], or [5, Lemma 3.12].
These one-dimensional proofs can easily be generalized also to the m -dimensional
case.

Given / : A —> R, an HK-integrable function, and e > 0, we denote by
A w ( / , A,e) the set of those gage functions S for which (1) holds for all S-fine
subpartitions of A.
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The proof of the Henstock Lemma shows that A ( / , A, e/3) C AH(f, A, e) (see
for example Pfeffer [4]). Therefore the results of Pfeffer [3] and Buczolich [2] imply
that if / is HK-integrable on the interval A then for any e > 0 there exists a nearly
upper semicontinuous 8 e A w ( / , A, e). It follows from the Henstock Lemma that
for m = 1 the indefinite HK-integral f* f is a continuous function see for example
Pfeffer [5, Proposition 3.13]. It is not difficult to generalize the one-dimensional case
to verify that if / is HK-integrable on Ao, A = [ax, bx] x • • • x [am, bm] C Ao, and
A(hx,..., h2m) = [ax + hi, bx + h2] x • • • x [am + hlm-i,am + h2m] C Ao then

F{hx,...,h2m) = I f

is a continuous function of 2m variables. We shall refer to this property as the
continuity of the indefinite HK-integral. (In the literature a more general property
used to be called the continuity of an interval function [5] but for this paper the above
simple property is sufficient.)

3. Main result

This section is organized as follows. First we state our theorem which is followed
by the statement of Lemma A. Then we prove the theorem by using Lemma A. Finally
we present a proof of Lemma A.

THEOREM 1. Suppose that f : A —> R is HK-integrable. Then the following three
statements are equivalent.

(i) For every € > 0 there exists an upper semicontinuous 8 e A( / , A, e).
(ii) For every non-empty closed subset Q c A there exists an interval I such that

intA(I) HQ^Qand f[lMA(i)nQ is bounded.
(iii) There exists a Baire 1 function g : A —> R such that g(x) > \f(x)\ for all

x e A.

LEMMA A. Assume that f is HK-integrable on A c Km, e > 0, 8 € A w ( / , A, e),
P = {(Aj, Xi) : i = 1,.. •, p} is a subpartition of A, and for each xt there exists a
constant Kt and a sequence xin —*• x, such that B(xin, 8(Xj „)) D A, and \f(x,n)\ <
Kjfor n — 1, 2, . . . and i = 1,..., p. Then there exists a constant C > 1 depending
only on the dimension m such that for each i = 1 , . . . , p there exists an x[ e
{•*u> *i,2» • • -}for which

- I f
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PROOF OF THE THEOREM. The proof consists of the steps: (i) implies (ii); (iii)
implies (ii); (ii) implies (iii); and finally the dificult implication (ii) implies (i).

(i) implies (ii). In fact we verify that the negation of (ii) implies the negation of
(i). Suppose that there exists a non-empty closed set Q C A such that for every K
the set {x : I/QOI > K] is dense in Q. If x0 e Q is an isolated point of Q then
there exists an interval / such that Q n intA(I) = {xQ} and then /|intA(/)ne is bounded
by |/C*0)|. Therefore Q is perfect. Proceeding towards a contradiction, suppose that
S e A(/, A, 1) is upper semicontinuous. Since 8 > 0 by Baire's theorem there exists
d > 0 and an interval /0 such that int,4(/o) f l Q ^ 0 and {x e Q : S(x) > d] is dense
in mtA(Io) n Q. We can also assume that d is less than the shortest side of A. Since S
is upper semicontinuous we have S(x) > d for all x e mtA(I0) n Q. Applying Baire's
theorem again we can find Kx > 0 and an interval Ix C /o such that intA(Ix) f l g ^ 0
and [x : | / (* ) | < Kx) is dense in \ntA{Ix) n Q. Let K2 = 2(2^/m/d)m + Kx. By our
assumption [x : \f(x)\ > K] is dense in Q for any K\ Choose a point x0 e int A(Ix)r\Q
such that |/(xo)| > K2, and S(x0) > d. We also choose a square B c A such that
x0 e intA(B), d/2 < diam(B) < d (here we used the fact that d is sufficiently small,
that is, d is less than the shortest side of A and hence the square B will fit into A).
Denote by Po a fixed <5-fine partition of cl(/l\fi). Let A = P0U{(B, x0)}. Itis obvious
that P\ is a S-fine partition of A. Since [x : | / (x) | < ^1} is dense in mtA(Ii) D Q
there exists an i , e int^/,) f l g c ^ ( / o ) n Q such that |/(JCI)| < Kx and xt e B.
Then P2 = Po U {(B, xx)} is also a 5-fine partition of A. Thus

\cr(f, Px)-a(f, P2)\ = \f(x0)-f(xx)\-\B\>\2(2V^/d)m+Kl-Kl\(d/2^i)m = 2.

This contradicts the fact that 8 was chosen for e = 1.
(iii) implies (ii). If Q has an isolated point then (ii) is valid. If Q is non-empty

and perfect then it is well-known that for any Baire 1 function, g, there exists a point
x0 e Q such that g | e is continuous at x0. Therefore one can easily find an interval /
such that x0 e intA(l) and glintA(/)ne is bounded. Then f\miA(i)nQ is also bounded.

(ii) implies (iii). Put Qo = A. Assume that r is not a limit ordinal and Qr~\ 7̂  0 is a
given closed set. By using (ii) choose an interval /r_, such that intA(Ir-i) n Qr-\ ^ 0
and /linu(/,-i)ner_, is bounded. Put Qr = Qr_x \ intA(/r_i). Since A is closed in W
the set Qr is also closed in Rm, not only in the subspace topology of A. If r is a
limit ordinal put Qr = C\s<r Qs. It is well-known that any well-ordered decreasing
sequence of closed sets in Km is of cardinality less than K,. It is also easy to see that
the sets intA(Ir) n Qr are disjoint and \Jr(intA(Ir) fl Qr) — A. Therefore the sets of
the form intA(/r) n Qr can be ordered into a sequence denoted by Hx, H2, . . . , / / „ , . . .
so that they are pairwise disjoint and \J%LX Hn = A. It is also clear that / is bounded
on the sets //„, and the sets Hn are of type Fa. Choose integer constants Kn such
that Kx < K2 < • • • < Kn < • • • and | /1 is bounded on Hn by Kn. Assume that
Hn = ( J ^ j Fn.i, where the sets Fnj are closed, and FnJ c Fn<2 C • • • . Define the
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function gj so that gj (x) = Kn if x € Fnj and n < j . Since for a fixed j the closed sets
FnJ C Hn are disjoint for n = 1, 2 , . . . the function gj(x) is continuous on (J^=1 F n J .
Since Em is a normal space by [1, Satz VIII] one can extend gj to be defined and
continuous o n R " . If x e A then there exists exactly one n(x) such that x <= HnM

and for j > j(x) we also have x e Fn(x)j. Therefore lim/_>oog/-(jt) = Kn. Thus the
function defined by g = Hindoo gj is Baire 1 and g(x) = Kn{x) > \f(x)\ if x e HMx).

(ii) implies (i). Assume that e > 0 is given and (ii) holds. Recall that AH(f, A, e0)
contains a nearly upper semicontinuous, and hence measurable gage function for any
e0 > 0. Choose a measurable SH € AH(f, A, e/4C), where C is the constant given
in Lemma A. Put Wo = A. If Ws is defined for ordinals s < r < Xi and r is a limit
ordinal put Wr = flJ<r W .̂

If r = s + 1 and Ws contains an isolated point ws put Es = {ws} = Ts, r]s =
SH(ws)/2 and Wr = WS\ES. Also choose an interval Is such that m\.A{Is) nWs = Es

and diam Is < r)s.
If r = s + 1 and W, is non-empty and perfect then by using (ii) and Baire's theorem

we can choose an interval Is such that Es = intA(Is) D Ws ^ 0, | / | is bounded by A"j
on £,,, and there exists an r]s > 0 such that

(2) 7; = {x € Es : 3H(jr) > t)s}

is dense in Es. We can also assume that diam Is < t]s- Put Wr = Ws \ Es.
Since a well-ordered strictly decreasing sequence of closed sets of Km terminates

at an ordinal number a < Ki we can assume that Wa ^ 0 and Wo+i = 0. We
remark that the sets Ws c A are bounded and closed. Hence if Ws ^ 0 for s < r
then f]s<r Ws ^ 0 and therefore the sequence Ws cannot terminate at a limit ordinal.
Clearly Ea = Wa. We shall denote by A the set of those ordinals which are less than
a + 1. It is clear that A is countable and hence we can find an injective function
j : A - • N.

If s € A and \ES\ = 0 then put KS = r/s, and choose an open set Us D Es such that

(3) \US\ <e/(2-2J(s)Ks),

and 3/ , C Us.
If j € A and \ES\ > 0 then using the fact that 8H is measurable and positive

we can find 0 < KS < r]s such that letting Vs = {x e Es : 8H(x) < ^ } we have
IVJ < e/(16 • 2i(s)Ks). The measurability of SH also implies the existence of a
non-empty open set Us D Vs such that

(4) \US\< e/(l6-2J(s)Ks),

and we can also assume that Us contains 3/^.
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If s <= A and x e Us n Es put

8(x) = min{ dist(jt, dAIs), dist(jc, 0T \ Us), l/j(s)}.

It is obvious that

(5) B(x,S(x))DAcUsnis for xeUsDEs.

If* € ES\US put

5(x) =min{dist(jf ,3 / , / s) ,

Now 5 is defined for all s e A and it is clear that 8 is positive. Observe that if y e dA Is

then
(6) 8(x) < dist(x,dAIs) < dist(x,y).

Since Ws is closed and Us contains the boundary of Is the set Es \ Us is closed.
It is obvious that 8 is upper semicontinuous on the set ES\US. It is also clear from
its definition that 8 is upper semicontinuous on the set Es C\US, and if x g Es n Us,
xn -* x, xn e Es n Us (n = 1, 2 , . . . ) then 8(xn) - * 0.

(a) The above properties imply that 8 is upper semicontinuous on Es.
iP) Assume that xn —> y, and for any 5 e A we have xn e £5 for only finitely

many indices n. For any v > 0 there exists only finitely many indices 5 € A for
which l/j(s) > v. Therefore from 8(x) < l/j(s) when x e Es, it follows that
(̂•^n) > v can hold only for finitely many n's and hence 8(xn) -> 0 as n —> oo. Thus

(y) If xn e Es = intA(Is) n Ws for n — 1, 2 , . . . , and *„ -> y ̂  Z^ then using that
Ws is closed we obtain y e dAIs and (6) implies that 8(xn) < dist(jtn, y).

liy e A then there exists exactly one r e A for which y e Er. Assume that xn —> y.
For any natural number n there exists exactly one i(«) e A for which xn e Es(n). For
s e A put Ns = {n : xn e Es). Put M] = Nr, M2 = {n : s(n) ^ r and Ns(n) is finite},
and M3 = N \ (M! D M2) = {n : s(n) ^ r and NsM is infinite}. If M2 is infinite then
(y3) is applicable to the subsequence [xn : n e M2}. If n' e M3 then (y) is applicable
to the subsequence {xn : n € Ns(nl] and we obtain 8(xn) < dist(xn-, y). This implies
limn^oo neMi 8(xn) = 0. Thus by splitting {*„} into at most three subsequences and
using (a), (/$), and (y) we obtain that lim supn^oo 8(xn) < 8(y) proving that 8 is upper
semicontinuous on A.

Next we have to verify that 8 G A ( / , A,e). For an x e A denote by r(x) the index
in A for which x e Er(x).

Assume that {(A,-, x,) : i — 1 , . . . , p) is a 5-fine partition of A. Then

p

E
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where the 'transfinite' sum £ ] J € A can be defined since there are only finitely many
indices 5 for which there exists x, such that r(x,) = s. By definition, the empty sum
and the transfinite sum of zeros equal zero.

Put

and

- I f
A>

E
seA {i:xieE,\Us}

JA,
t

Obviously*, = * 2 + * 3 . I f ^ e Es\Usthen\Es\ > Oandx,
K* > S(Xj). Hence the partition in A defined by {(A,, x,)

Vs; therefore 8H(xt) >
3s e A such that x, e

Es\ Us] is 5w-fine. Thus * 3 < e/4C < e/2 where we used the fact that SH €
AH(f,A,€/4C)andC > 1.

To estimate ^ assume in this paragraph that an 5 e A is given. The set Ts,
introduced during the definition of Es, is dense in Es. By (5) for any x e EsC\Us,we
have B(x, <5(x)) D A c Is. Since diam Is < r]s by using (2) we have B(x, SH(x)) D
Is D B(y, 8(y)) n /I for any x e 7;, y e £ , fl Us. Thus for any x, e EsnUs there
exists a sequence *,-,„ —> x, such that *,,„ € Ts and hence B(x,•_„, 8H(xin)) D Is D
B(xh 8(xt)) HAD Ah for n = 1, 2 , . . . and | /(x, ,n) | < A:s.

The above argument is valid for any s e A. Observe that Lemma A is applicable
w i t h / = f,A = A,€ =e/4C,8 = 8H,P = {(A,,x,) : / e {l,...,p},3s € A, x, e

Es n Us], and for x, e ESDUS choose tf, = AT, and x,,n = x,,n (n = 1, 2 , . . . . ) . We
obtain that for any / for which x, e Es nUs there exists an x\ e Ts such that

(7) £
seA

/(*; -1/ < e/4.

Recall that | / | is bounded by Ks on E^. For x, € Es n f/s, by (5) we have
A, c fi(x,, 5(x,)) H A c f / , . Therefore using (4) we obtain

\f(x,)\\A,\ < K, KS\U,
16- 16 •

Thus we have

(8) E
seA

Since x\ e Ts c Es implies | /(x, ') | < Ks one can obtain similarly to the previous
estimation

(9) *6 = E E \f(x\)\-\Ai\<€/\$.
seA

https://doi.org/10.1017/S1446788700038647 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038647


[8] Upper semicontinuous HK-integration

From (7) and (9) we obtain that

251

(10)
seA

Finally using (8) and (10) we infer

€

T6

e

4

€

4 16

e
T

4

2'

e

16

Therefore * , = * 2 + * 3 < */2 + e/2 = e. This proves 8 e A w ( / ,
A( / , A, e) and concludes the proof of the theorem.

C

PROOF OF LEMMA A. First we prove the one-dimensional case. If we order the

intervals At according to the ordering of the real line, then taking every second
interval A, the set [\,..., p} can be split into two subsets, iVi and N2 such that
Nx U N2 = { 1 , . . . , p], Ni n iV2 = 0 and the (closed) intervals {At : i e Nj] are
pairwise disjoint for j = 1,2.

If Xj e intA(Ai) then using the assumption of Lemma A one can choose an *,„ e
intA(Aj). Put x't = *,-,„, and A\ = A,.

If Xj is one of the endpoints of At then using the fact that the indefinite HK-integral
is a continuous function by enlarging slightly the intervals At one can obtain the
intervals A\ such that

(i) x, e intAiA]) and hence there exists an «(/) such that x[ = Xi_n(i) belongs to

(ii)

JA; JA\
f

(iii)

\A\\-W

(iv) the intervals {A\ : i e Nj} are non-overlapping for j = 1,2.

By (i) we have A\ C B{x\, 5(jt-)). This and (iv) implies that the subpartitions
\{A\,x\) : / e Nj] are <5-fine in A for j = 1, 2. Thus

E
ie/V;
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holds for j = 1,2. Therefore

p

E
/=i

/ < .

Finally

p

E /(x,') |A, | - f f
J At

p

P

1 = 1

/ ( x , ' ) | A , . | - I f -
J A,

Zoltdn Buczolich

c i ' ) | / l / l — I f
J A]

< * .

f{x'l)\A'i\+ f f
JA\

P

/ / - - /

p

i = l

f + 2

/(X;)|A;I - /" /
JA;

e <3e

[9]

where at the last inequality we used (ii) and (iii). Thus when m = 1 we can choose
C = 3 and this concludes the proof of the one-dimensional case.

To generalize the proof of the one-dimensional case the following statement would
be useful.

STATEMENT. There exists a constant K depending only on the dimension such that
given any finite collection {At : i = 1,... ,/?} of non-overlapping intervals in Rm,
they can be colored by K colors, that is, there exists a function h : { l , . . . , p } -»•
{1, . . . , K), such that intervals of the same color, that is, {A, : h(i) = j}, are disjoint
for all j e [l,...,K).

For m = 1, 2 the statement is true, although the best possible value of K for m = 2
seems to be unknown. When m > 3 then it is not known whether the statement is true
or not.

If p > 1 is fixed and we are looking at p-regular coverings, that is, the ratio of the
longest and shortest side of each A, is bounded by p, then the statement is true. As
B. Kirchheim pointed out to the author the ideas used in the proof of Ziemer [6, 1.3.5.
Theorem, p. 9-12] can be generalized to this case.

Fortunately to prove Lemma A it is not necessary to prove the statement. We
shall show that we can shrink the intervals A, slightly to obtain the intervals A" for
which the statement and Lemma A holds. Using the continuity of the HK-integral for
/ = I, ... p choose 0 < y, < 1 such that if we denote by A" the image of A, under
the affine transformation Tt{x) = x, + y,(x — x,) then

- \A'!\ < e/2p, and
A,

- / / <€/2P
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holds for / = 1 , . . . , p. It is clear that if there exists Co depending only on m and
x\ e {xiA,xi2, • • •} such that

(11)

then

E i - f
JA"

f <

-\ - [ f
J

< f f~ f
JA, JA"

< (C0+l)€

and Lemma A holds with C = Co + 1.
For ease of notation we work out the two-dimensional case; the higher dimensional

ones are similar. Divide the index set { 1 , . . . , p} into 9 disjoint subsets Nu N2,. •., N9.
If Xj e int^C/l,) then let / e Nt. If x, is not a vertex of At and x, is on the lower side
of Aj then let / be in N2. The index sets N3, N4, and N5 are defined like N2 by using
the right, upper, and left sides of At in the definition respectively. If x, is the lower
left (lower right, upper right, upper left) vertex of At then / is in N6, (N7, Ns, N9)
respectively.

Since the intervals A, are non-overlapping it is obvious that {{A",Xi) : i e Nt]
consists of disjoint intervals, and a moment's reflection shows that each of the sub-
subpartitions {(A", Xj) : / € Nj} also consists of disjoint intervals when j =2, ... ,9.
Thus with K = 9 the conclusion of the statement holds for the intervals {A" : / =

Assume now that j e {1, 2 , . . . , 9} is fixed. Since the intervals {A'- : i e Nj} are
disjoint one can enlarge the intervals A" slightly and obtain the intervals A't such that
Xi e int(AJ) and properties (i)-(iv) at the beginning of the proof of the one-dimensional
case of Lemma A hold with A" instead of A, and for j = 1 , . . . , 9. Replacing A, by
A" in the rest of the computations used for the one-dimensional case one can obtain
that

E /(*,') 14'I - f
JA"

f

and hence (11) holds with Co = 10. This concludes the proof for m = 2. Whenm > 3
then a similar separation of cases according to the location of x{ on the boundary of
A, can be used. This concludes the proof of Lemma A.
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