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Abstract

The Ross Sea is known for showing the greatest sea-ice increase, as observed globally, particularly
from 1979 to 2015. However, corresponding changes in sea-ice thickness and production in the
Ross Sea are not known, nor how these changes have impacted water masses, carbon fluxes, bio-
geochemical processes and availability of micronutrients. The PIPERS project sought to address
these questions during an autumn ship campaign in 2017 and two spring airborne campaigns in
2016 and 2017. PIPERS used a multidisciplinary approach of manned and autonomous platforms
to study the coupled air/ice/ocean/biogeochemical interactions during autumn and related those
to spring conditions. Unexpectedly, the Ross Sea experienced record low sea ice in spring 2016
and autumn 2017. The delayed ice advance in 2017 contributed to (1) increased ice production
and export in coastal polynyas, (2) thinner snow and ice cover in the central pack, (3) lower sea-
ice Chl-a burdens and differences in sympagic communities, (4) sustained ocean heat flux delay-
ing ice thickening and (5) a melting, anomalously southward ice edge persisting into winter.
Despite these impacts, airborne observations in spring 2017 suggest that winter ice production
over the continental shelf was likely not anomalous.

Introduction

From 1979 to 2015, the Ross Sea was the only place on Earth with large increases in sea-ice
area, extent and annual duration (Fig. 1; Turner and others, 2009; Comiso and others,
2011; Parkinson and Cavalieri, 2012; Stammerjohn and others, 2012). A considerable amount
of sea-ice production (SIP) in the Ross Sea takes place in two coastal polynyas – the large Ross
Sea Polynya (RSP) and the smaller but intensely productive Terra Nova Bay polynya (TNBP)
(e.g. Kwok, 2005; Drucker and others, 2011). Concurrent with the observed sea-ice extent
increases in the Ross Sea, increases in wind-driven ice export from the Ross Sea coastal
areas have been observed (Kwok, 2005; Haumann and others, 2016). Seasonally, the strongest
sea-ice increases in the Ross Sea have been in autumn (e.g. Stammerjohn and others, 2012),
when the ice pack is rapidly expanding due to enhanced ice growth, both within the polynyas
and at the advancing ice-edge, along with net northward ice drift due to wind-driven advection
(Haumann and others, 2016). How much each of these processes (i.e. SIP in polynyas, SIP at
the ice edge, net northward advection) contribute to advancing and expanding the autumn ice
cover in the Ross Sea is a key question, particularly for improving modeled simulations and
identifying causes (Hobbs and others, 2016).

While an expanding sea-ice cover in the Ross Sea was the prevailing condition in the satellite
era up until 2015, a sudden reversal took place starting in spring 2016, when November recorded
a minimum extent, not just in the Ross Sea but also for Antarctic circumpolar-averaged sea-ice
extent (e.g. Stuecker and others, 2017; Turner and Comiso, 2017; Turner and others, 2017;
Schlosser and others, 2018). Lower-than-average sea-ice extent has continued in the Ross Sea
since spring 2016, particularly in autumn, and has delayed the autumn ice-edge advance (e.g.
Fig. 1). Neither the drivers of the sea ice increases over 1979–2015, nor for the unanticipated
recent decreases, have been well established for the Ross Sea (e.g. Hobbs and others, 2016;
Lecomte and others, 2017; Meehl and others, 2019; Purich and others, 2019).

As one of the most biologically productive areas in the Southern Ocean (Arrigo and others,
2008a; Smith and others, 2012) and a major source of deep-water formation (Gordon and
others, 2004; Orsi and Wiederwohl, 2009), the Ross Sea continental shelf is thought to be
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an important regional sink for atmospheric CO2 (Arrigo and
others, 2008b; Tagliabue and Arrigo, 2016). Here, the magnitude
of annual primary production is thought to be limited by the sup-
ply of dissolved iron (DFe) (Tagliabue and Arrigo, 2005). DFe is
delivered to surface waters by melting sea ice and glacial ice, intru-
sion and upwelling of Circumpolar Deep Water, and the vertical
resupply of iron-rich waters from the benthos (Sedwick and
others, 2000; McGillicuddy and others, 2015). Vertical resupply
is presumed to be most prevalent during the winter months
when katabatic winds drive SIP and convective overturn in coastal
polynyas (Marsay and others, 2014; McGillicuddy and others,
2015), although the impact of these processes on the water-
column DFe distribution have not yet been established.

Changes in SIP and deep-water formation have further biogeo-
chemical ramifications. Deep-water formation and net commu-
nity productivity in the Southern Ocean are thought to be
important to the solubility pump for anthropogenic carbon and
other atmospheric gases. The solubility pump is most directly
related to the rate of deep-water formation, and consequently,

the strength of the carbon sink may change if the rate of deep-
water formation changes (Nicholson and others, 2010; Meredith
and others, 2011; de Lavergne and others, 2014). Given that the
mechanism for deep water formation is closely tied to brine rejec-
tion by SIP, polynyas, as veritable ‘ice factories’ producing ∼10%
of the total modern Southern Ocean ice pack (Tamura and others,
2008), play a key role in the solubility pump and thus the strength
of the carbon sink. However, the solubility pump for any gas also
depends on water temperature (Hamme and Emerson, 2004),
wind speed (Wanninkhof, 1992) and air bubbles in the surface
ocean (Liang and others, 2013), necessitating simultaneous mea-
surements of these parameters during active SIP (Loose and
others, 2014) and deep-water formation.

The PIPERS project

The need to better understand processes driving SIP and the
coupled air/ice/ocean/biogeochemical interactions in this region
motivated the PIPERS program: Polynyas and Ice Production

Fig. 1. (top) Trends (days yr−1) in annual ice season duration over 1979–2015 (updated from Stammerjohn and others, 2012) showing strong positive trends (i.e.
longer annual ice seasons) in the central-western Ross Sea, where ice season became ∼2 months longer on average over 1979–2015. The green contour outlines
those trends significant at the p < 0.01 level. (bottom) The 2017 anomaly (days) in the timing of the autumn ice-edge advance (compared to the 1980–2010 base
period), showing a later ice-edge advance (red) across the Ross Sea and into the inner Amundsen Sea. The blue contour outlines the 1979–2018 climatological
location of the September ice edge. The thin black contour in both images outlines the continental shelf-slope break.
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and seasonal Evolution in the Ross Sea. The principal objectives of
this program were to:

(1) Describe the regional atmospheric, ocean and ice conditions
in the Ross Sea.

(2) Quantify SIP rates during the active autumn growth season,
and assess the drivers (winds, waves, ocean/atmosphere ther-
mal forcing).

(3) Understand the impact of changes in SIP on water mass
transformation, particularly Shelf Water (SW) production.

(4) Improve understanding of coupled air/ice/ocean/biogeo-
chemical interactions both regionally and in areas of high
SIP (the ice edge and coastal polynyas).

Large uncertainties in SIP in the Ross Sea have global implications
due to its association with the production of SW. SW is a precur-
sor to the formation of Antarctic Bottom Water, which is a key
driver of the global thermohaline circulation (Jacobs, 2004; Orsi
and Wiederwohl, 2009). Large uncertainties in SIP are largely
due to the fact that there are few in situ observations in the
Ross Sea during autumn-winter. There have been three prior
growth-season cruises in the Ross Sea – one each in autumn
1995 and 1998 (Jeffries and Adolphs, 1997; Tin and Jeffries,
2001), and one in winter 1995 (e.g. Adolphs, 1999). Both prior
autumn cruises visited the RSP, while the 1998 cruise also visited
TNBP (Jeffries and others, 2001a). These cruises observed
autumn conditions that were fairly common for circumpolar
Antarctic sea ice (Worby and others, 1998), characterized by a
young first-year ice cover (∼50–60 cm) and modest snow cover
(∼10–15 cm) (Jeffries and Adolphs, 1997; Tin and Jeffries,
2001). Thickening from autumn to winter in the outer pack ice
as observed in 1995 was modest, in part because of retardation
of basal growth due to ocean heat (Jeffries and others, 1998).
Despite the modest snow depth observed in autumn, a significant
percentage of snow-ice formation occurred, similar to other
regions and seasons (Jeffries and others, 2001b).

Prior to PIPERS, there had not been a growth-season cruise in
the Ross Sea since 1998 (19 years). Moreover, those previous
autumn-winter field campaigns did not include a comprehensive
approach to observing and measuring the coupled air/ice/ocean
interactions driving SIP, its evolution over winter, and the dynam-
ical processes affecting sea ice and snow distributions and thick-
nesses in spring. Such a comprehensive approach is also needed to
improve our ability to determine sea ice and snow thickness from
satellites, which is now more imperative given the recent launch of
ICESat2. At present, errors in snow and ice thickness estimates
from satellites are large (Kern and Spreen, 2015). A better under-
standing of the seasonal evolution of in situ coupled processes,
particularly the distribution of snow on sea ice and its relationship
to deformed and level ice, will lead to significant improvements.

To address these needs, the multi-national and multi-
disciplinary PIPERS field campaign used a highly-coordinated
combination of ship- and aircraft-based approaches and under-
water, surface and air-borne autonomous platforms to measure
the space-time evolution of air/ice/ocean/biogeochemical interac-
tions and processes, initiated during autumn and tracked into
winter-spring (Fig. 2; Table 1). Measurements were acquired
within and outside the coastal polynyas and on/off the continental
shelf, the latter both on the south- and northbound transects.
Here, we provide a new cross-disciplinary analysis of the field
data (expanded in space and time by satellite remote sensing) to
highlight sea ice and ice/ocean/atmosphere/biogeochemical con-
ditions leading up to, during and following the autumn 2017
field campaign, both in the coastal polynyas and across the
wider Ross Sea region.

Approach and methods

The overarching approach was to create a synthesis of data from
the following sources:

(1) Ship-based (in situ) observations of (i) the atmospheric and
oceanic heat and momentum balance at the surface, simul-
taneous with observations of the atmospheric boundary
layer and the effects of wind/wave interactions on sea-ice
growth and thickness evolution; (ii) ocean property changes
affecting ocean heat/salt budgets, sea-ice growth processes,
and water mass distributions; and (iii) physical and biogeo-
chemical properties of the sea-ice cover at representative loca-
tions (from the ice edge to the central pack to the coastal
polynyas).

(2) A coordinated space-time buoy campaign using (i) wave
buoys deployed in the outer pack ice to measure wind/
wave/ice interactions during both the south- and northbound
legs; (ii) deformational arrays of ice mass balance (IMB)
buoys, GPS buoys and automated weather stations (AWS)
deployed outside the polynyas in autumn to track air/ice/
ocean interactions, ice thickness evolution/export, and pack
ice divergence/convergence through the winter period; and
(iii) an ocean mooring deployed in TNBP in early 2017
(and recovered in early 2018) to measure ocean/ice interac-
tions and water mass transformation in response to katabatic
wind events.

(3) Coordinated near real-time satellite retrievals to assist in
cruise-planning and give space/time context for observations
collected during PIPERS, as well as coordinated air cam-
paigns in spring (November 2016 and 2017) to measure
regional ice thickness.

Below, we describe the methods for acquiring these data during
the PIPERS field campaign in autumn 2017 and during the spring
air campaigns in November 2016 and 2017.

During the 2-month autumn 2017 field campaign, PIPERS
sampled the open ocean bordering the Ross Sea and a variety
of different ice conditions in the western-central Ross Sea
(Fig. 3). Data acquired during the open ocean segments consisted
of underway surface ocean, meteorological, and air-sea gas mea-
surements. These included: radiative energy fluxes; surface air
temperature; cloud ceiling height; sea-surface temperature (SST,
measured by 3 IR guns, a ‘sea snake’ system and the ship’s sea-
water intake); sea-surface salinity; fluorescence; pCO2; methane
and dissolved noble gases (N2, O2, Ar, and Ne collected with a
membrane inlet mass spectrometer or UMS); and atmospheric
gases (CO2, CH4, N2O; discrete

14CO2 and 14CH4). Atmospheric
profiles were obtained hourly to twice daily by radiosondes meas-
uring temperature, humidity, pressure and winds to an altitude of
18 km. The approximate vertical resolutions for temperature,
humidity and winds were 4, 15, and 50m, respectively, with nom-
inal accuracies of 0.2°C, 2%, and 2m s−1. These underway measure-
ments were continued throughout the cruise. In addition, along the
southbound open water track between 60°S and 68.5°S, three Argo
floats and four SOCCOM floats were deployed, the latter alongside
CTD rosette deployments (consisting of continuous vertical profiles
of temperature, conductivity, dissolved oxygen, fluorescence, and
beam transmittance, as well as discrete water samples for physical
and biogeochemical parameters as listed in Table 2).

Once inside the ice edge, underway visual sea-ice observations
were conducted hourly from the bridge using ASPeCt protocols
(Worby and others, 2008) and included sea-ice type (Fig. 3), esti-
mates of sea-ice thickness, ice concentration, and snow depth (see
also Fig. 4). Sampling in the MIZ included wave buoy deploy-
ments, SWIFT drifters (Lagrangian surface floats that measure

Annals of Glaciology 183

https://doi.org/10.1017/aog.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2020.31


surface waves, winds and other ocean and atmosphere properties;
see Smith and Thomson, 2016), zodiac-based physical and bio-
geochemical sea-ice sampling, and ship-based CTD rosette
deployments. Ice stations included both short (<1 day) and
long (>1 day) stations (Fig. 3a, circles and squares, respectively),
some of the latter also including Autonomous Underwater
Vehicle (AUV) deployments (Fig. 3a, bowties). Short stations typ-
ically consisted of ice sampling, gas flux measurements and/or
buoy deployments. Long stations typically consisted of a full
suite of ice sampling and biogeochemical observations, spatial
surface surveys of snow depth, surface topography and AUV ice
thickness surveys, buoy deployments (with additional details
given below), as well as atmospheric observations from flux
towers, unmanned aircraft and radiosondes.

At each of the long ice stations, we conducted a comprehensive
mapping of the snow depth, snow freeboard and ice thickness to
examine how snow accumulates around deformation features and
the relationship between surface topography and sea-ice thick-
ness. At seven stations, a Seabed-class AUV mapped the ice thick-
ness distribution with multibeam sonar over ∼200 × 200 m area
following Williams and others (2015) at sites selected to highlight

deformation features (see Fig. 3a for locations). These were the
first winter under-ice AUV missions in the Antarctic.
Coincident surface surveys of snow depth and snow freeboard
(i.e. the elevation of the snow/ice surface above sea level) were
completed. The snow freeboard was mapped over a 100 m grid
with a Riegl VZ-1000 terrestrial lidar scanner, and the snow
depth was sampled at ∼2000 points over the grid using a
SnowHydro Magnaprobe, modified to provide improved location
capabilities with post-processed kinematic GPS.

CTD vertical profiles were acquired throughout the cruise,
yielding a cruise total of 58 profiles, and a trace-metal clean
(TMC) CTD was also deployed in key areas (on the continental
shelf along the southbound leg and in the polynyas), yielding a
cruise total of 22 TMC CTD profiles. At each ice station, we
acquired at least 1 CTD vertical profile, and between ice stations,
CTD profiles were acquired at a spacing of ∼0.5°–1° of latitude
along the south- and northbound legs. In TNBP a higher concen-
tration of both CTD and TMC CTD profiles were acquired along
repeated zonal transits in/out of TNBP under varying katabatic
wind forcing. Along the zonal transit of the RSP, both CTD
and TMC CTD profiles were located at a spacing of 1°–2° of

Fig. 2. Schematic of technologies used on PIPERS. Observational platforms included automatic weather stations (AWS), SWIFT and wave buoys, and ice mass bal-
ance (IMB) buoys, ship-based instrumentation (e.g. Conductivity-Temperature-Depth, CTD, rosette package), a mooring, an autonomous underwater vehicle (AUV),
an unmanned airborne vehicle (UAV) and Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) floats. Not shown are the ice-based observa-
tions (i.e. ice stations) that are further described in the text.
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longitude along the Ross Ice Shelf front. The UMS package was
also deployed on the CTD at select stations in the polynyas,
and water samples were collected to measure methane and dis-
solved noble gases (N2, O2, He, Ne, Ar, Kr, Xe). The dissolved
noble gases shed light on the solubility pump and are used to dis-
tinguish the influence of deep-water formation processes, includ-
ing SIP, water recharge temperature, and the amount of air
injected as bubbles (Hamme and Emerson, 2004; Liang and
others, 2013; Loose and others, 2014).

To track the dynamic and thermodynamic evolution of the ice
cover as the winter progressed, four sea-ice buoy arrays were
deployed (see Fig. 3a for locations). The first array consisted of
three GPS position-only buoys deployed at the outflow of
TNBP to measure the deformation of the outflow plume as it
encountered the main Ross Sea pack. The other three arrays
were deployed in the south central and western Ross Sea to moni-
tor the ice evolution as it drifted northward from the RSP to the
ice edge. Each of the latter three arrays consisted of 5-dice array
patterns, spaced at 5–10 km intervals, with two ice mass-balance
buoys (Jackson and others, 2013), one automatic weather station
(temperature, humidity, pressure, wind speed and direction, and
snow depth and ice thickness), and two GPS-only buoys.

Fourteen wave buoys (WIIOS: Waves-In-Ice Observation
Systems) were deployed in the marginal ice zone (Kohout and
others, in press, this issue). These buoys measure wave motions
every 15min using a high-precision inertial motion unit. Four of
the WIIOS buoys were deployed in the MIZ on the transit south,
and ten WIIOS buoys were deployed on the transit north over a
span of ∼200 nautical miles from the interior pack to the MIZ.

The biogeochemical component of PIPERS consisted of 27
sites along the cruise track where physical measurements were
collected to support a suite of biogeochemical and ecological pro-
cess studies focusing on major physical and environmental drivers
(e.g. microbial production, nutrient recycling across the ocean/
sea-ice/atmosphere interfaces, and gas exchange; see Tison and
others, submitted, this issue). In addition to measurements at
ice stations, zodiac-based measurements were acquired within
the MIZ and coastal polynyas to capture biogeochemical pro-
cesses during the first stages of sea-ice growth (i.e. unconsolidated
ice, including frazil ice and thin pancakes). The data collected
(Table 2) will also be used to validate and improve parameteriza-
tions of early winter sea-ice processes in climate and ecosystem
models.

Coordinated near-real-time satellite image acquisition was
critical for cruise planning, particularly in TNBP with its

successive katabatic wind events. Terra-Sar-X quicklook imagery
was sent to the ship, totaling 44 TDX images at ∼15 m resolution.
Also sent to the ship were Sentinel 1A and 1B images (totaling 50
images) at ∼100 m resolution, as well as cloud-free MODIS
images at 250 m resolution and daily maps of AMSR2 sea-ice con-
centration at 3.125 km resolution. Finally, SMMR-SSM/I imagery
at 25 km resolution available from National Snow and Ice Data
Center were used to place 2017 within the context of sea-ice vari-
ability and trends over 1979–2017 (e.g. Fig. 1).

Finally, there were two coordinated air campaigns in spring
(November 2016 and 2017) to measure regional sea-ice thickness
using the IcePod system flown onboard the NSF C-130 aircraft
over the Ross Sea continental shelf in November 2016 and
2017. A particular emphasis was to repeat a flight line over a ‘flux-
gate’ corresponding to the shelf-slope break to capture the export
(rate) of pack ice from the continental shelf northward to the deep
ocean (e.g. Kwok, 2005; Kwok and others, 2017). This area was
also covered by NASA’s IceBridge aircraft in 2013, allowing
those data to be compared to ice thicknesses observed in 2016
and 2017 (Tian and others, submitted).

Results

Here we present an overview of observations made on (1) regional
sea-ice conditions, (2) regional atmospheric conditions, (3)
regional ocean conditions and (4) air/ice/ocean interactions in
TNBP. More detailed analyses are published in companion papers
(or are still pending); these are noted where relevant.

Regional sea-ice conditions

Underway observations of ice regimes and ice types
PIPERS sampled four different sea-ice regimes (Figs 3 and 4) as
well as the open ocean bordering the marginal ice zone. These
regions were characterized as follows (with dates of occupation
included in parentheses):

(1) Open ocean, including both the inbound track (11–19 April)
and the outbound track (5–12 June). The ocean north of the
advancing ice edge, when crossed during both the inbound
and outbound tracks, was characterized by anomalously
warm waters and periodically high wind/wave conditions.

(2) Marginal Ice Zone (MIZ), including both the inbound track
(19–22 April) and the outbound track (3–5 June). The
autumn ice edge on the inbound track was anomalously

Table 1. PIPERS sampling platforms, topics, investigators and measurements

Platform Topic Investigator(s) Measurements

N.B. Palmer Atmosphere Guest, Cassano Weather forecasting; ship/ice-based turbulent fluxes; boundary layer profiles
(rawinsondes, UAV)

N.B. Palmer Sea ice Ackley, Weissling, Maksym,
Delille, Tison

Ice cake sampling (texture, temperature, salinity, δ18O, Chl-a, CO2, DMS); Shipboard digital
photography; Underway Ice Thickness (EMI); Surface Elevation (Terrestrial Lidar); Snow
Depth; AUV ice thickness

N.B. Palmer Upper-ocean
physics

Stammerjohn, Maksym, Smith AUV and Ship CTD, T/S from IMBs, SWIFT buoys for turbulence and waves

N.B. Palmer CO2 Fluxes Guest, Delille, Tison Turbulent CO2 fluxes; CTD profiling and Trace Metal water sampling; Underway pCO2 and
TCO2; Floating Bell CO2

NSF LC-130,
Satellites

Sea ice Xie, Ackley Airborne Lidar Elevation and digital photography (LDEO IcePod System); Satellite
Microwave

Autonomous
Buoys

Sea ice and upper
ocean

Maksym, Stammerjohn,
Ackley, Guest, Kohout

Ice growth, drift and deformation; Ice Temperature Profiles; sea-water salinity and
temperature (Ice Mass Balance Buoys and GPS Position Buoys); Meteorological spar buoy;
WIIOS wave buoys

N.B. Palmer Ocean Sedwick Iron and Trace Metals
N.B. Palmer Ocean Loose Noble Gases: Underwater Mass Spectrometer, T/S and bottle sampling from ship CTD
TNBP Mooring Ocean Zappa, Gordon Year-long mooring in near-shore Terra Nova Bay, measurements of T/S, upper ocean

turbulence

N.B. Palmer is short for the RVIB Nathaniel B. Palmer.

Annals of Glaciology 185

https://doi.org/10.1017/aog.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2020.31


south of its mean location and characterized by a wide (∼200
km) zone of mostly pancake ice and a moderate-to-high sea
state (with significant wave heights ranging from 1 to 4 m).
The MIZ observed during the outbound transit was charac-
terized by a relatively narrow MIZ, still south of its mean
location, actively melting, consisting mostly of young first-
year sea ice and a relatively high sea state.

(3) First-year ice, including thin (30–70 cm) and thick (>70 cm)
rafted/ridged first-year ice. The young first-year ice cover of
the coastal pack along Victoria Land (23–30 April) along
the southbound leg became increasingly rafted and under
pressure as TNBP was approached. Some of the thickest

first-year ice observed was along the Victoria Land coast
(Fig. 3), an area subject to heavy deformation against the
coast. Along the northbound leg, the central outer pack ice
north of RSP (19 May—2 June) was characterized by thin
first-year ice and a long period swell. Thick first-year (>70
cm) ice was occasionally observed along the northbound leg
in isolated ridged areas of the central Ross Sea.

(4) Coastal polynyas, including newly formed ice (<30 cm) in
both the TNBP (30 April—12 May) and RSP (16–17 May).
During our occupation of the TNBP, there were consecutive
katabatic wind/wave events conducive to rapid pancake ice
formation. In the RSP, there were moderate off-ice winds con-
ducive to nilas (0–10 cm) and young grey ice (10–15 cm)
formation.

(5) Wind-driven outflows from the coastal polynyas, including a
range of deformed and undeformed young ice types. In the
outflows from McMurdo Sound polynya and TNBP, the ice
cover was heavily rafted (and often thick). The outflow
from TNBP, in particular, may be one of the few locations
in Antarctica where ‘Dragon Skin Ice’ can be observed
(Fig. 5). In contrast, the ice in the northward outflow from
the RSP (17–19 May) generally increased in thickness from
frazil and nilas in the polynya proper to broad expanses of
undeformed young grey and grey-white ice (15–30 cm).

Underway and station-based sea-ice thickness measurements
Overall, a relatively thin ice cover was observed throughout the
central Ross Sea region with modal values for level (undeformed)
sea ice typically <0.40 m with snow cover <0.10 m (Fig. 4). These
values are generally lower than the sea ice and snow thickness
values observed during two previous May–June cruises in the
Ross Sea (in 1995 and 1998; Jeffries and Adolphs, 1997; Tin
and Jeffries, 2001), and partially reflect the shorter ice growth sea-
son in 2017 relative to other years (Fig. 1). However, this may also
reflect differences in ice types encountered along different cruise
tracks. In the autumn of 2017, the thinnest and youngest ice
observed was in the TNBP and RSP, mostly consisting of pancake
ice and nilas ice, respectively. The prevalence of nilas in RSP
reflects the generally lower wind conditions during our short
occupation. The outflow from the RSP was also much thinner

Fig. 3. (left) PIPERS cruise track within the sea ice zone, color-coded by observed ice
type. The open circles are short (<1 day) stations; open squares are several-day ice
stations; bow-ties are AUV stations. Buoy drifts (black lines) for one buoy from
each buoy array from date of deployment to Jun 30 are also shown. Dotted black
lines bisecting the cruise track roughly delineate ice regimes described in the text.
Dates on which the ship crosses these delineations are (a) 23 April, (b) 30 April, (c)
12 May, (d) 15 May, (e) 19 May, (f) 3 June. The background white-gray shading corre-
sponds to Advanced Microwave Scanning Radiometer 2 (AMSR2) ice extents for 1
April, 15 April, 1 May, 15 May, 1 June (defined with a 15% concentration cutoff).
MIZ is marginal ice zone, TNBP is Terra Nova Bay polynya, RSP is Ross Sea
Polynya. Note, only the cruise track at/inside the ice edge is shown here (and does
not include the open ocean portions from/to Lyttleton, NZ). (right) PIPERS cruise
track in TNBP (30 April—12 May), color-coded by observed ice type. The gray-shading
corresponds to AMSR2 ice concentration on 1 May, with gray shading indicating ice
concentration from 40% (darkest grey) to 90% (lightest grey).

Table 2. The suite of measurements collected as part of the biogeochemical
component

Topic Measurements

Physics and inorganic
chemistry

Temperature
Bulk salinity
Water stable isotopes
Ice fabrics

Gases Bulk concentration of N2, O2, Ar, CH4, N20
CO2, DMS, DMSP, DMSO, VOC
13C and 2H isotopic composition of CH4 and

15N and
18O isotopic composition of N2O
Total gas content
Measurement of air-ice-ocean fluxes of CO2, CH4,
N2O and VOC

Biology Chl-a (fluorescence) and other pigments (HPLC) for
different size class of microalgae
Targeted enumeration of algal species

Biogeochemistry Nutrients
POC
DOC
δ15N
Major elements (Cl, I, Br, …)

Trace Metals Fe, Zn, Mn, Cu, Cd, Ni, V, Mo, Co, Ba, Al, Ga, Pb, REE
Carbonate System Total Alkalinity (TA)

pH
CaCO3 crystals (Ikaïte) derived from TA anomaly
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and less rafted compared to previous observations (and compared
to the outflow from TNBP, as noted above).

In contrast to these 2017 observations, the only other winter
observations from 1995 saw much less open water in the TNBP

and much thicker and ridged ice at the TNBP outflow (Jeffries
and others, 2001a). Likewise, the outflow of thin ice from RSP
was narrower in 1995, with thicker ice observed ∼200 km north
of the Ross ice shelf (Jeffries and Adolphs, 1997). In 2017, thin,

Fig. 4. Underway ice concentration (left y-axis; blue), ice thickness (inside right y-axis; black) and snow depth (outside right y-axis; orange) from hourly visual ice
observations. The dashed black line is the ice thickness accounting for ridging, and the solid black line is the level ice thickness. The vertical dotted lines, lettered
a-f, correspond to the delineations highlighted in Figure 3a. On the basis of comparisons with drilled measurements the error associated with thin ice such as nilas
and grey-white ice <10 cm thick is ± 50%; for ice between 0.1 and 0.3 m the error is ± 30%; and for level ice >30 cm the error is ± 20% (Worby and others, 2008).

Fig. 5. The N.B. Palmer alongside rafted pancake ice (known as ‘dragon skin’) in the TNBP outflow. Pancakes are ∼0.5–1 m in diameter and were vertically rafted in
places, resulting from strong wind-driven advection out of TNBP to subsequently pile up against the northward drifting, often heavy pack ice. The orange and white
measuring stick (pointing left over the pancake field from ship’s starboard) has delineations of 5 cm and was used to estimate floe size and thickness (of upturned
floes) from the starboard wing of the bridge. The visible ‘shear line’ stretching diagonally across the pancake field reveals the active deformation that was occurring
at this site. (Photo by S. Stammerjohn).
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very level ice persisted for almost 400 km from the Ross ice shelf.
These observations suggest that the TNBP and RSP were much
more active in 2017 (Dai and others, 2020), with generally more
divergent conditions in the central pack ice. Consequently, sea-ice
export was likely greater than in prior observations, facilitated in
part by the later development of the ice cover, thus a thinner less
consolidated pack ice that allowed increased transport of ice north-
ward. Additionally, there was more active local forcing in TNBP
(see below). Despite these differences in the polynyas and central
pack ice observed in 1995 vs 2017, sea-ice thicknesses in the
outer Ross Sea in 2017 were similar to those observed in prior
years (e.g. Jeffries and Adolphs, 1997). Tison and others (submit-
ted, this issue) provide additional details on sea-ice structural dif-
ferences encountered in 1998 vs 2017.

Station-based sea-ice biogeochemistry
Tison and others (submitted, this issue) demonstrate how the
peculiar sea-ice growth conditions in 2017 led to considerably
lower Chl-a burdens compared to both the previous early winter
cruises in the Ross Sea (1995, 1998) and to other early winter cruises
elsewhere in the Antarctic (Tison and others, 2017). A change in the
sympagic community structure towards Phaeocystis-dominated cell
abundances was also observed in 2017 (instead of diatom-dominated
assemblages as noted in earlier reports of, e.g. Garrison and others,
2005). The ‘health status’ of this sympagic community, inferred from
the Phaeopigments to Chl-a ratios, suggested active growth (rela-
tively low proportion of dead cells vs active cells), but less than
that observed for the Weddell Sea (Tison and others, 2017).
Finally, the active primary production inferred from a March 2017
satellite image of TNBP was not apparent in our TNBP biogeochem-
ical samples that were later collected in early May 2017. However,
the inferred active primary production observed in March 2017 in
TNBP may have seeded some of the algal stocks observed in our bio-
geochemical ice samples acquired further north along Victoria Land.
Tison and others (submitted, this issue) provide additional details on
sea-ice structure and the physical and biological properties of the sea
ice. Much of the biogeochemical data are still being processed and
interpreted, with results forthcoming.

Station-based sea-ice morphology and snow depth distribution
Surveys from the AUV, terrestrial lidar scanner, and snow mag-
naprobe were co-registered and compiled to provide coincident,
high-resolution topography of the snow, ice surface and ice
underside at four stations (e.g. Fig. 6). The AUV data revealed
that very thick ridging can occur despite the young, thin ice
cover, with the surveyed ridges all having keel depths greater
than what is typically found in drilling surveys (Tin and Jeffries,
2003). Additional details and analysis are given in Mei and others
(2019).

Buoy-based wave/ice interactions, sea-ice drift, and thickness
evolution
The WIIOS (wave) buoy arrays indicated that waves from the
Southern Ocean were a prominent and persistent feature in the
outer pack north of the IMB arrays. The observed waves attenu-
ated exponentially as they propagated into the pack ice, with
attenuation rates dependent on sea-ice fraction. Additional analyses
and greater details are given by Kohout and others (in press,
this issue).

Due to the episodic high wind and wave conditions at the ice
edge causing convergence/divergence in the outer pack ice,
together with an overall thin first-year ice cover, the attrition
rate for the drifting IMB buoys was high, with few mass-balance
observations lasting more than a few weeks. However, a few buoys
did last into November 2017. Surviving IMBs showed only modest
ice growth as winter progressed, suggesting high ocean heat flux

driven by remnant heat in the mixed layer and/or entrainment
of heat from the pycnocline as the mixed layer continued to
deepen. The high IMB attrition after only a few weeks from
deployment highlights the highly dynamic conditions that led
to significant new ice production in the outer pack ice. Due to
the late onset of freeze-up in 2017, the amount of deformation
observed during PIPERS was low compared to prior winter
cruises (Tin and Jeffries, 2003), but as winter progressed,
increased deformation contributed to the dynamical (vs thermo-
dynamical) thickening of the pack ice.

Aircraft-based spring sea-ice thickness observations
Icepod aircraft surveys showed differences in regional sea-ice
thickness in spring 2016 and 2017 compared to prior spring
observations (Tian and others, submitted). Measurements were
compared to IceBridge observations in 2013 and to ICESat data
from 2003 to 2008. In general, the observations all show that
new sea ice produced in the coastal polynyas (e.g. TNBP and
RSP) is transported northward and thickens as it travels north.
Interestingly, thicker sea ice was observed in spring 2017, com-
pared to 2013 and 2016, suggesting that the delayed ice advance
in 2017 drove only a temporary decrease in ice volume, and
other processes (such as deformation and winter precipitation
variability) likely compensated during winter. Compared to the
IceSAT period (2003–08), sea-ice thickness along the coast from
TNBP northward was greater in both 2016 and 2017, while sea-ice
thickness offshore of the RSP and along the flux-gate was thinner
compared to 2003–08 (Tian and others, submitted).

Regional atmospheric conditions

Continuous underway measurements of air temperature (mea-
sured at 9 m) along the PIPERS cruise track ranged from near-
freezing temperatures over open water to as low as −29°C near
the continent during katabatic wind events. As is typical for
sea-ice regions, the relative humidity near the surface over ice-
covered areas of the Ross Sea remained close to the ice saturation
value. Well-mixed atmospheric boundary layers existed every-
where, ranging in depth from 150 m near the continent to 2500
m over open water. The extreme high winds, cold temperatures
and open water in the Ross Sea coastal polynyas created turbulent
heat fluxes of over 2500Wm−2, among the largest observed on
Earth, and capable of producing ice at rates of up to 0.70 m
day−1 (with more details given below). Where there was substan-
tial older ice and snow cover, the surface heat flux was dominated
by the net longwave radiation, which in turn was controlled by
cloud cover. Total longwave radiation ranged from ∼20 W m−2

(upward) during overcast condition (60% occurrence) to 100W
m−2 during clear skies (20% occurrence).

Regional ocean conditions

Water mass distributions
The main water masses observed during PIPERS were, from sur-
face to deep: Antarctic Surface Waters (AASW, <28 kg m−3),
Circumpolar Deep Water (CDW, 28.0–28.27 kg m−3), sea ice-
produced Shelf Water (SW, >28.27 kg m−3, <−1.85°C) and Ice
Shelf Water (ISW, >28.27 kg m−3, <−1.95°C), defined using
water masses as described in Orsi and Wiederwohl (2009). Shelf
water can be separated into High Salinity Shelf Water (HSSW, sal-
inity >34.62), found mostly in the western Ross Sea, and Low
Salinity Shelf Water (LSSW, salinity <34.62), found mostly in
the eastern Ross Sea (east of the RSP). The difference in salinity
is reflective of differences in SIP, as greater SIP results in saltier
SW. On the continental shelf, CDW was slightly lighter (closer
to 28 kg m−3) compared to its density off the shelf (closer to
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28.27 kg m−3) and is referred to here as modified CDW (mCDW).
An example of a latitude-depth section of CTD data acquired
along the southbound leg into TNBP shows the autumn distribu-
tion of AASW, mCDW and SW in salinity/density space com-
pared to their climatological distribution in summer (Fig. 7).
Isolated pockets of ISW were also detected in the TNBP (not
resolved in Fig. 7), as well as in front of the Ross Ice Shelf.

Compared to the summer composite data, the bottom layer of
SW was thinner and less salty during PIPERS in autumn 2017,
most likely reflecting the slow start of SIP in driving deep convect-
ive overturning. (By end of winter, the net effect of SIP should
generally produce a thicker, saltier layer of SW, with temperature
and salinity characteristics similar to the SW in the summer com-
posite.) Nonetheless, during strong katabatic wind events in
TNBP (>30 m s−1), deep convective mixing was observed, deepen-
ing the mixed layer from ∼200 to 600 m over lateral distances of
<10 km. In contrast, an overall shallower mixed layer in the RSP
was observed (not shown), indicating that deep convective mixing
was lagging compared to TNBP. It is also noted that the layer of
CDW north of the shelf is slightly thicker (higher in the water col-
umn) than in the summer composite (and its temperature higher;
not shown). Preliminary investigations also indicate that TNBP

bottom waters observed during PIPERS were fresher compared
to long-term TNBP mooring observations (Russo and others,
2011), and are suggestive of a freshening rate of ∼0.02 decade−1.
Jacobs and Giulivi (2010) similarly reported a SW freshening
rate of 0.03 decade−1 over 1958 to 2008 for the southwestern
Ross Sea. However, our estimated freshening rate of TNBP SW
may have an early season bias if SW production was not yet
fully underway; a more rigorous assessment using oxygen isotope
and noble gas measurements acquired during PIPERS is planned,
and may help resolve any bias.

Dissolved iron distribution
Hydrographic data and water-column samples for analysis of iron
and other trace metals were collected along the PIPERS cruise
track, with particular focus on the polynyas. In response to the
intense katabatic wind events observed in TNBP, the DFe data
suggest that vertical mixing was starting to excavate the dense,
iron-enriched HSSW that fills the deeper TNBP basin (Fig. 8,
top), providing a potential source of DFe to the upper water col-
umn in the western Ross Sea. There is also evidence of lateral DFe
inputs in the upper 500 m of the water column in TNBP. Stations
in the RSP (in front of the Ross Ice Shelf), where wind conditions

Fig. 6. Coincident, high-resolution topography of the snow, ice surface, and ice underside in planar view (top) for a 100 m × 100 m survey, and in vertical view
(bottom) for the dashed transect (shown in top view). In the planar view, the underlying light/dark shading provides the surface topography from Lidar (inside
right gray-shaded color bar) and the filled color contours are the AUV ice thickness (far right color bar, ice thickness in meters), while the colored circles are
the snow depth (far right color bar, snow depth in decimeters).
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Fig. 7. Latitude-depth sections of salinity (color shading) and neutral density (black contours) in the western Ross Sea from just north of the continental shelf break
to TNBP for: (top) a summer composite (see Orsi and Wiederwohl, 2009), and (bottom) autumn 2017 (as acquired by PIPERS between 22 April and 10 May). Water
masses are defined in the text.

Fig. 8. Latitude-depth (top) and longitude-depth (bottom) sections of dissolved iron (DFe) concentration (color shading) and density (sigma-theta, kg m−3, white
contours) from just north of the continental shelf break to TNBP (top) and along the Ross Ice Shelf (bottom). The white numbers at the bottom of the sections
correspond to profile numbers in the maps on the left.
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were less extreme, revealed surface mixed layers <300 m depth,
and a DFe distribution (Fig. 8, bottom) similar to previous, late-
summer observations. Together, these results suggest that con-
vective mixing progresses slowly during the winter months,
with an earlier onset in the TNBP relative to the RSP, consistent
with the observed timing of ice edge advance in these two poly-
nyas during the cruise period (Fig. 1). Additional observations
from the winter season are needed to fully elucidate the seasonal
dynamics of DFe on the Ross Sea continental shelf.

Dissolved gases
A first look at the dissolved gas properties during late autumn in
TNBP and RSP reveals strong modification of water properties as a
result of convection, with noble gas concentrations far away from
equilibrium with the atmosphere. Despite the extreme cooling and
strong convection, the fingerprint of sea-ice formation was observed
in the gas ratios at the surface ocean, and remnants of CDW were
detected just below the zones of active convection. Evidence of glacial
meltwater (throughHe andNe) was found in TNBP near 600m and
in front of the Ross Ice Shelf. The former may be glacial meltwater
outflow from the Nansen Ice Shelf, which may be a source of mid-
depth DFe. Further analyses are still pending.

Air/ice/ocean interactions in TNBP

The coastal polynya observations of air-sea heat fluxes, waves and
upper ocean ice formation reported here are focused primarily on
the TNBP (Fig. 3b) given our longer occupation (over 12 days in
early May), and the opportunity to observe several katabatic wind
events exceeding 30 m s−1.

Air-sea heat fluxes in TNBP
The highest heat fluxes observed in TNBP are sufficient to freeze
sea ice at a rate of up to ∼0.70 m day−1, verifying that coastal poly-
nyas can be effective ‘ice factories’. Fluxes were observed during
three ‘fast transects’ along the east-west axis of TNBP using raw-
insonde balloon releases approximately every 2 hours. Radiosonde
measurements during one of these transects in a strong katabatic
wind event (with winds of up to 30 m s−1) reveal the downwind
effect on surface heat fluxes (Fig. 9). The transect started near
the Nansen Ice Shelf in open water, swept clear of sea ice by
high winds, and proceeded east into the advected area of newly
formed sea ice, parallel to the Drygalski Ice Tongue (Fig. 3b).
Heat fluxes computed from radiosonde observations by the inte-
gral method were in excess of 2000Wm−2 in the nearshore open
water areas and decreased eastward into the ice-covered area.
Around 50–60 km from the Ice Shelf (Fig. 9), heat fluxes
increased again as we crossed a small open water polynya at the
tip of the ice tongue. The heat fluxes then declined to below
200Wm−2 in the thicker pack ice outside of TNBP. The heat
flux was comprised primarily of sensible and latent heat, with
net longwave contributing ∼10% to the total heat flux.

Frazil ice growth and SIP during katabatic wind events
Oceanographic observations during katabatic wind events are used
to calculate frazil ice concentration and SIP rates (De Pace and
others,2019). Eleven of the 17 CTD profiles acquired in the poly-
nyas revealed bulges of warm, salty water extending downwards
tens of meters from the surface (Fig. 10). As we would typically
expect uniform profiles with vigorous convective heat loss, these
observations suggest a release of latent heat and salt during uncon-
solidated frazil ice production in the upper ocean. A simplified salt
budget is used to estimate in situ frazil ice concentrations between
332 × 10−3 and 24.4 × 10−3 kgm−3, and measurements of turbulent
kinetic energy dissipation (from SWIFT deployments in TNBP)
suggest mixing lifetimes from 2 to 12min. The corresponding

median rate of SIP is 0.26 m day−1 and compares well with previous
empirical and model estimates. Estimates of SIP from individual
profiles are as high as 1.1 m day−1.

Autumn-winter surface sensible heat fluxes over TNBP were
also estimated using AWS data, atmospheric profiles acquired
with an unmanned aerial vehicle and satellite-derived surface
temperature data to compute fluxes over the period April–
September for years 2003, 2005 and 2012–17 (the years with avail-
able data; Schick, 2018). The hourly average fluxes for the April to
September period varied from ∼450Wm−2 at the coast to ∼165
Wm−2 30 km downwind of the coast. This heat loss from the
ocean corresponds to seasonally-averaged SIP rates of 0.19 m
day−1 near the coast and 0.07 m day−1 30 km downwind of the
coast, or a total of 30 m and 9 m respectively of sea-ice growth
during the April–September period (Schick, 2018).

Waves in TNBP
The rapid formation of pancake ice observed in TNBP reflects the
role of waves on ice growth. Pancake sea ice only forms in the
presence of waves and has been previously observed to grow
two to three times as fast as nilas (Doble and others, 2003). For
PIPERS, it was critical to capture the evolution of waves in this
dynamic environment. Surface waves and winds were measured
during a katabatic wind event in TNBP using a SWIFT drifter
(Fig. 11). We observed sustained, strong winds that are character-
istic of katabatic wind events. Over the deployment, the drifter’s
distance from the coast (fetch) increased from 27 to 64 km,
while the distance into the sea ice-covered area (b) simultaneously
increased. As a result, wave heights decrease and the sea-ice
growth slows down. These results demonstrate the strong relation-
ship between waves and SIP in coastal polynyas (as well as in the
MIZ). Further, results from such coupled in situ observations can
be used to constrain and validate SIP rates in climate models with
ice-wave coupling (e.g. Roach and others, 2019).

Summary

The PIPERS project conducted a comprehensive campaign in the
seasonal sea-ice zone and coastal polynyas of the Ross Sea,

Fig. 9. Heat fluxes from a ‘fast transect’ at 75.2 S latitude in TNBP, starting ∼10 km
from the front of the Nansen Ice Shelf, and taken as the vessel traversed downwind
from west to east. The sensible and latent heat fluxes shown here are estimates from
a bulk method based on underway measurements of wind speed, temperature,
humidity and surface temperature and roughness, with positive being upward
towards the atmosphere. (Alternate heat flux calculations using the integral method
based on changes in the downwind temperature and humidity produced similar
values.)
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examining the coupled air-ice-ocean processes driving the
autumn sea-ice advance and their impacts on biogeochemical
processes. The regional atmospheric conditions in the Ross Sea
in autumn are typically characterized by an interaction between
(1) synoptic-scale (∼2000 km) cyclones circling the Antarctic
continent clockwise and (2) a variety of mesoscale (∼200 km) fea-
tures associated with the coastline, including intense katabatic
wind events and mesoscale cyclones. The synoptic cyclones
have the strongest effects in the more northerly and eastern
parts of the Ross Sea. Toward the west, the cyclone-sheltering
effect of the mountains of Victoria Land allows the mesoscale fea-
tures to dominate the local forcing.

With respect to local forcing, PIPERS has increased our under-
standing of air/ice/ocean coupling under the different wind, wave
and sea ice conditions observed in the coastal polynyas in particu-
lar. The comprehensive measurements of atmospheric structure
and surface fluxes acquired during PIPERS in the TNBP specific-
ally provided the first detailed in situ quantitative analyses of

katabatic wind events, which are important to SIP and subsequent
wind-driven advection of the newly formed sea ice. PIPERS for-
tuitously sampled 15 gale force wind events and one event at hur-
ricane force in the TNBP. Although some mesoscale cyclones
were observed in the Ross Sea during the cruise period, these
were much weaker than the synoptic cyclones and katabatic
winds, with the latter generating the strongest wind events ever
observed.

The PIPERS observations were taken in the context of record
low sea-ice extent, following an early ice edge retreat in spring-
summer of 2016–17 and resulting in a nearly 2-month delay in
autumn ice edge advance in 2017. The delayed ice-edge advance
contributed to:

(1) Increased SIP and sea ice export in the coastal polynyas, with
air-ocean heat fluxes of up to 2000Wm−2, wind velocities of
up to 30 m s−1, significant wave heights of >2 m, frazil ice for-
mation down to 10 m ocean depth, rapid formation of thin

Fig. 10. (left) Schematic of frazil formation at depth during katabatic wind events. (right) Example temperature and salinity profiles from a CTD station in a kata-
batic wind event in TNBP. Shaded regions show the temperature and salinity anomaly compared to the baseline values (dotted line) where frazil ice is forming and
releasing heat and salt. The blue line is the calculated freezing temperature (De Pace and others, 2019).
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pancake ice <0.2 m, and greater expanses of thin ice in the
polynya outflows than was observed during the only other
winter field campaign in the Ross Sea.

(2) Thinner snow and ice cover in the central pack with under-
way visual observations of level, undeformed pack ice show-
ing modal values <0.40 m and snow cover <0.10 m.

(3) Lower sea ice Chl-a burdens and differences in the sea-ice
sympagic communities.

(4) Delayed deepening of the winter mixed layer and a sustained
ocean heat flux likely delaying ice thickening.

(5) A melting, anomalously southward ice edge persisting into
winter.

Despite these impacts, spring airborne observations 5–6 months
following the ship-based field campaign indicated that winter
SIP over the continental shelf was likely not anomalous.

PIPERS acquired the first in situ coupled air/ice/ocean obser-
vations in an active coastal polynya (TNBP) in autumn. Repeated,
strong katabatic wind events in TNBP drove the extreme loss of
heat and copious ice production, high amplitude waves, and sub-
surface frazil ice formation at depths down to 10 m. Thin pancake
ice was quickly removed from the formation area and thickened
downstream by rafting. This rapid removal of ice, facilitated by
both the intense katabatic wind events and a mobile pack exterior
to the polynya, served to maintain a more active ‘ice factory’ than
previously observed during the only other autumn-winter cruise
to TNBP in 1998.

From air-ice-ocean data acquired in TNBP, three different meth-
odologies were used to estimate SIP rates under different
assumptions and over different space/timescales. The SIP rate esti-
mates range from (1) 0.75m day−1 (bulk/integrative calculation,
based on hourly-to-daily timescales over ∼90 km), (2) 0.26 to
1.1 m day−1 (instantaneous calculations, based on seconds-to-
minutes timescales over ∼km-scale distances), and (3) 0.19 to
0.07m day−1 (from near the coast to 30 km downwind of the
coast, based on seasonal averages over April to September). These
different estimates reflect differences in space/timescales, assump-
tions and conditions, while also underscoring the challenges and
complexities of measuring in situ SIP.

There is also the complex feedback between SIP and surface
heat fluxes, as surface heat fluxes are highly dependent on
whether there is ice cover and the type of ice present. The highest
SIP rate by thermodynamic growth will be in areas of open water
and will drop off strongly as the ice cover forms downwind,

whereas the highest SIP rate by dynamic ice thickening will be
downwind away from the coast, where new ice piles up. As high-
lighted by PIPERS, any future work on better resolving SIP rates
will ideally involve multi-platforms and multi-methodologies
under a range of forcing and surface conditions, if we hope to bet-
ter understand the complex drivers of SIP.

Since 2016, record low sea-ice extents have occurred in the
Ross Sea, in contrast to long-term sea-ice increases and record
maxima observed 2013–2015. Given this context, future analysis
of PIPERS data will be aimed towards understanding the drivers
and consequences of the anomalous autumn ice advance on the
ice/ocean/biogeochemical system. We have quantified SIP in the
TNB coastal polynya, but identification of the air/ice/ocean inter-
actions driving production and thickening of the pack ice along its
northward trajectory to the ice edge is still in progress.

The late start of the autumn ice growth season resulted in a late
start to winter ocean mixed layer deepening, Shelf Water production,
and convective overturning particularly in the central Ross Sea. The
warmer and shallower CDW on the outer continental shelf and
northward (relative to climatological conditions) likely slowed sea
ice thickening into winter-spring. Whether late winter SIP in the
central/outer pack or continued high SIP and export in the coastal
polynyas contributed to near-average sea-ice thickness observed by
airborne campaigns in spring is still under investigation.

Data used in this paper are available at http://www.usap-dc.
org/view/project/p0010032.
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Fig. 11. (a) Wind speed (U1, m s−1) and wave height (Hs, m)
observations from a SWIFT drifter deployed during katabatic
wind events, and (b) coincident ASPeCt visual ice observa-
tions. Downwind distance from the coast was ∼27 km at
deployment, and 64 km at recovery.
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