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Perforated Ordered K0-Groups
George A. Elliott and Jesper Villadsen

Abstract. A simple C∗-algebra is constructed for which the Murray-von Neumann equivalence classes of pro-
jections, with the usual addition—induced by addition of orthogonal projections—form the additive semi-
group

{0, 2, 3, . . . }.

(This is a particularly simple instance of the phenomenon of perforation of the ordered K0-group, which has
long been known in the commutative case—for instance, in the case of the four-sphere—and was recently
observed by the second author in the case of a simple C∗-algebra.)

1

The purpose of this note is to describe a modification of the construction of the second
author in [12] of a simple C∗-algebra with perforated ordered K0-group, which leads to
examples in which this ordered group has a particularly simple form.

(Recall that an ordered abelian group, or, rather, its positive cone, is said to be perfora-
ted—see [4]—if there exists a non-positive element g such that, for some n = 2, 3, . . . ,
ng ≥ 0.) (It is said to be strongly perforated, at least in the simple case,—opposite: weakly
unperforated—if g may be chosen such that ng > 0, i.e., not to be a torsion element. For
torsion-free groups the two properties coincide.)

Theorem 1 For any n = 2, 3, . . . there exists a simple, separable, amenable C∗-algebra with
(pre-)ordered K0-group isomorphic to the group Z with positive cone

{0, n, n + 1, . . . }.

(In particular, while in general the K0-group of a C∗-algebra, with the positive cone
consisting of the classes of projections in the algebra and in matrix algebras over it, is just
a pre-ordered abelian group—in other words, the positive cone is only known to be some
subsemigroup, containing 0—in the present case one obtains an ordered group—that is,
the positive cone has zero intersection with its negative, and generates the whole group.)

(While the abelian group arising as K0 of a C∗-algebra is presumably unrestricted (this
is known in the countable case—see [10]), the pre-order or even order structures arising
are only incompletely known. It is known that every weakly unperforated simple countable
ordered group arises in this way—see [5]. Here, simple means that every non-zero positive
element is an order unit—some multiple of it majorizes any given element.)

The present construction is based on the inductive limit construction of [12]. It consists
in applying the generalized mapping torus construction of [5] (cf. also [7]) to the building
blocks of [12] (instead of to finite-dimensional algebras), in a way compatible with the
embeddings of [12]. As in [5], an initially non-simple inductive limit is made simple by a
deformation.
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2 The Building Blocks

The desired ordered K0-group will be obtained already at the level of building blocks. (The
K0-map corresponding to the embedding of one building block into the next will be just
the identity map.)

The building blocks that we shall use, like those of [5], are obtained by the following
generalized mapping torus construction. Given two C∗-algebras, C and D, and a pair of
maps, φ0 and φ1, from one to the other (from C to D), consider the C∗-algebra

A = A(C,D, φ0, φ1)

:= {(c, d); c ∈ C, d ∈ C([0, 1]; D), d(0) = φ0(c), d(1) = φ1(c)}.

In a natural way, A is an extension of S D, the suspension of D, by C ,

0→ S D→ A→ C → 0

(the map A→ C being just the map (c, d) 7→ c). We shall refer to this copy of S D naturally
contained in A—the kernel of the map A → C—as the canonical closed two-sided ideal
of A.

Theorem 2 The index map b∗ : K∗C → K1−∗ S D = K∗ D in the six-term periodic exact
sequence for the extension

0→ S D→ A→ C → 0

is the difference
K∗φ1 − K∗φ0 : K∗C → K∗D.

Thus, the six-term exact sequence may be written as the short exact sequence

0→ Coker b1−∗ → K∗ A→ Ker b∗ → 0.

In particular, if b1−i is surjective, then Ki A is isomorphic to its image, Ker bi , in Ki C.
Suppose that cancellation holds for D—i.e., that cancellation holds in the semigroup of

Murray-von Neumann equivalence classes of projections in D and in matrix algebras over D
(equivalently, in D⊗K). It follows that if b1 is surjective, so that K0 A ⊆ K0 C, then

(K0 A)+ = (K0 C)+ ∩ K0 A.

The preceding conclusion also holds if cancellation is only known to hold for each pair of
projections in D ⊗K obtained as the images under the maps φ0 and φ1 of a single projection
in C ⊗K. (In other words, if two such projections in D⊗K have the same K0-class then they
should be equivalent.) (Of course, b1 is still assumed to be surjective.)

Proof Consider first the case that C = D, φ0 = 0 and φ1 is the identity map. In this case, A
is just the cone over D, and the index map is just the canonical identification of K∗ D with
K1−∗ S D—in other words, in the present notation, the identity map, i.e., K∗ φ1, as desired.
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The general case follows by functoriality. More specifically, by naturality of the six-term
exact sequence, if φ0 = 0 then the map from A into the cone over D determined canonically
by φ1 gives a map between the six-term exact sequence for A and that for the cone over D,
considered above, such that the whole diagram is commutative. In particular, the index
map for A (composed with the identity on K1−∗ S D = K∗ D) is equal to K∗φ1 : K∗C →
K∗D (composed with the identity—the index map for the cone over D). The case that
φ1 = 0 is similar—with the obvious change in sign—and can also be deduced from the
case φ0 = 0 by functoriality applied to the canonical isomorphism A(φ0, φ1)→ A(φ1, φ0).
The case that neither φ0 nor φ1 is zero can be deduced from the two cases φ0 = 0 and φ1 =
0 by applying naturality to the subalgebra A0 of A consisting of the elements (c, d) with
d( 1

2 ) = 0. (The kernel of the canonical map of A0 onto C is isomorphic to S D⊕ S D, and
comparing the six-term exact sequence for this extension separately with that for A(φ0, 0)
and A(0, φ1) (by restricting to the left and right halves of the interval [0, 1], respectively),
one obtains that the index map K∗C → K∗ D⊕K∗ D is (−K∗ φ0)⊕K∗ φ1. Comparing the
six-term exact sequences for the maps of A0 and A onto C then yields that the index map
for the latter is the sum of the two components of that for the former, i.e., K∗ φ1 − K∗ φ0,
as desired.)

Suppose that cancellation holds for D, and let g ∈ K0 A be such that the image of g in
K0 C is the K0-class of a projection p ∈ C ⊗ K. Since this class, K0 p, belongs to Ker b0,
and b0 = K0 φ1−K0 φ0, the images of p by φ0⊗ 1 and φ1⊗ 1 in D⊗K have the same class
in K0(D). By cancellation, these two projections are Murray-von Neumann equivalent in
D⊗K, and hence homotopic. (If two projections are Murray-von Neumann equivalent in
a C∗-algebra B, then they are unitarily equivalent in M2 ⊗ B—to show this it is enough to
show that two orthogonal equivalent projections are unitarily equivalent, and this follows
from the fact that if v is a partial isometry with square zero, then v + v∗ + (1 − v∗v − vv∗)
is a unitary (multiplier) transforming v∗v onto vv∗ —, and hence they are homotopic in
M2 ⊗M2 ⊗ B—if u is a unitary element of a C∗-algebra B1 then u ⊕ u−1 is an element of
the connected component of 1 in the unitary group of M2 ⊗ B1.) In other words, there is a
projection in A⊗K mapping onto p in the quotient C ⊗K.

In other words, every positive element of the image of K0 A in K0 C is the image of a
positive element of K0 A. In the case that the map K0 A → K0 C is injective (i.e., b1 is
surjective), this proves that (K0 A)+ = (K0 C)+ ∩ K0A, as desired.

The preceding proof also establishes the final assertion of the theorem.

3 Maps Between Building Blocks

As in [5], we shall begin by constructing maps between building block algebras which re-
spect the canonical ideals (i.e., which take the ideal of elements vanishing at infinity in the
first algebra into the corresponding ideal of the second algebra).

The inductive limit of a sequence of such maps cannot be simple (except possibly in the
degenerate case that the canonical ideals are all mapped into zero in the limit). We shall
show in Sections 4 and 5, below, how to deform such maps, in certain circumstances, to
obtain a simple inductive limit.

The maps that we shall consider (and construct examples of later) have, schematically,
the following eigenvalue pattern:
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.

More specifically, they are given by maps at the level of fibres—four maps, with certain
compatibility relations—as follows.

Theorem 3 Let A1 and A2 be building block algebras, as described in Section 2,

Ai = A(Ci ,Di , φ
i
0, φ

i
1), i = 1, 2.

Let there be given four maps between fibres,

γ : C1 → C2,

δ, δ ′ : D1 → D2, and

ε : C1 → D2,

such that δ, δ ′, and ε have mutually orthogonal images, and

δφ1
0 + δ ′φ1

1 + ε = φ2
0γ,

δφ1
1 + δ ′φ1

0 + ε = φ2
1γ.

Then there exists a unique map
θ : A1 → A2,

respecting the canonical ideals, giving rise to the map γ : C1 → C2 between the quotients (the
fibres at infinity), and such that for any 0 < s < 1, if es denotes evaluation at s, and e∞ the
evaluation at (the fibre at) infinity,

esθ = δes + δ ′e1−s + εe∞.

More generally, the conclusion holds with ε replaced by a continuous family of maps,

εs : C1 → D2, 0 ≤ s ≤ 1,

such that the image of εs is orthogonal to the images of δ and δ ′ for every s, and such that

δφ1
j + δ ′φ1

1− j + ε j = φ2
jγ, j = 0, 1,

with the condition above replaced by the modified condition

esθ = δes + δ ′e1−s + εse∞, 0 < s < 1.
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Proof Let (c, d) ∈ A1, so that c ∈ C1, d ∈ C([0, 1])⊗ D1, and φ1
0(c) = d(0), φ1

1(c) = d(1);
we must show that (c ′, d ′) ∈ A2, where

c ′ = γ(c),

d ′(s) = δ
(
d(s)
)

+ δ ′
(
d(1− s)

)
+ εs(c), 0 ≤ s ≤ 1.

In other words, we must show that

φ2
0

(
γ(c)

)
= δ
(
d(0)

)
+ δ ′

(
d(1)

)
+ ε0(c),

φ2
1

(
γ(c)

)
= δ
(
d(1)

)
+ δ ′

(
d(0)

)
+ ε1(c).

These equations follow immediately from the relations between the maps γ, δ, δ ′, and ε,
and the assumption (c, d) ∈ A1.

4 Deforming the Maps

Let us describe a procedure for deforming a map between building block algebras, of the
kind constructed in Section 3, with suitable special properties, in such a way as to destroy
the compatibility with the canonical ideals—with a view to constructing a simple inductive
limit C∗-algebra. (Conditions for the inductive limit of a sequence of such deformed maps
to be simple will be given in Section 5.)

Theorem 4 Let A1 and A2 be building block C∗-algebras, as described in Section 2,

Ai = A(Ci ,Di , φ
i
0, φ

i
1), i = 1, 2.

Let θ : A1 → A2 be a homomorphism as constructed in Section 3, from maps γ : C1 → C2,
δ, δ ′ : D1 → D2, and ε : C1 → D2, such that δ, δ ′, and ε have orthogonal ranges, and

δφ1
0 + δ ′φ1

1 + ε = φ2
0γ,

δφ1
1 + δ ′φ1

0 + ε = φ2
1γ.

Let there be given a map β : D1 → C2 such that the composed map βφ1
1 is a direct summand

of the map γ : C1 → C2, and such that the composed maps φ2
0β and φ2

1β are direct summands
of the maps δ ′ and δ, respectively. Suppose that the decomposition of γ as the orthogonal sum
of βφ1

1 and another map is such that the image of the second map is orthogonal to the image of
β, not just of βφ1

1. This last requirement is automatically satisfied if C1, D1, and the map φ1
1

are unital.

It follows that the given map θ : A1 → A2, which has eigenvalue pattern
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(cf. Section 3) is homotopic to a map with eigenvalue pattern

.

More explicitly, for any 0 < t < 1
2 , the map θ : A1 → A2 is homotopic to a map θt : A1 → A2

differing from it only as follows: the map e∞θt has the direct summand βet instead of one of
the direct summands βφ1

0e∞ and βφ1
1e∞ of e∞θ, and for each 0 < s < 1 the map esθt has

either the direct summand φ2
0βet instead of the direct summand φ2

0βe1−s of esθ, or the direct
summand φ2

1βet instead of the direct summand φ2
1βes of esθ, or both.

Furthermore, let α : D1 → C2 be any map homotopic to β within the hereditary sub-C∗-
algebra of C2 generated by the image of β. Then the map θt is homotopic to a map θ ′t : A1 → B2

(with a similar eigenvalue pattern), differing from θt only in the direct summands mentioned,
and such that e∞θ ′t has the direct summand αet instead of βet , and for each 0 < s < 1, esθ

′
t

has either φ2
0αet instead of φ2

0βet , or φ2
1αet instead of φ2

1βet .
More generally, the conclusion holds with the map ε replaced by a continuous family of

maps as in Theorem 3.

Proof Let 0 < t < 1
2 be given. For each t ′ with t ≤ t ′ < 1 let us construct a map

θt ′ : A1 → A2, such that θt ′ has the specified properties, and, with θ1 = θ, for every a ∈ A1

the map
[t, 1] 3 t ′ 7→ θt ′(a) ∈ A2

is continuous (i.e., t ′ 7→ θt ′ is a homotopy).
Fix t ′ with t ≤ t ′ < 1. To specify a map θt ′ : A1 → A2 we must specify the map

A1 → C2 obtained by evaluating at the fibre at infinity and, also, for each 0 < s < 1, the
map A1 → D2 obtained by evaluating at the fibre at s. In other words, in the notation of
Section 3, we must specify the maps e∞θt ′ and esθt ′ , 0 < s < 1.

The map A1 → C2 to be considered, as e∞θt ′ , is constructed as follows. Consider first
the map A1 → C2 obtained by evaluating the given map, θ, at infinity. This map, namely,
e∞θ, consists of first evaluating at the fibre of A1 at infinity, C1, and then applying the map
γ : C1 → C2. In other words,

e∞θ = γe∞.
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By hypothesis, γ is the orthogonal sum of βφ1
1 and another map (which, of course, is

uniquely determined), and so γe∞ : A1 → C2 is the orthogonal sum of βφ1
1e∞ and another

map. By hypothesis, the image of the second map is orthogonal to the whole of the image of
β (not just the image of βφ1

1e∞). We may therefore alter the first direct summand, βφ1
1e∞,

by replacing it by the map βet ′ (the composition of et ′ : A1 → D1 and β : D1 → C2), and
still have orthogonal maps. The map A1 → C2 to be considered is the sum of βet ′ and the
original second direct summand of γe∞ (= e∞θ).

The map A1 → D2 to be considered, as esθt ′ , is constructed as follows. Consider first
the map A1 → D2 obtained by evaluating the given map, θ, at s. This map, esθ, is the sum
of the three maps δes, δ ′e1−s, and εe∞, which have orthogonal images:

esθ = δes + δ ′e1−s + εe∞.

By hypothesis, δ and δ ′ contain φ2
1β and φ2

0β, respectively, as direct summands, and so
δes and δ ′e1−s contain φ2

1βes and φ2
0βe1−s as direct summands. In other words, δes is the

orthogonal sum of φ2
1βes and another map—in the sense that the images are orthogonal—

and δ ′e1−s is the orthogonal sum of φ2
0βe1−s and another map. In particular, esθ is the

orthogonal sum of φ2
1βes and φ2

0βe1−s and another map. Alter the first two summands—
without changing their images, and so preserving orthogonality—as follows: if t ′ ≤ s,
replace φ2

1βes by φ2
1βet ′ , and if s ≤ 1 − t ′ (note that, if t ′ ≤ 1

2 , both of these cases may
occur simultaneously), replace φ2

0βe1−s by φ2
0βet ′ . The map A1 → D2 to be considered is

the sum of these two new maps—although note that, depending on the relation between
s and t ′, either or both of these maps may be not in fact new—together with the original
third direct summand of esθ (besides φ2

1βes and φ2
0βe1−s).

Let us now verify that there exists a map θt ′ : A1 → A2 the evaluations of which at the
various fibres of A2 are the maps specified above. This means simply that for any a ∈ A1,
the images of a in the fibres of A2 by these maps determine an element of A2.

Note, incidentally, that continuity of the image of each a ∈ A1 in each single fibre of
A2, as a function of t ′—and indeed in a way uniform over all the fibres—, is immediate
from the construction. (In other words, the map θt ′ will depend continuously on t ′, in the
pointwise topology, as soon as it is known to exist.)

Let a = (c, d) be an element of A1. Then θa = (c ′, d ′) where c ′ = γ(c) and

d ′(s) = δ
(
d(s)
)

+ δ ′
(
d(1− s)

)
+ ε(c), 0 ≤ s ≤ 1.

Moreover, d ′ is continuous on [0, 1] and the boundary conditions

φ2
0

(
γ(c)

)
= δ
(
d(0)

)
+ δ ′

(
d(1)

)
+ ε(c),

φ2
1

(
γ(c)

)
= δ
(
d(1)

)
+ δ ′

(
d(0)

)
+ ε(c)

hold. With (c ′ ′, d ′ ′) defined by altering c ′ and d ′ as above, i.e., replacing the direct sum-
mand βφ1

1(c) of c ′ = γ(c) by β
(
d(t ′)

)
, and, for each 0 ≤ s ≤ 1, replacing the direct

summand φ2
1β
(
d(s)
)

of d ′ by φ2
1β
(
d(t ′)

)
if t ′ ≤ s, and the direct summand φ2

0β
(
d(1− s)

)
of d ′ by φ2

0β
(
d(t ′)

)
if s ≤ 1 − t ′, to show that (c ′ ′, d ′ ′) belongs to A2 we must check that

d ′ ′ is continuous—this is clear—and that the boundary conditions

φ2
0(c ′ ′) = d ′ ′(0), φ2

1(c ′ ′) = d ′ ′(1)
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hold. The boundary conditions hold as they hold for (c ′, d ′) and also for the difference,
(c ′ ′, d ′ ′)− (c ′, d ′)—as is immediate from the computations

c ′ ′ − c ′ = β
(
d(t ′)

)
− βφ1

1(c) = β
(
d(t ′)

)
− β

(
d(1)

)
,

(d ′ ′ − d ′)(0) = φ2
0β
(
d(t ′)

)
− φ2

0β
(
d(1)

)
,

(d ′ ′ − d ′)(1) = φ2
1β
(
d(t ′)

)
− φ2

1β
(
d(1)

)
.

(In fact, the boundary conditions hold separately for both terms in the above expression of
the difference.)

Given a homotopy from β to a map α : D1 → C2, within the hereditary sub-C∗-algebra
of C2 generated by the image of β, change θt ′ (for fixed t ′) as follows: Replace the direct
summand βet of e∞θt by αet ; replace the direct summand φ2

0βet of esθt by φ2
0αet for each

0 < s ≤ 1
2 , and over the interval 1

2 ≤ s ≤ max(t, 1 − t) replace φ2
0βet by the homotopy

from φ2
0αet to φ2

0βet corresponding to the given homotopy from α to β, scaled down to
this interval; and, similarly, replace the direct summand φ2

1βet of esθt by φ2
1αet for each

1
2 ≤ s < 1, and over the interval min(t, 1 − t) ≤ s ≤ 1

2 replace φ2
1βet by the homotopy

from φ2
1βet to φ2

1αet corresponding to the given homotopy from β to α, scaled down to
this interval. In this way one obtains a map θ ′t : A → B (with evaluations e∞θ ′t and esθ

′
t

for 0 < s < 1 as specified above). Carrying out the same construction for each map in the
given homotopy from β to α (in place of α), one obtains a homotopy from θt to θ ′t .

The proof of the modified statement with (εs) in place of ε is similar, with ε replaced
either by εs or by ε j ( j = 0, 1), depending on the circumstances.

5 Simple Inductive Limits

Let us describe conditions under which the maps in a whole sequence of building block
algebras, constructed step by step as in Section 3, may be deformed by the procedure de-
scribed in Section 4, in such a way as to yield a simple inductive limit C∗-algebra.

Theorem 5 Let
A1

θ1−→ A2
θ2−→ · · ·

be a sequence of separable building block C∗-algebras,

Ai = A(Ci ,Di , φ
i
0, φ

i
1), i = 1, 2, . . .

(see Section 2), with each map θi : Ai → Ai+1 obtained by the construction of Section 3 (and
in particular respecting the canonical ideals). For each i = 1, 2, . . . let βi : Di → Ci+1 be a
map verifying the hypotheses of Theorem 4.

Suppose that, for every i = 1, 2, . . . , the intersection of the kernels of the boundary maps
φi

0 and φi
1 from Ci to Di is zero.

Suppose that, for each i, the image of each of φi+1
0 and φi+1

1 generates Di+1 as a closed two-
sided ideal, and that this is in fact also true for the restriction of φi+1

0 and φi+1
1 to the smallest

direct summand of Ci+1 containing the image of βi . Suppose that the closed two-sided ideal of
Ci+1 generated by the image of βi is equal to this direct summand.

Suppose that, for each i, the maps δ ′i −φi+1
0 βi and δi−φi+1

1 βi from Di to Di+1 are injective.
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Suppose that, for each i, the map γi − βiφ
i
1 takes each non-zero direct summand of Ci into

a subalgebra of Ci+1 not contained in any proper closed two-sided ideal.
Suppose that, for each i, the map βi : Di → Ci+1 can be deformed—inside the hereditary

sub-C∗-algebra generated by its image—to a map αi : Di → Ci+1 with the following property:
There is a direct summand of αi , say αi , such that αi is non-zero on an arbitrary given element
xi of Di , and has image a simple sub-C∗-algebra of Ci+1, the closed two-sided ideal generated
by which contains the image of βi .

Choose a dense sequence (ti) in the open interval ]0, 1
2 [, such that t2n = t2n−1, n =

1, 2, . . . .
Choose a sequence of elements x3 ∈ D3, x5 ∈ D5, x7 ∈ D7, · · · (necessarily non-zero) with

the following property: For some countable basis for the topology of the spectrum of each of
D1,D2, . . . , and for some choice of non-zero element of the closed two-sided ideal associated
to each of these (non-empty) open sets, under successive application of the maps δi − φi+1

1 βi

(beginning with the i-th one for an element of Di), each one of these elements is taken into x j

for all j in some set S ⊆ 2N + 3 = {3, 5, . . . } such that {t j , j ∈ S} is dense in ]0, 1
2 [. Choose

α j as above with respect to the element x j of D j—i.e., such that α j(x j) 6= 0 for some direct
summand α j of α j—for each j ∈ 2N + 3, and for j ∈ 2N + 3 + 1 choose α j with respect to the

non-zero element (δ ′j−1 − φ
j
0β j−1)(x j−1) of D j . (If j = 1 or 2, choose α j = β j .)

It follows that, if θ ′i denotes the deformation of θi constructed in Theorem 4, with respect
to the point ti ∈]0, 1

2 [ and the maps βi and αi (and a fixed homotopy of βi to αi), then the
inductive limit of the sequence

A1
θ ′1−→ A2

θ ′2−→ · · ·

is simple.

Proof Since (by [3], [2]) every closed two-sided ideal of the inductive limit is the inductive
limit of a sequence of closed two-sided ideals of the algebras in the sequence—with the
same maps, restricted to the ideals—it is sufficient to prove that for every non-zero closed
two-sided ideal of one of the algebras in the sequence, the image of this at some later stage
in the sequence is not contained in any proper closed two-sided ideal (at that stage). (Note
that in the case of a general inductive limit this condition is not necessary for simplicity; it
is necessary if the maps are injective and the spectrum of each algebra in the sequence is
compact.)

Let I be a non-zero closed two-sided ideal of Ai for some i = 1, 2, . . . , and let us show
that the image of I in A j for some j > i generates A j as a closed two-sided ideal. The
hypothesis Ker φi

0 ∩ Ker φi
1 = 0 states that the spectrum of the canonical closed two-sided

ideal of Ai is dense in the spectrum of Ai . In particular, this spectrum has non-empty
intersection with the spectrum of I.

Since the canonical ideal is the C∗-algebra of continuous functions from ]0, 1[ to Di

vanishing at infinity, its spectrum is the Cartesian product of the spectrum of Di and the
interval ]0, 1[. (This may perhaps most easily be seen in terms of the definition of the
spectrum by means of pure states.) It follows that the spectrum of I contains a non-empty
set U ×V where U and V are open subsets of the spectra of Di and ]0, 1[, respectively.

Let us consider separately the cases V ∩ ]0, 1
2 [ 6= ∅ and V ∩ ] 1

2 , 1[ 6= ∅. Suppose first
that V ∩ ]0, 1

2 [ 6= ∅. By choice of the sequence (x3, x5, . . . ), there exists an odd number
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j > i such that x j is the image under the product of the maps δi−φi+1
1 βi , . . . , δ j−1−φ j

1β j−1

of a non-zero element x of Di belonging to the closed two-sided ideal of Di with spectrum
U , and such that, furthermore, t j ∈ V . There is then an element y of I the image of which
in the fibre D j of A j at t j has x j as a direct summand (for instance, the element x f where f
is a continuous real-valued function on ]0, 1[ supported in V and equal to 1 at t j).

It follows that the image of y, and hence of I, in A j+2 is contained in no proper closed
two-sided ideal, as desired. To show this, let us show first that the closed two-sided ideal
generated by the image of y, and hence of I, in A j+1 contains the canonical ideal of A j+1,
and that the image of this ideal in the fibre C j+1 of A j+1 at infinity contains a non-zero
direct summand—namely, that generated by the image of α j . (The desired conclusion
then follows.)

Let π be an irreducible representation of the canonical ideal of A j+1, i.e., an irreducible
representation of A j+1 supported on the fibre D j+1 of A j+1 at some 0 < s < 1—i.e., fac-

toring through the evaluation es. Depending on s, the map esθ
′
j contains either φ j+1

0 α jet j

or φ j+1
1 α jet j (or both) as a direct summand. By the hypotheses concerning the boundary

maps φ j+1
0 and φ j+1

1 , and the map α j , the restriction of any irreducible representation of

D j+1 to the image of each of the maps φ j+1
0 α jet j and φ j+1

1 α jet j is faithful, and, furthermore,

each of the elements φ j+1
0 α j(x j) and φ j+1

1 α j(x j) is non-zero. In particular, each of these
two elements is non-zero in the representation π. Since at least one of them is a direct sum-
mand of the image of y in the fibre D j+1 of A j+1 at s (as x j is a direct summand of the image

of y in the fibre D j of A j at t j , and either φ j+1
0 α jet j or φ j+1

1 α jet j is a direct summand of
esθ
′
j), it follows that the image of y—and hence of I—in the representation π is non-zero.

This shows that the closed two-sided ideal generated by the image of I in A j+1 contains the
canonical ideal of A j+1.

That the closed two-sided ideal of C j+1 generated by the image of y—and hence of I—
contains a non-zero direct summand of C j+1 follows from the fact that the map e∞θ ′j con-
tains α jet j as a direct summand, together with the facts, used also above, that the image
of y in the fibre of A j at t j contains x j as a direct summand—so that the image of y in
C j+1 contains the non-zero element α j(x j) as a direct summand—and the image of α j is
a simple sub-C∗-algebra of C j+1 the closed two-sided ideal generated by which is a direct
summand.

Now consider the closed two-sided ideal generated by the image of I in A j+2. Denote
this by J. Since the pre-image of J in A j+1 contains the canonical ideal of A j+1, it follows

that J contains the canonical ideal of A j+2. (This obtains as esθ
′
j contains either φ j+1

0 α jet j

or φ j+1
1 α jet j (or both) as a direct summand, and by hypothesis the image of each of these

maps generates D j+1 as a closed two-sided ideal.) Since the pre-image of J in A j+1, modulo
the canonical ideal, contains a non-zero direct summand of C j+1, since by hypothesis the
image of this by γ j+1 − β j+1φ

1
j+1 generates C j+2 as a closed two-sided ideal, and since by

construction e∞θ ′j contains (γ j+1 − β j+1φ
j+1
1 )e∞ as a direct summand, it follows that J is

equal to all of A j+2, as asserted.

It remains to consider the case V ∩ ] 1
2 , 1[ 6= ∅. This is only slightly different from the

first case. There exists an odd number j > i such that x j is the image under the product

of the maps δi − φi+1
1 βi , . . . , δ j−1 − φ j

1β j−1 of a non-zero element x of Di belonging to the
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closed two-sided ideal of Di with spectrum U , and such that, furthermore, 1 − t j ∈ V .
There is then an element y of I the image of which in the fibre D j of A j at 1 − t j has x j

as a direct summand (for instance, x f where f is supported in ]0, 1[ and equal to 1 at
1 − t j). Since the map et jθ

′
j contains (δ ′j − φ

j+1
0 β j)e1−t j as a direct summand, and e1−t j of

the image of y in A j contains x j as a direct summand, it follows that the image of y in the

fibre D j+1 of A j+1 at t j contains the element (δ ′j − φ
j+1
0 β j)(x j) as a direct summand. Since,

by construction, α j+1 is non-zero on this element of D j+1, we may continue as in the first
case and conclude that, first, the closed two-sided ideal of A j+2 generated by the image of
y, and hence of I, contains the canonical ideal of A j+2, and modulo this ideal also contains
a non-zero direct summand of C j+2—and, second, as a consequence, the closed two-sided
ideal of A j+3 generated by the image of I is equal to all of A j+3.

6 Proof of Theorem 1: Realizing the Semigroup {0, n, n + 1, . . . }
Let us construct a sequence of separable, amenable (in fact type I) building block C∗-
algebras, with the desired ordered K0-group at every stage, and with maps as described
in Section 3—each an order isomorphism at the level of K0—this will ensure that the in-
ductive limit has the desired ordered K0-group—fulfilling the conditions of Theorem 5.
Deforming the maps in the sequence as described in Theorem 5 will then make the induc-
tive limit C∗-algebra simple, and will not change the ordered K0-group.

We wish, then, to construct a sequence

A1
θ1−→ A2

θ2−→ · · ·

with Ai = A(Ci ,Di , φ
i
0, φ

i
1) as in Section 2 and with θi constructed as in Theorem 3 from

maps
γi : Ci → Ci+1, δi , δ

′
i : Di → Di+1, and εi : Ci → Di+1,

the latter three with orthogonal images (in fact we shall take εi = 0), and in order to carry
out the desired deformations we wish to have a map

βi : Di → Ci+1

for each i with the properties specified in Theorem 5.
Let us take Ci to be the cut-down of C(Xi)⊗K by a certain projection pi , i.e.,

Ci = pi

(
C(Xi)⊗K

)
pi ,

with p1 to be specified and pi to be γi−1(pi−1) for i ≥ 2, and with the compact metrizable
space X1 to be specified and Xi to be the Cartesian product of ni−1 copies of Xi−1 for i ≥ 2,
with n1, n2, . . . to be specified. Here K denotes the C∗-algebra of compact operators on an
infinite-dimensional separable Hilbert space.

Let us take Di = Ci ⊗Mki dim(pi ).
Let us take φi

j ( j = 0, 1) to be the map from Ci to Di obtained as the direct sum of lij
copies and ki − lij copies, respectively, of the maps

µi : a 7→ pi ⊗ a(xi) and

νi : a 7→ a⊗ 1
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from Ci to Ci ⊗ Mdim(pi ), where lij ( j = 0, 1), ki , and xi ∈ Xi are to be specified—with

li0 6= li1 and ki 6= 0. Note that this specifies φi
j only up to a choice of the order of direct

summands, but, clearly, it is only necessary to specify φi
j up to unitary equivalence (i.e.,

up to composition with an inner automorphism). In constructing the mappings between
building blocks, below, we shall in fact have occasion to modify the maps φi

j , successively,
stage by stage, by inner automorphisms.

Note that as Ci and Di are unital, as each φi
j is unital and injective, and as Ci has no non-

zero proper direct summand, the maps φi
j fulfil the hypotheses of Theorem 5 concerning

them alone.
By Theorem 2, for each e ∈ K0(Ci),

b0(e) = (li1 − li0)
(
K0(µi)− K0(νi)

)
(e)

= (li1 − li0)
(
dim(e) · K0(pi)− dim(pi) · e

)
.

Since
li1 − li0 6= 0,

if K0 Ci is a finitely generated free abelian group then Ker b0 is the largest subgroup of this
group containing the class K0(pi) of pi and isomorphic to Z.

Let us take X1 to be the Cartesian product of n copies of the two-sphere S2. Then every
Xi is a product of copies of S2. In particular, K0 Ci is a finitely generated free abelian group
and K1 Ci = 0. It follows that Ker b0 is as above, and b1 is surjective. Hence by Theorem 2,
K0 Ai is isomorphic as a group to its image, Ker b0, in K0 Ci—which is isomorphic as a
group to Z.

In order for K0 Ai to be isomorphic as an ordered group to its image in K0(Ci), with
the relative order, by Theorem 2 it is sufficient that for any projection q in Ci ⊗ K such
that the images of q under φi

0 ⊗ 1 and φi
1 ⊗ 1 have the same K0-class, these images be in

fact equivalent. For any such q, the image of K0(q) under b0 = K0(φi
1)− K0(φi

0) is zero—
in other words, K0(q) belongs to Ker b0. By construction, K0(q) belongs to the largest
subgroup of K0 Ci containing K0(pi) and isomorphic to Z. The choice of pi below will
be such that K0(pi) is the positive element of this subgroup of smallest dimension (as an
element of K0 C(Xi)—dimension being defined pointwise). The dimension of q is therefore
at least the dimension of pi . If this is at least half the dimension of the space Xi , as will be
ensured by the choice of pi below, then the dimension of q and therefore also the dimension
of both φi

0(q) and φi
1(q) are at least half the dimension of Xi . Hence by Theorem 8.1.5 of

[8], φi
0(q) and φi

1(q) are equivalent (as they have the same K0-class).
Let us now choose p1, and the maps γi : Ci → Ci+1. We desire that the projection defined

as γi−1 · · · γ1(p1) have the properties specified above: On the one hand, K0(pi) should
have the smallest dimension of any positive element of K0

(
C(Xi)

)
in the largest subgroup

containing K0(pi) and isomorphic to Z (i.e., Ker b0); on the other hand, this dimension
should be at least half the dimension of Xi (which is ni−1 times the dimension of Xi−1). In
addition, in order to ensure the desired order structure, we desire that K0(pi) be n times a
generator of the subgroup in question, and that any larger multiple of this generator (i.e.,
any element of the subgroup of dimension larger than K0(pi)) also be positive.

As in [12], let us choose a (complex) line bundle over S2 the Euler class of which is non-
zero—for instance, the tangent bundle (when S2 is considered as the Riemann sphere).
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Denote this bundle by ζ , and consider the Cartesian product ζn of n copies of ζ , a bundle
of dimension n over X1 = (S2)n. Denote by g1 the difference

[ζn]− [θn−1] ∈ K0(X1) = K0

(
C(X1)

)
,

where θn−1 denotes the trivial bundle of dimension n− 1. Note that g1 has dimension one
in K0(X1), and so hg1 has dimension h for any integer h ≥ 0. Since half the dimension of
X1 is n, by Theorem 8.1.2 of [8], hg1 ∈ (K0 X1)+ for any h ≥ n. Furthermore, by Lemma 4
of [12] (with m = n− 1), hg1 /∈ (K0 X1)+ for 0 < h < n. It follows immediately that if we
take p1 to be a projection in C(X1)⊗K such that

K0(p1) = ng1,

then p1 has the four properties specified in the preceding paragraph.
Let us now specify the map γi : Ci → Ci+1, i = 1, 2,. . . . Consider first the map

γ ′i := (id⊗1⊗ · · · ⊗ 1)⊕ (1⊗ id⊗1⊗ · · · ⊗ 1)⊕ · · · ⊕ (1⊗ · · · ⊗ 1⊗ id)

from C(Xi) to Mni

(
C(Xi+1)

)
= Mni

(
C(Xni

i )
)

= Mni

(
C(Xi)⊗· · ·⊗C(Xi)

)
, where 1 denotes

the unit of C(Xi), and id denotes the identity map C(Xi)→ C(Xi).
Consider also the map

β ′i := exi · 1

from C(Xi) to C(Xi+1) where exi denotes evaluation at xi , and 1 = 1Xi denotes the unit
of C(Xi+1). In other words, β ′i ( f )(x) = f (xi), f ∈ C(Xi), x ∈ Xi+1. Let us, incidentally,
specify xi as just the point in Xi—a product of copies of S2—with all coordinates equal to a
fixed point x0 ∈ S2.

Now, inductively, let us take γi to be the map from Ci to C(Xi+1)⊗M2(K) consisting of
the direct sum of the following two maps: first, the restriction to Ci ⊆ C(Xi) ⊗ K of the
tensor product of γ ′i with the identity map from K to K, and second, the map from Ci to
C(Xi+1)⊗Mqi (K) consisting of the composition of the map φi

1 from Ci to Di with the direct
sum of qi copies of the tensor product of β ′i with the identity map from K to K (restricted
to Di ⊆ C(Xi) ⊗ K), where qi (as well as ni) is to be specified. The induction consists in
first considering the case i = 1 (as p1 has already been chosen), then setting γ1(p1) = p2,
so that C2 is specified, as the cut-down of C(Xi+1) ⊗M2(K) by p2, and continuing in this
way.

With βi : Di → Ci+1 taken to be the restriction to Di ⊆ C(Xi) ⊗ K of β ′i ⊗ id (as
considered above), we have by construction that βiφ

i
1 is a direct summand of γi—and,

furthermore, the second direct summand and βi map into orthogonal subalgebras (in fact
orthogonal blocks)—as desired.

Let us verify that pi defined as γi−1 · · · γ1(p1) has the four properties specified above:
These may be summarized as the single property that the set of all rational multiples of
K0(pi) in the ordered group K0 Ci = K0 Xi should be isomorphic as a sub ordered group
to Z with the positive cone {0, n, n + 1, . . . }, with K0(pi) corresponding to the first non-
zero positive element n. Since this has been established in the case i = 1, all that has to be
checked now is that γi determines an order isomorphism between the subgroup in question
at the i-th stage and the corresponding subgroup at the (i + 1)-st stage.
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Let us show first that at least γi gives a group isomorphism between the subgroups in
question. Recalling that g1 is a generator of this subgroup at the first stage, let us show that
its image, g2 = γ1(g1), is also a generator at the second stage. In other words, we must
show that g2 is not a positive integral multiple of any other element of K0 C2 = K0 X2. We
shall show this using (besides the property of g1 mentioned above) only that g1 and K0(1X1 )
are independent in K0 X1. (We shall also use that K0 X1 is torsion free and that K1 X1 = 0,
so that by the Künneth theorem K0 X2, as a group, is the tensor product of n1 copies of
K0 X1—but this has nothing to do with g1.) Note that the map id⊗ dim⊗ · · · ⊗ dim,
where id denotes the identity map of K0 X1, and dim: K0 X1 → Z the dimension function,
takes K0 X2 = K0 X1 ⊗ · · · ⊗ K0 X1 onto K0 X1 and takes g2 onto g1 plus a multiple of
K0(1X1 ). If g2 is a multiple of some other element of K0 X2, say g2 = kg, then it follows
that g1 plus a multiple of K0(1X1 ) is k times the image of g. Then, modulo the subgroup of
K0 X1 generated by K0(1X1 ), g1 is k times some element (the image of g). But the subgroup
of K0 X1 generated by g1 has zero intersection with the subgroup generated by K0(1X1 ),
and so its image modulo K0(1X1 ) is still isomorphic to Z, and has (the image of) g1 as a
generator. This shows that k = ±1, as desired.

Since we have shown that g2 has the same properties as those of g1 that were used above
(namely, g2 generates a maximal subgroup of rank one, which has zero intersection with
the subgroup generated by K0(1X2 )), we may deduce in the same way that γ2(g2) generates
a maximal subgroup of K0 X3 of rank one, i.e., γ2 gives a group isomorphism between the
subgroups under consideration (namely, Ker b0 at the two stages). Clearly, we may proceed
in this way to establish that γi gives an isomorphism for every i between Ker b0 at the i-th
and at the (i + 1)-st stage.

Let us now show that, for each i, if ni is chosen sufficiently large, then γi restricted to
Ker b0 is an order isomorphism between the subgroups Ker b0 = Zgi and Ker b0 = Zgi+1 of
K0 Xi and K0 Xi+1, with the relative order, where gi = K0(γi · · · γ1)g1. Since we have shown
that

(Zg1)+ = {0, n, n + 1, . . . }g1,

what we must show is that, for each i = 1, 2, . . . ,

(Zgi+1)+ = {0, n, n + 1, . . . }gi+1.

Since γi is positive, we have (Zgi+1)+ ⊇ {0, n, n + 1, . . . }gi+1. It remains to prove that
hgi+1 /∈ (K0 Xi+1)+ for 0 < h < n; the proof of this is, as we shall now see, similar to that in
the case of g1. Let us reformulate Lemma 4 of [12] (in the present case B = S2 and applied
to the line bundle ζ over S2 chosen above): if (as was ensured by the choice of ζ) the Euler
class of ζ is non-zero, and if q,m, h ∈ N are such that 0 < h(q−m) < q, then

h([ζq]− [θm]) /∈ (K0 Bq)+.

To apply this, note that K0(βiφ
i
j) takes K0 Xi into Z K0(1Xi+1 ) for all i, so that

gi+1 = [ζnn1···ni ]− [θmi ]

for some mi ∈ N. With q = nn1 · · · ni−1ni and m = mi , we wish to have

0 < (n− 1)(q−m) < q,
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as then 0 < h(q−m) < q for 0 < h < n.
Note that

q−m = dim gi+1 = (ni + qiki dim pi) dim gi .

(The map K0(γi) : K0 Xi → K0 Xi+1 multiplies dimension by ni + qiki dim pi .) Thus, what
we wish to have is

dim gi+1 <
n

n− 1
n1 · · · ni−1ni .

(Note that since dim g1 = 1, dim gi > 0 for all i.) Assume inductively that n1, n2, . . . , ni−1

have been chosen so that

dim gi <
n

n− 1
n1 · · · ni−1.

Choose ni large enough that also

ni + qiki dim pi

ni
dim gi <

n

n− 1
n1 · · · ni−1.

(Recall that ki and pi have already been chosen; we may suppose that also qi has already
been chosen, in the way specified below—which does not depend on the choice of ni .)
(Actually, qi will be chosen to be 3ki(2 dim pi + dim Xi).) Then,

dim gi+1 = (ni + qiki dim pi) dim gi <
n

n− 1
n1 · · · ni−1ni ,

as desired.
Note that γi − βiφ

i
1 is non-zero, and so—as required in the hypotheses of Theorem 5—

takes Ci into a subalgebra of Ci+1 not contained in any proper closed two-sided ideal. (Ci

is unital, and any non-zero projection of Ci+1 generates it as a closed two-sided ideal.)
Next, let us construct maps δi and δ ′i from Di to Di+1, with orthogonal images, such that

δiφ
i
0 + δ ′i φ

i
1 = φi+1

0 γi ,

δiφ
i
1 + δ ′i φ

i
0 = φi+1

1 γi ,

and φi+1
0 βi and φi+1

1 βi are direct summands of δ ′i and δi , respectively. To do this we shall
have to modify φi+1

0 and φi+1
1 by inner automorphisms; as noted earlier, this is permissible

(all that is important is the action on K-groups).
In order to carry out this step, the only property of γi we shall use (besides γi(pi) = pi+1,

which is just the definition of pi+1) is that

exi+1γi = mult(γi)exi ,

where mult(γi) denotes the factor by which γi multiplies the dimension (or trace). (We
have used this number twice before; it is equal to ni + qiki dim pi , but we shall not need
to use this now.) In other words, exi+1γi (recall that exi+1 denotes evaluation at xi+1) is the
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direct sum of mult(γi) copies of exi (in canonical orthogonal blocks). From this property,
on recalling that µi = pi ⊗ exi and νi = id⊗1dim pi , it follows that

µi+1γi = pi+1 ⊗ exi+1γi

= γi(pi)⊗mult(γi)exi

= mult(γi)γi(pi ⊗ exi )

= mult(γi)γiµi ,

and

νi+1γi = γi ⊗ 1dim pi+1

= mult(γi)γi ⊗ 1dim pi

= mult(γi)γiνi .

Let us take δi and δ ′i to be the direct sum of ri and si copies of γi , where ri and si are to
be specified. The condition, for j = 0, 1,

δiφ
i
j + δ ′i φ

i
1− j = φi+1

j γi ,

understood up to unitary equivalence, then becomes the condition

riγi

(
lijµi + (ki − lij)νi

)
+ siγi

(
li1− jµi + (ki − li1− j)νi

)
= (ki+1 − li+1

j )νi+1γi ,

also up to unitary equivalence. As K0(µi) and K0(νi) are independent this is equivalent to
the two equations

ri l
i
j + si l

i
i− j = mult(γi)li+1

j ,

(ri + si)ki = mult(γi)ki+1.

Let us choose ri = 2 mult(γi) and si = mult(γi), so that

ki+1 = 3ki ,

and
li+1

j = 2lij + li1− j .

Taking k1 = 1, l10 = 0, and l11 = 1, we have ki = 3i−1 for all i and li1 − li0 = 1 for all i,
and in particular these quantities are non-zero, as required above.

Next, let us show that, up to unitary equivalence preserving the equations δiφ
i
j +

δ ′i φ
i
1− j = φi+1

j γi , φi+1
0 βi is a direct summand of δ ′i = mult(γi)γi , and φi+1

1 βi is a direct
summand of δi = 2 mult(γi)γi .

Note that φi+1
j βi is the direct sum of li+1

j copies of pi+1 ⊗ βi and (ki+1 − li+1
j ) dim pi+1

copies of βi , whereas δ ′i and δi contain, respectively, qi mult(γi) and 2qi mult(γi) copies of
βi . Note also, that by Theorem 8.1.2 of [8], a trivial projection of dimension dim pi+1 +
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dim Xi+1 (or even just dimension at least dim pi+1 + 1
2 dim Xi+1) in C(Xi+1) ⊗ K contains

a copy of pi+1. Therefore, dim pi+1 + dim Xi+1 copies of βi contain a copy of pi+1 ⊗ βi .
It follows that ki+1(2 dim pi+1 + dim Xi+1) copies of βi contain a copy of φi+1

j βi when j is
equal to either 0 or 1. Here, by a copy of a given map from Di to Di+1 we mean another
map obtained from it by conjugating by a partial isometry in Di+1 with initial projection
the image of the unit.

Note that

ki+1(2 dim pi+1 + dim Xi+1) = 3ki

(
2 mult(γi) dim pi + ni dim Xi

)
≤ 3ki(2 dim pi + dim Xi) mult(γi),

and that ki , dim pi , and dim Xi have already been specified—and do not depend on ni . It
follows that, with

qi = 3ki(2 dim pi + dim Xi),

qi mult(γi) copies of βi contain a copy of φi+1
j βi ( j = 0, 1). In particular δ ′i and δi contain

copies, respectively, of φi+1
0 βi and of φi+1

1 βi .
With this choice of qi , let us show that for each j = 0, 1 there exists a unitary u j ∈ Di+1,

commuting with the image of φi+1
j γi , i.e., with

(Ad u j)φ
i+1
j γi = φi+1

j γi ,

such that (Ad u0)φi+1
0 βi is a direct summand of δ ′i and (Ad u1)φi+1

1 βi is a direct summand
of δi . In other words, for each j = 0, 1, we must show that the partial isometry constructed
in the preceding paragraph, producing a copy of φi+1

j βi inside δ ′i or δi , may be chosen in
such a way that it extends to a unitary element of Di+1—which in addition commutes with
the image of φi+1

j γi .
Let us consider the case j = 0; the case j = 1 is similar. Let us first show that the partial

isometry in Di+1, transforming φi+1
0 βi into a direct summand of δ ′i , may be chosen to lie in

the commutant of the image of φi+1
0 γi . Note first that the unit of the image of φi+1

0 βi—the
initial projection of the partial isometry—lies in the commutant of the image of φi+1

0 γi .
Indeed, this projection is the image by φi+1

0 βi of the unit of Di , which, by construction, is
the image by φi

1 of the unit of Ci . The property that βiφ
i
1 is a direct summand of γi implies

in particular that the image by βiφ
i
1 of the unit of Ci commutes with the image of γi . The

image by φi+1
0 βiφ

i
1 of the unit of Ci (i.e., the unit of the image of φi+1

0 βi) therefore commutes
with the image of φi+1

0 γi , as asserted.
Note also that the final projection of the partial isometry also commutes with the image

of φi+1
0 γi . Indeed, it is the unit of the image of a direct summand of δ ′i , and since Di is unital

it is the image of the unit of Di by this direct summand; since Ci is unital and φi
1 : Ci → Di

is unital, the projection in question is the image of the unit of Ci by a direct summand of
δ ′i φ

i
1. But δ ′i φ

i
1 is itself a direct summand of φi+1

0 γi (as φi+1
0 γi = δiφ

i
0 + δ ′i φ

i
1), and so the

projection in question is the image of the unit of Ci by a direct summand of φi+1
0 γi , and in

particular commutes with the image of φi+1
0 γi .

Note that both direct summands of φi+1
0 γi under consideration (φi+1

0 βiφ
i
1 and a copy of

it) factor through the evaluation of Ci at the point xi , and so are contained in the largest
such direct summand of φi+1

0 γi ; this largest direct summand, πi , let us say, is seen to exist
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by inspection of the construction of φi+1
0 γi . Since both projections under consideration

(the images of 1 ∈ Ci by the two copies of φi+1
0 βiφ

i
1) are less than πi(1), to show that

they are unitarily equivalent in the commutant of the image of φi+1
0 γi (in Di+1) it is suf-

ficient to show that they are unitarily equivalent in the commutant of the image of πi in
πi(1)Di+1πi(1). Note that this image is isomorphic to Mdim pi (C). By construction, the two
projections in question are Murray-von Neumann equivalent—in Di+1 and therefore, a for-
tiori, in πi(1)Di+1πi(1)—but all we shall use from this is that they have the same class in
K0 Xi+1. Note that the dimension of these projections is (ki+1 dim pi+1)(ki dim pi), and that
the dimension of πi(1) is ki+1 dim pi+1 + li+1

0 (dim pi+1)2. Since the two projections under
consideration commute with πi(Ci), and this is isomorphic to Mdim pi (C), to prove unitary
equivalence in the commutant of πi(Ci) in πi(1)Di+1πi(1) it is sufficient to prove unitary
equivalence of the product of these projections with a fixed minimal projection of πi(Ci),
say e. Since K0 Xi+1 is torsion free (Xi+1 is a product of spheres), the products of the two
projections under consideration with e still have the same class in K0 Xi+1. To prove that
they are unitarily equivalent in eDi+1e, it is sufficient (and necessary) to prove that both they
and their complements (inside e) are Murray-von Neumann equivalent. Since both the cut-
down projections and (hence) their complements (inside e) have the same class in K0 Xi+1,
to prove that they (i.e., the two pairs) are equivalent it is sufficient, by Theorem 8.1.5 of [8],
to show that all four projections have dimension at least 1

2 dim Xi+1 (note that dim Xi+1 is
even). Dividing the numbers above by dim pi (the order of the matrix algebra), we see that
the dimension of the first pair of projections is ki+1ki dim pi+1 = ki+1ki mult(γi) dim pi

and the dimension of e is ki+1 mult(γi) + li+1
0 mult(γi) dim pi+1, so that the dimension

of the second pair of projections is mult(γi)(ki+1 + li+1
0 dim pi+1 − ki+1ki dim pi). Since

dim p1 = 1
2 dim X1 and dim pi+1 = mult(γi) dim pi , and dim Xi+1 = ni dim Xi and

mult(γi) ≥ ni (for all i), we have dim pi+1 ≥ 1
2 dim Xi+1 (for all i). Since ki+1ki is non-zero

(for all i), the first inequality holds. Since li+1
0 is non-zero the second inequality holds if

mult(γi) is strictly bigger than ki+1ki . (One then has, using dim pi+1 = mult(γi) dim pi

twice, that the dimension of the second pair of projections is at least dim pi+1.) Since
ki+1ki = 3k2

i , and ki was specified before ni , we may modify the choice of ni so that
mult(γi)—which is greater than ni—is sufficiently large.

This shows that the two projections in Di+1 under consideration are unitarily equivalent
by a unitary in the commutant of the image of φi+1

0 γi . Replacing φi+1
0 by its composition

with the corresponding inner automorphism, we may suppose that the two projections in
question are equal. In other words φi+1

0 βi is unitarily equivalent to the cut-down of δ ′i by
the projection φi+1

0 βi(1).
Now consider the compositions of these two maps with φi

1, namely, φi+1
0 βiφ

i
1 and the

cut-down of δ ′i φ
i
1 by the projection φi+1

0 βi(1). Since both of these maps can be viewed as
the cut-down of φi+1

0 γi by the same projection (on the one hand, βiφ
i
1 is the cut-down of

γi by βiφ
i
1(1), and φi+1

0 βi(1) = φi+1
0

(
βiφ

i
1(1)

)
, and, on the other hand, δ ′i φ

i
1 is a direct

summand of φi+1
0 γi , and so a cut-down of δ ′i φ

i
1 by a subprojection of δ ′i φ

i
1(1) = δ ′i (1), in

particular, the projection φi+1
0 (1), is a cut-down of φi+1

0 γi), they are in fact the same map.
Therefore, any unitary inside the cut-down of Di+1 by φi+1

0 βi(1) taking φi+1
0 βi into the

cut-down of δ ′i by this projection—such a unitary is known to exist—must commute with
the image of φi+1

0 βiφ
i
1, and hence with the image of φi+1

0 γi—since this commutes with the
projection φi+1

0 βi(1) = φi+1
0

(
βiφ

1
1(1)

)
. The extension of such a partial unitary to a uni-

tary u0 in Di+1 equal to one inside the complement of this projection then belongs to the
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commutant of the image of φi+1
0 γi , and transforms φi+1

0 βi into the cut-down of δ ′i by this
projection, as desired.

As stated above, the proof of the corresponding result for φi+1
1 γi is similar.

Inspection of the construction shows that the maps δ ′i −φi
0βi and δi−φi

1βi are injective,
as required in the hypotheses of Theorem 5.

Replacing φi+1
j by (Ad u j)φi+1

j , we have completed the (inductive) construction of the
desired sequence

A1
θ1−→ A2

θ2−→ · · · ,

with each Ai as in Section 2, and with each θi is in Theorem 3, with the properties specified
in the hypotheses of Theorem 5. (The existence of αi homotopic to βi , non-zero on a given
element of Di , defined by another point evaluation—and so satisfying the requirement
of Theorem 5 with αi = αi—is clear.) (An application of Theorem 5 with αi different
from αi—and with the other hypotheses fulfilled in a less trivial way—will be given in the
Appendix, below.)

By Theorem 5, there exists a sequence

A1
θ ′1−→ A2

θ ′2−→ · · ·

with θ ′i homotopic to θi (and so agreeing with θi on K0), the inductive limit of which is
simple. This inductive limit then has the properties specified in the statement of Theorem 1.

7 Appendix: The Weakly Unperforated Case

Theorems 2, 3, 4, and 5 are sufficiently general to include also the construction described in
[5]—of a stable simple separable amenable C∗-algebra with arbitrary weakly unperforated
invariant. (Recall that the invariant considered in [5] was the pre-ordered K0-group, paired
with the convex cone of positive, densely defined, lower semicontinuous traces, together
with the K1-group—and that there are only two special properties of this structure which
need to be reflected in the axioms: the lattice nature of the cone, and the surjectivity of the
map from traces to positive functionals on the ordered K0-group. Weak unperforation was
defined in this setting as the property that no non-positive element of K0 is strictly positive
on all non-zero traces.)

To be more explicit, the building blocks constructed in [5] are of the kind considered in
Section 2, and the calculation of their K0- and K1-groups is a precursor of Theorem 2; the
maps initially constructed between building blocks, preserving canonical ideals, are of the
kind constructed in Theorem 3; and the deformation of the maps to make the inductive
limit simple is (essentially) of the kind described in Theorems 4 and 5.

In order, perhaps, to elucidate the deformation construction of [5], and the proof that
the resulting, deformed, sequence has a simple inductive limit, let us show that the hypothe-
ses of Theorem 5 are fulfilled by the initial sequence of maps constructed in [5]—with some
minor modifications.

(The deformation procedure described in [5] is actually slightly different from that of
the proof of Theorem 5, and is not applicable to the maps constructed in Section 6, above,
in which each map εi in the notation of Theorem 4 is zero. The construction given in Sec-
tion 6 could have been modified to introduce non-zero maps εi , and the deformation then
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carried out exactly as in [5], but that seemed more complicated. In fact, the deformation
procedure described in Theorem 5 is somewhat simpler than that used in [5].)

Theorem (5.2.3.2 of [5]) Let G0 be a countable simple pre-ordered abelian group and let C
be a topological cone with a compact convex base which is a metrizable Choquet simplex. Let
G0×C → R be a weakly unperforated pairing. Let G1 be a countable abelian group. It follows
that there exists a separable, simple, stable, amenable C∗-algebra A such that the invariant for
A—the triple (K0 A,K1 A,T+ A), including the positive cone (K0 A)+ and the pairing K0 A×
T+ A→ R of K0 with (positive, densely defined, lower semicontinuous) traces—is isomorphic
to the triple (G0,G1,C).

Proof The case C = 0 is included for completeness; the construction, given in [11] and
[6], is quite different in this case.

In [5], a construction was described of a sequence

A1
θ1−→ A2

θ2−→ · · ·

of basic building blocks as in Section 2 and maps preserving canonical ideals as in Section 3.
Let us recall the essential properties of this construction.

The algebra Ai is the building block A(Ci ,Di , φ
i
0, φ

i
1) where Di is finite-dimensional, Ci

is the direct sum of algebras each of which is the tensor product of the C∗-algebra Intk of
continuous Mk-valued functions on the interval [0,1] equal to a scalar multiple of the unit
at 0 and 1, for some k = 1, 3, . . . , the C∗-algebra C(T), and the C∗-algebra Ml for some
l = 1, 2, . . . , and φi

j : Ci → Di ( j = 0, 1) factors through the quotient of Ci with spectrum
the union of the canonical pairs of points (0,1), (1,1) belonging to the various copies of the
cylinder [0, 1]× T in the spectrum of Ci (one copy for each minimal direct summand). In
addition, for each j = 0, 1, the map φi

j has the property (assumed in Theorem 5) that its
image is not contained in any proper two-sided ideal of the finite-dimensional algebra Di .

The map θi : Ai → Ai+1 is constructed as in Theorem 3 from maps

γi : Ci → Ci+1,

δi , δ
′
i : Di → Di+1, and

εi : Ci → Di+1,

such that δi , δ
′
i , and εi have orthogonal images, and

δiφ
i
j + δ ′i φ

i
1− j + εi = φi+1

j γi , j = 0, 1.

The inductive limit of the sequence

A1
θ1−→ A2

θ2−→ · · ·

has the desired properties except for simplicity.
In order to apply Theorem 5 directly to this construction, we would need to know that

Ker φi
0 ∩ Ker φi

1 = 0 (before even coming to the question of what the maps βi should
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be). Patently, this does not hold. (The spectrum of the ideal Ker φi
0 ∩ Ker φi

1 is a union of
cylinders each with just two points missing.)

Fortunately, it is possible to view each algebra Ai as a building block in another way—
with respect to a slightly different pair of algebras as the fibre at infinity and the generic
fibre, and correspondingly different boundary maps,

Ai = A
(
C ′i ,D

′
i , (φ

i
0) ′, (φi

1) ′
)
,

—in such a way that, with a suitable choice of the maps γi (namely, to be of the kind
described below), the maps θi still arise as in Theorem 3, and, furthermore, the kernel
hypothesis holds (that is, Ker(φi

0) ′ ∩ Ker(φi
1) ′ = 0).

Namely, each direct summand Intk⊗C(T) ⊗Ml of Ci should be replaced by the direct
sum of two copies of C(T) ⊗ Ml, labelled by 0 and 1, and, correspondingly, in each case
(i.e., for each summand Intk⊗C(T)⊗Ml of Ci), a single direct summand C(T)⊗Ml⊗Mk

should be added to Di . Each of the maps φi
0 and φi

1 should then be modified to include (as
a direct summand) a copy of the canonical map

id⊗1 : C(T)⊗Ml → C(T)⊗Ml⊗Mk

between the direct summand labelled by 0 or 1, respectively, of the new fibre at infinity—let
us denote this new fibre by C ′i —corresponding to each direct summand Intk⊗C(T)⊗Ml

of Ci and the corresponding direct summand of D ′i —the new generic fibre. As maps into
the direct summand Di of D ′i , the new maps, (φi

j)
′, should be the same as the old ones—

after factoring through the evaluations at the special pairs of points—note that C ′i is just
the quotient of Ci with spectrum the union of the pairs of circles forming the boundary of
the spectrum of Ci (the spectrum Ci is a union of cylinders [0, 1]× T, each with boundary
{0, 1} × T).

Note that (φi
0) ′ is injective on the direct summands of C ′i labelled 0, and (φi

1) ′ is injective
on the direct summands labelled 1. Therefore,

Ker(φi
0) ′ ∩ Ker(φi

1) ′ = 0,

as is required in order to apply Theorem 5.
On the other hand, the hypothesis that the image of each of (φi

0) ′ and (φi
1) ′ should gen-

erate D ′i as a closed two-sided ideal simply does not hold. This deficiency will be attended
to later.

Let us suppose that each map γi : Ci → Ci+1 is chosen in the following way (as is con-
sistent with the choice specified in [5]). Each of the partial maps making up γi , from a
minimal direct summand Intk⊗C(T)⊗Ml of Ci to a minimal direct summand of Intk ′ ⊗
C(T)⊗Ml ′ of Ci+1, should be a direct sum, with respect to diagonal matrix blocks in Ml ′ ,
of copies of the following eight maps from Intk⊗C(T) to Intk ′ C(T) (tensored with the
identity map Ml → Ml)—at least one copy of each:

(i) The tensor product of the canonical embedding of Intk in Int pk with the identity map
C(T)→ C(T);

(i) ′ The preceding with the map C(T)→ C(T) corresponding to the map z 7→ z̄ from T
to T in place of the identity map;
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(ii) Evaluation of Intk⊗C(T) on the subset {1} × T of the spectrum (the right hand
boundary of the cylinder [0, 1]× T) followed by the map from the quotient C(T) to
Intk ′ ⊗C(T) taking the canonical unitary u : z 7→ z of C(T) to 1⊗ u ∈ Intk ′ ⊗C(T);

(ii) ′ The preceding with 1⊗ u∗ in place of 1⊗ u;
(ii) ′ ′ The preceding with v ⊗ 1 in place of 1 ⊗ u, where v denotes the canonical unitary

generator of Intk ′ , i.e., the map t 7→ exp(2πite11) where e11 denotes the upper left
matrix unit of Mk ′ ;

(iii) Evaluation of Intk⊗C(T) on the subset [0, 1]× {1} of the spectrum (the canonical
generating line of the cylinder [0, 1] × T), followed by the canonical map from the
quotient Intk to Intk ′ ⊗C(T) = Int pk⊗C(T) (i.e., the map f 7→ ( f ⊗ 1p)⊗ 1 where
f ⊗ 1p denotes the canonical image of f in Intk (this is a slight abuse of notation));

(iii) ′ The preceding with the canonical map Intk → Intkp ⊗C(T) composed with the
map from Intk to Intk consisting of flipping the interval (0, 1) (i.e., f 7→ f ′ where
f ′(t) = f (1− t));

(iv) Evaluation of Intk⊗C(T) at the point (1,1) of the spectrum [0, 1] × T, followed by
the canonical map from the quotient C to the algebra Intk ′ ⊗C(T) (i.e., the map
taking 1 to 1).

With γi a map such as stipulated above, the map θi : Ai → Ai+1, when viewed in terms
of the new building block structure, as a map

A
(
C ′i ,D

′
i , (φ

i
0) ′, (φi

1) ′
)
→ A

(
C ′i+1,D

′
i+1, (φ

i+1
0 ) ′, (φi+1

1 ) ′
)
,

still arises as in Theorem 3 from (unique) maps

γi : C ′i → C ′i+1,

δi , δ
′
i : Di → Di+1, and

(εi)s : C ′i → Di+1, 0 ≤ s ≤ 1

(we use the notation “bar” instead of “prime” here to avoid confusion with the prime of
Theorem 3: the map θi : Ai → Ai+1 arises from the maps δi , δ

′
i , and εi). More specifically, γi

is the map induced by γi between the quotients C ′i and C ′i+1 of Ci and Ci+1; δi : D ′i → D ′i+1

is the direct sum of δi : Di → Di+1 with a map between the remaining direct summands of
D ′i and D ′i+1 (orthogonal to Di and Di+1, respectively), each partial map between minimal
direct summands with spectrum T being a direct sum of maps, corresponding to certain of
the direct summands of the corresponding component of γi , namely, one for each direct
summand of class (i), (i) ′, or (iii)—these are copies, respectively, of the maps taking u to

u, u∗, and 1; similarly, δ
′
i is the direct sum of δ ′i : Di → Di+1 with a map between the re-

maining direct summands of D ′i and D ′i+1 (orthogonal to Di and Di+1, respectively), each
partial map between minimal direct summands with spectrum T being again a direct sum
of maps, corresponding to certain of the direct summands of the corresponding compo-
nent of γi , namely, one for each direct summand of type (iii) ′—these are again copies of
the map taking u to 1; finally, (εi)s is the direct sum of the map C ′i → Di+1 corresponding
directly to εi : Ci → Di+1, factoring through the finite-dimensional quotient of C ′i which is
canonically identified with the finite-dimensional quotient of Ci through which εi factor-
izes (this direct summand of (εi)s is independent of s), with a map from C ′i to the remaining
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direct summand of D ′i+1 (orthogonal to Di), each partial map between a pair of minimal
direct summands labelled 0 and 1 (each with spectrum T) and a direct summand of D ′i+1

with spectrum T being a direct sum of maps, corresponding to the remaining direct sum-
mands of the corresponding component of γi , namely, one for each direct summand of
type (ii), (ii) ′, (ii) ′ ′, or (iv)—these are copies, respectively, of the map taking the canonical
generator u of the direct summand labelled 1 to the unitary u, u∗, exp 2πis (this is the only
case with a dependence on s), or 1.

Let us now choose maps βi : D ′i → C ′i+1 with the properties specified in Theorem 5.
First, βi(φi

1) ′ should be a direct summand of γi . Note that (φi
1) ′ is unital, so that the

requirement in Theorem 5 concerning the complementary direct summand of γi is redun-
dant (as pointed out in the statement of Theorem 4).

Following the construction of [5], let us choose βi as an isomorphism of D ′i with a
subalgebra of a single standard direct summand of Ci+1, i.e., a direct summand consisting
of a canonical pair of copies of a certain matrix algebra over C(T), labelled by 0 and 1—
the quotient of some minimal direct summand of Ci+1 corresponding to the boundary of
its spectrum (the boundary of a cylinder being two circles). If the K0-multiplicities of γi

(separately between direct summands both labelled 0 or both labelled 1—the multiplicities
occur in equal pairs, labelled 0 or 1) are sufficiently large—as we may suppose them to be—
such a subalgebra (isomorphic to D ′i ) exists. Bearing in mind that the partial maps of (φi

1) ′

and of γi are similar—in each case, direct sums of copies of the identity map C(T)→ C(T),
the composition of this with the automorphism of C(T) determined by the automorphism
z 7→ z̄ of the spectrum, T, and evaluation at the point 1—all of these tensored with the
identity map on a matrix algebra—and that, passing farther out in the sequence, we may
assume that each partial map of γi (between minimal direct summands of C ′i and C ′i+1

labelled either both 0 or both 1) contains arbitrarily many copies of each of these maps,
let us choose the subalgebra of C ′i+1 and the isomorphism βi of D ′i with it to have the
following properties. The image by the composed map βi(φi

1) ′ of the unit of C ′i should
commute with the image of γi , and the cut-down of γi by this projection should be equal
to this map. Furthermore, the restriction of βi to each minimal direct summand should be
homotopic, inside the image of the unit of that direct summand, to a point evaluation (i.e.,
to a homomorphism onto a simple subalgebra).

The choice of βi as desired may be effected as follows. Express (φi
1) ′ as the direct sum

of copies of the three special maps mentioned above, and for each one of these—defined
on a minimal direct summand of C ′i labelled either 0 or 1—choose a map from the same
direct summand of C ′i to the correspondingly labelled member of the canonical pair of
minimal direct summands of C ′i+1, the direct sum of which is to contain the image of βi ,
as follows—and of course in such a way that all the maps constructed in this way have
orthogonal images. If the map in question is a copy of one of the first two special maps
mentioned (either the identity map from C(T) to C(T), tensored with the identity map on
a matrix algebra, or what might be called the flip of this), choose the map into C ′i+1 to be
the direct sum of one copy of each of these two special maps. If the map in question as a
copy of the map C(T) → C consisting of evaluation at 1 ∈ T, tensored with the identity
map on a matrix algebra (this is the only other possibility, for minimal direct summands
of (φi

1) ′), choose the map into C ′i+1 to be a copy of the point evaluation at 1 considered
as a map from C(T) to C(T)—tensored with the identity map on a matrix algebra. An
isomorphism βi from D ′i to a subalgebra of C ′i+1—uniquely determined on the cut-down
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of D ′i by (φi
1) ′(1)—then exists with the property that βi(φi

1) ′ is equal to the cut-down of γi

by βi(φi
1) ′(1). On the image of each of the direct summands of (φi

1) ′ considered above, βi

is either the direct sum of a copy of each of the two maps from C(T) to C(T) (the identity
and the flip), tensored with the identity on a matrix algebra—this is the case if the direct
summand of D ′i in question has spectrum T—, or a copy of the unital map C → C(T),
tensored with the identity on a matrix algebra. We may suppose that βi has the same form
on the whole of each minimal direct summand of D ′i —either the direct sum of copies of
the two maps from C(T) to C(T), one copy for each of the two direct summands of C ′i+1 in
question (labelled 0 and 1), or the direct sum of two copies of the map C→ C(T), tensored
with an embedding of matrix algebras in either case. By the proof of Corollary 5 of [9], the
map βi constructed in this way is homotopic to a sum of evaluations at 1, as stipulated.

We must also ensure that (φi+1
0 ) ′βi is a direct summand of δ

′
i , and that (φi+1

1 ) ′βi is a
direct summand of δi . Recall that in the construction of the maps γi , δi , δ ′i , and εi in
5.2.1 and 5.2.3.1 of [5], it was specified that Ci+1 should have more than one minimal
direct summand, and that the multiplicities of the map δi and δ ′i should be large compared
with the multiplicities of the restriction of φi+1

1 to a particular one of these minimal direct
summands—which we may choose (as in [5]) to be the one involved in the construction
of βi . With the present approach, we wish to make, in addition, a similar specification
with respect to the restriction of φi+1

0 to this direct summand. We also wish to ensure that

the analogous situation holds with respect to δi , δ
′
i , and (φi+1

j ) ′, j = 0, 1, in other words,
with respect to the remaining direct summand of D ′i (orthogonal to Di). But for this it is
enough to note that in the construction of γi in [5], the K0-multiplicities may be chosen
large compared with the dimension drops in Ci+1. (This amounts to a slight refinement
of the choice of the inductive limit decomposition of the simple graded dimension group
with torsion entering into the construction of [5].)

The preceding considerations are sufficient to ensure that, at least up to unitary equiva-

lence, (φi+1
0 ) ′βi and (φi+1

1 ) ′βi are direct summands, respectively, of δ
′
i and δi . Let us show

that the unitaries in question may be chosen to commute with the images of (φi+1
0 ) ′γi and

(φi+1
1 ) ′γi , respectively, so that they may be absorbed in the choice of the maps (φi+1

0 ) ′ and
(φi+1

1 ) ′.

The proof of this is very similar to the corresponding part of the proof of Theorem 1,
in Section 6, above. Let us consider only the case of the map (φi+1

0 ) ′; the case of the map
(φi+1

1 ) ′ is similar.

By construction, the image under βi of the projection (φi
1) ′(1) commutes with the im-

age of γi . Let us show that we may choose βi in such a way that this is true also for the image
under βi of the unit of D ′i . Since we are aiming at constructing a stable C∗-algebra, we may
suppose not only that the map γi is non-unital, but, that the projection βi(1)− βi(φi

1) ′(1)
is equivalent in C ′i+1 to a projection orthogonal to γi(1). These two projections are then
unitarily equivalent by a unitary equal to 1 on βi(φi

1) ′(1), and so, replacing βi by its com-
position with the corresponding inner automorphism of C ′i+1, we may suppose that, in fact,
γi(1) and βi(1)− βi(φi

1) ′(1) are orthogonal. In particular, βi(1) commutes with the image
of γi , as desired. Furthermore—and this is needed to fulfil the hypotheses of Theorems 4
and 5 concerning βi—, γi(1) − βi(φi

1) ′(1), i.e., the image of the unit of C ′i under the map
γi − βi(φi

1) ′, is orthogonal to βi(1), not just to βi(φi
1) ′(1).

It follows that (φi+1
0 ) ′βi(1), i.e., the unit of the image of (φi+1

0 ) ′βi , commutes with the
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image of (βi+1
0 ) ′γi . Note that this is also true for any direct summand of the map δ

′
i , in

particular, one unitarily equivalent to (φi+1
0 ) ′βi , chosen as above. Indeed, the unit of the

image of such a map of course commutes with the image of δ
′
i , and at the same time is

majorized by δ
′
i (1); this, on account of the identity

δi(φ
i
0) ′ + δ

′
i (φi

1) ′ + εi = (φi+1
0 ) ′γi ,

implies immediately that the projection in question commutes with the image of (φi+1
0 ) ′γi

(the right hand side of the identity), as desired.
Since the two projections in question—the units of the images of (φi+1

0 ) ′βi , and of a fixed

direct summand of δ
′
i unitarily equivalent to this map—are unitarily equivalent in D ′i+1 and

belong to the commutant of the image of (φi+1
0 ) ′γi , which, because of the simple nature

of the maps involved is just a finite direct sum of matrix algebras over C or C(T), these
projections are unitarily equivalent in the commutant of the image of (φi+1

0 ) ′γi . Replacing
(φi+1

0 ) ′ then by its product with an inner automorphism of D ′i+1, determined by a unitary
in the commutant of the image of the map (φi+1

0 ) ′γi—so that this map, and the identity
above (on which the map θi depends), remain unchanged—we may suppose that the two
projections are equal.

But the two maps in question, (φi+1
0 ) ′βi and the cut-down of δ

′
i by (φi+1

0 ) ′βi(1), when
composed with (φi

1) ′, are (by the identity above) both direct summands of (φi+1
0 ) ′γi—and

since they are then cut-downs of (φi+1
0 ) ′γi by the same projection (the common image of

the unit of C ′i ), these two composed maps, (φi+1
0 ) ′βi(φi

1) ′ and the cut-down of δ
′
i (φi

1) ′

by the projection in question, are in fact equal. Therefore (cf. Section 6), any unitary

inside the cut-down of D ′i+1 by this projection taking (φi+1
0 ) ′βi into the cut-down of δ

′
i

by this projection—such a unitary is known to exist—must commute with the image of

(φi+1
0 ) ′βi(φi

1) ′, and hence with the image of (φi+1
0 ) ′γi (as this map contains δ

′
i (φi

1) ′, and
so also (φi+1

0 ) ′βi(φi
1) ′, as a direct summand). The extension of such a partial unitary to a

unitary in D ′i+1 equal to 1 on the complement of this projection then belongs to the com-

mutant of the image of (φi+1
0 ) ′γi , and transforms (φi+1

0 ) ′βi into the cut-down of δ
′
i by the

projection, as desired.
Since, by construction, βi is homotopic to a direct sum of point evaluations—within

the projection βi(1)—βi is also homotopic, within βi(1), to a map αi : D ′i → C ′i+1 with the
property enunciated in the statement of Theorem 5: There is a direct summand αi of αi

such that αi is non-zero on an arbitrary given non-zero element xi of D ′i , and has image a
simple sub-C∗-algebra of C ′i+1, the closed two-sided ideal generated by which contains the
image of βi .

There are certain other properties that βi should have. First of all, since the map βi(φi
1) ′

is not assumed to be unital, it must be ensured that (as required in Theorems 4 and 5) the
map γi − βi(φi

1) ′ has image orthogonal to the whole of the image of βi (not just to the
image of βi(φi

1) ′). This was attended to in the construction of βi .
Second, the closed two-sided ideal of C ′i+1 generated by the image of βi should be a direct

summand. This follows from the fact that D ′i is unital, and every closed two-sided ideal of
C(T) generated by a projection is a direct summand.

Third, the image of each of (φi+1
0 ) ′ and (φi+1

1 ) ′ restricted to the direct summand of C ′i+1

generated by the image of βi should generate D ′i+1 as a closed two-sided ideal. As pointed
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out above, this does not hold. This property may be ensured, though, by the following
minor modification of (φi+1

0 ) ′ and (φi+1
1 ) ′. From each minimal direct summand of C ′i+1

with spectrum T, to each minimal direct summand of D ′i+1, let us add the map consisting
of evaluation at 1 ∈ T, tensored with an embedding of matrix algebras, of multiplicity to
be specified. Of course, this means enlarging each minimal direct summand of D ′i+1. Let us
choose these maps in such a way that their images are orthogonal to the old unit of D ′i+1.
At the same time, this must also be done for the maps (φi

0) ′ and (φi
1) ′—or we may assume

inductively that this already has been done—and we must also extend the maps δi and δ
′
i

to the enlarged algebra D ′i , in such a way that the relation

δi(φ
i
j)
′ + δ

′
i (φi

1− j)
′ + εi = (φi+1

j ) ′γi , j = 0, 1,

with εi possibly modified but with γi as before, is preserved. This will be done below. By
Theorem 3 there then still exists a unique map θi : Ai → Ai+1, inducing the map γi : C ′i →
C ′i+1 between the canonical quotients, such that

esθi = δies + δ
′
i e1−s + εie∞, 0 < s < 1.

Choosing βi now as before (in this modified setting), we find that the property in question
holds.

It remains, in order to ensure this third property of βi , to extend δi and δ
′
i to the enlarged

algebra D ′i , and to modify εi : C ′i → D ′i+1, in such a way that the identity

δi(φ
i
j)
′ + δ

′
i (φi

1− j)
′ + εi = (φi+1

j ) ′γi , j = 0, 1,

with γi as before, is preserved. We wish, of course, to preserve the property that the maps

δi , δ
′
i , and εi have orthogonal images.

Choose extensions of δi and δ
′
i —these are unique up to unitary equivalence —such that

the images of the difference between the new unit of D ′i and the old are orthogonal to the
old unit of D ′i+1, and also orthogonal to each other. (This may require a further enlargement

of D ′i+1.) Fix j = 0, 1. With these choices, each of the (new) maps δi(φi
j)
′ and δ

′
i (φi

1− j)
′ is

now the sum of two maps, one with image contained in the old unit of D ′i+1, and one with
image orthogonal to this. This is also true for the (new) map (φi+1

j ) ′γi . Furthermore, the
above identity of course still holds for the new maps after cutting down by the old unit of

D ′i+1. It therefore remains to compare the cut-downs of the (new) maps δi(φi
j)
′ + δ

′
i (φi

1− j)
′

and (φi+1
j ) ′γi by the difference between the new unit of D ′i+1 and the old. For these maps,

the only unitary invariant is multiplicity (i.e., K0), as they have finite-dimensional image,
and involve the same irreducible representations of C ′i (evaluation at 1 for each copy of T in
the spectrum). Therefore, choosing the multiplicities of the new summand of (φi+1

j ) ′ suffi-
ciently large, and noting that γi is not zero on any direct summand of C ′i (as γi—as we may
suppose—is not zero on any direct summand of Ci), we may suppose that the multiplicities

of the cut-down of δi(φi
j)
′ + δ

′
i (φ1− j) ′ in question are smaller than the multiplicities of the

cut-down of (φi+1
j ) ′γi . In order to choose a new direct summand of εi , with image orthog-

onal to the old unit of D ′i+1, and also to the image of δi and δ
′
i , and factoring through the
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same finite-dimensional quotient of C ′i as referred to above, with multiplicities equal to the
differences of the multiplicities just mentioned, we must ensure that the differences of these
multiplicities are the same in the two cases j = 0 and j = 1. This is achieved by choosing
the new direct summands of (φi+1

0 ) ′ and (φi+1
1 ) ′ to have the same multiplicities—and, in-

ductively, doing this also at earlier stages. (The multiplicities of both maps in question, the

components of δi(φi
j)
′ + δ

′
(φi

1− j)
′ and of (φi+1

j ) ′γi orthogonal to the old unit of D ′i+1, are
then independent of j, and in particular the differences are, as desired.)

Once a new direct summand of εi is chosen, with multiplicities as described above (and
factoring through the finite-dimensional quotient of C ′i under consideration), and with
image orthogonal to the old unit of D ′i+1, so that the desired identity holds up to unitary
equivalence inside the difference between the new and old units of D ′i+1 (and still holds
exactly inside the old unit), the new summand of (φi+1

j ) ′ may be modified by composition
with an inner automorphism (determined by a unitary of D ′i+1 equal to 1 on the old unit)—
separately in the two cases j = 0 and j = 1—to ensure that the desired identity holds
exactly.

Fourth, the maps δ
′
i − (φi

0) ′βi and δi − (φi
1) ′βi from D ′i to D ′i+1 should be injective.

Injectivity of the maps δi and δ
′
i is ensured by a suitable choice of δi and δ ′i in [5]. Inspection

of the construction of βi reveals sufficient freedom for the differences δ
′
i − (φi

0) ′βi and
δi − (φi

1) ′βi to be required to be still injective.
Finally, the map γi − βi(φi

1) ′ should take each non-zero direct summand of C ′i into
a subalgebra of C ′i+1 not contained in any proper closed two-sided ideal. As above, this
property of γi may be ensured by a suitable choice of γi in [5], and inspection of the con-
struction of βi shows that there is sufficient freedom for the difference γi − βi(φi

1) ′ to be
made to retain this property.

As in [5], the inductive limit of the deformed sequence A1
θ ′1−→ A2

θ ′2−→ · · · has the
same ordered K0-group and the same K1-group—this is obvious—and, furthermore, the
same tracial cone, in duality in the same way with K0—this as the deformation is carried
out inside a subalgebra at each stage on which all traces attain only a small fraction of their
value.
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