Singular Integrals With Rough Kernels

Ahmad Al-Salman and Yibiao Pan

Abstract. In this paper we establish the L^{p} boundedness of a class of singular integrals with rough kernels associated to polynomial mappings.

1 Introduction

Let $n \geq 2$ and \mathbb{R}^{n} be the n-dimensional Euclidean space. Let \mathbf{S}^{n-1} denote the unit sphere in \mathbb{R}^{n} equipped with the induced Lebesgue measure $d \sigma$. Consider the Calderón-Zygmund singular integral operator

$$
\begin{equation*}
\left(T_{\Omega} f\right)(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f(x-y) \frac{\Omega(y)}{|y|^{n}} d y, \tag{1}
\end{equation*}
$$

where Ω is a homogeneous function of degree zero and satisfies $\Omega \in L^{1}\left(\mathbf{S}^{n-1}\right)$ and

$$
\begin{equation*}
\int_{\mathbf{S}^{n-1}} \Omega(y) d \sigma(y)=0 \tag{2}
\end{equation*}
$$

Since the publication of the fundamental papers of Calderón and Zygmund, the operators T_{Ω} have been studied by many authors. Calderón and Zygmund showed that $\Omega \in L \log ^{+} L\left(\mathbf{S}^{n-1}\right)$ is essentially the weakest possible size condition on Ω for the L^{p} boundedness of T_{Ω} to hold ([1]). Subsequently, it was proved by Connet ([2]) and Ricci-Weiss ([9]) independently that T_{Ω} is bounded on L^{p} for every Ω in the Hardy space $H^{1}\left(\mathbf{S}^{n-1}\right)$ (which contains $L \log ^{+} L\left(\mathbf{S}^{n-1}\right)$ as a proper subspace) and $p \in(1, \infty)$.

In a more recent paper, Grafakos and Stefanov introduced the following condition:

$$
\begin{equation*}
\sup _{\xi \in \mathbf{S}^{n-1}} \int_{\mathbf{S}^{n-1}}|\Omega(y)|\left(\log \frac{1}{|\langle\xi, y\rangle|}\right)^{1+\alpha} d \sigma(y)<\infty \tag{3}
\end{equation*}
$$

and showed that it implies the L^{p} boundedness of T_{Ω} for p in a range dependent on the positive exponent α. For $\alpha>0$ let $F_{\alpha}\left(\mathbf{S}^{n-1}\right)$ denote the space of all integrable functions Ω on \mathbf{S}^{n-1} which satisfy (3).

Theorem 1 ([7]) Let $\Omega \in F_{\alpha}\left(\mathbf{S}^{n-1}\right)$ and satisfy (2). Then T_{Ω} extends to a bounded operator from $L^{p}\left(\mathbb{R}^{n}\right)$ into itselffor $p \in\left(\frac{2+\alpha}{1+\alpha}, 2+\alpha\right)$.

[^0]The range for p was later improved to $\left(\frac{2+2 \alpha}{1+2 \alpha}, 2+2 \alpha\right)$ in [4]. It should also be noted that Grafakos and Stefanov showed that

$$
\bigcap_{\alpha>0} F_{\alpha}\left(\mathbf{S}^{n-1}\right) \not \subset H^{1}\left(\mathbf{S}^{n-1}\right) \not \subset \bigcup_{\alpha>0} F_{\alpha}\left(\mathbf{S}^{n-1}\right) .
$$

For details, see [7].
The main purpose of this paper is to investigate the L^{p} boundedness of singular integrals along subvarieties with kernels satisfying conditions similar to (3). More specifically, let $\mathcal{P}=\left(P_{1}, \ldots, P_{d}\right)$, where P_{j} is a real-valued polynomial in \mathbb{R}^{n} for $j=1, \ldots, d$. Define the operator $T_{\Omega, \mathcal{P}}$ in \mathbb{R}^{d} by

$$
\begin{equation*}
\left(T_{\Omega, \mathcal{P}} f\right)(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f(x-\mathcal{P}(y)) \frac{\Omega(y)}{|y|^{n}} d y \tag{4}
\end{equation*}
$$

where $x \in \mathbb{R}^{d}$. Clearly, when $d=n$ and $\mathcal{P}(y)=y$, one obtains $T_{\Omega, \mathcal{P}}=T_{\Omega}$. For general polynomial mappings \mathcal{P}, the L^{p} boundedness was first established for $\Omega \in$ $C^{1}\left(\mathbf{S}^{n-1}\right)$ as the model case for singular Radon transforms ([10]), and more recently for $\Omega \in H^{1}\left(\mathbf{S}^{n-1}\right)$ (see [6]).

In order to state our main results, we let $\mathcal{A}(n, m)$ denote the set of polynomials on \mathbb{R}^{n} which have real coefficients and degrees not exceeding m, and let $V(n, m)$ denote the collection of polynomials in $\mathcal{A}(n, m)$ which are homogeneous of degree m.

$$
\text { For } P(y)=\sum_{|\beta| \leq m} a_{\beta} y^{\beta} \text { we set }\|P\|=\left(\sum_{|\beta| \leq m}\left|a_{\beta}\right|^{2}\right)^{1 / 2} .
$$

Definition Let $n \geq 2, m \in \mathbb{N}$ and $\alpha>0$. An integrable function Ω on \mathbf{S}^{n-1} is said to be in the space $F(n, m, \alpha)$ if

$$
\begin{equation*}
\sup _{P \in V(n, m),\|P\|=1} \int_{\mathrm{S}^{n-1}}|\Omega(y)|\left(\log \frac{1}{|P(y)|}\right)^{1+\alpha} d \sigma(y)<\infty \tag{5}
\end{equation*}
$$

Clearly $F(n, 1, \alpha)=F_{\alpha}\left(\mathbf{S}^{n-1}\right)$. We have the following:
Theorem 2 Let $n \geq 2, m, d \in \mathbb{N}$ and $\mathcal{P}=\left(P_{1}, \ldots, P_{d}\right) \in(\mathcal{A}(n, m))^{d}$. Let Ω satisfy (2) and $\Omega \in \bigcap_{s=1}^{m} F(n, s, \alpha)$ for some $\alpha>0$. Then the operator $T_{\Omega, \mathcal{P}}$ is bounded on $L^{p}\left(\mathbb{R}^{d}\right)$ for $p \in\left(\frac{2+2 \alpha}{1+2 \alpha}, 2+2 \alpha\right)$. Moreover, the bound for the operator norm $\left\|T_{\Omega, \mathcal{P}}\right\|_{p, p}$ is independent of the coefficients of the polynomials $\left\{P_{j}\right\}$.

For $n=2$ we shall show that (see Lemma 3.2)

$$
\bigcap_{m=1}^{\infty} F(2, m, \alpha)=F_{\alpha}\left(\mathbf{S}^{1}\right)
$$

which leads to the following:
Corollary 3 Let $d \in \mathbb{N}$ and $\mathcal{P}=\left(P_{1}, \ldots, P_{d}\right)$ where $P_{j}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a polynomial for $1 \leq j \leq d$. If $\Omega \in F_{\alpha}\left(\mathbf{S}^{1}\right)$ for some $\alpha>0$ and satisfies (2), then, for $p \in\left(\frac{2+2 \alpha}{1+2 \alpha}, 2+2 \alpha\right)$, there exists a $C_{p}>0$ such that

$$
\left\|T_{\Omega, \mathcal{P}} f\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq C_{p}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

for $f \in L^{p}\left(\mathbb{R}^{d}\right)$. The constant C_{p} may depend on $\operatorname{deg}(\mathcal{P})=\max _{1 \leq j \leq m} \operatorname{deg}\left(P_{j}\right)$, but it is independent of the coefficients of the polynomials P_{1}, \ldots, P_{d}.

2 Some Lemmas

Lemma 2.1 Let $d, m \in \mathbb{N}, \alpha>0$, and $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Let $\left\{a_{k}\right\}_{k \in \mathbb{Z}}$ be a sequence of positive numbers satisfying $\inf _{k \in \mathbb{Z}}\left(a_{k+1} / a_{k}\right)=a>1,\left\{\sigma_{k}\right\}_{k \in \mathbb{Z}}$ be a sequence of uniformly bounded measures on \mathbb{R}^{d} and set $T f=\sum_{k \in \mathbb{Z}} \sigma_{k} * f$, initially for $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Suppose that
(i) $\left|\hat{\sigma}_{k}(\xi)\right| \leq C \min \left\{a_{k+1}|L \xi|,\left[\log ^{+}\left(a_{k}|L \xi|\right)\right]^{-(1+\alpha)}\right\}$ holds for $\xi \in \mathbb{R}^{d}$ and $k \in \mathbb{Z}$;
(ii) $\left\|\left(\sum_{k \in \mathbb{Z}}\left|\sigma_{k} * g_{k}\right|^{2}\right)^{1 / 2}\right\|_{q} \leq A_{q}\left\|\left(\sum_{k \in \mathbb{Z}}\left|\sigma_{k} * g_{k}\right|^{2}\right)^{1 / 2}\right\|_{q}$ holds for arbitrary functions $\left\{g_{k}\right\}_{k \in \mathbb{Z}}$ on \mathbb{R}^{d} and $1<q<\infty$.

Then T extends to a bounded operator from $L^{p}\left(\mathbb{R}^{d}\right)$ into itself for $p \in\left(\frac{2+2 \alpha}{1+2 \alpha}, 2+2 \alpha\right)$. Moreover, the bound on $\|T\|_{p, p}$ is independent of L.

Proof We shall combine the method of Duoandikoetxea and Rubio de Francia ([3]) with ideas from [4, 6, 7]. By an argument in [6], we may assume that $m \leq d$ and $L \xi=\left(\xi_{1}, \ldots, \xi_{m}\right)=\xi^{\prime}$ for $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right)=\left(\xi^{\prime}, \xi^{\prime \prime}\right) \in \mathbb{R}^{d}$. Choose C^{∞} functions $\left\{\psi_{j}\right\}_{j \in \mathbb{Z}}$ on \mathbb{R} such that $\operatorname{supp}\left(\psi_{j}\right) \subseteq\left[a_{j+1}^{-1}, a_{j-1}^{-1}\right],\left|\psi_{j}^{(s)}(t)\right| \leq C t^{-s}$, and

$$
\sum_{j \in \mathbb{Z}}\left[\psi_{j}(t)\right]^{2}=1
$$

for $t>0, s \geq 0$. Define the operator S_{j} by

$$
\widehat{S_{j} f}(\xi)=\psi_{j}\left(\left|\xi^{\prime}\right|\right) \hat{f}(\xi)
$$

for $j \in \mathbb{Z}$ and set

$$
T_{j} f=\sum_{k \in \mathbb{Z}} S_{j+k}\left(\sigma_{k} * S_{j+k} f\right)
$$

Thus we have

$$
\begin{equation*}
T f=\sum_{j \in \mathbb{Z}} T_{j} f \tag{6}
\end{equation*}
$$

It follows from Littlewood-Paley theory and (ii) that

$$
\begin{equation*}
\left\|T_{j} f\right\|_{q} \leq C_{q}\|f\|_{q} \tag{7}
\end{equation*}
$$

holds for $1<q<\infty, f \in L^{q}\left(\mathbb{R}^{d}\right)$ and $j \in \mathbb{Z}$ with C_{q} independent of j. Let $\Gamma_{j}=\left\{\xi \in \mathbb{R}^{d}: a_{j+1}^{-1} \leq\left|\xi^{\prime}\right|<a_{j-1}^{-1}\right\}$ and $\chi_{j}=\chi_{\Gamma_{j}}$. By Plancherel's Theorem,

$$
\begin{equation*}
\left\|T_{j} f\right\|_{2}^{2} \leq C \int_{\mathbb{R}^{d}}|\hat{f}(\xi)|^{2}\left[\sum_{k \in \mathbb{Z}}\left|\hat{\sigma}_{k}(\xi)\right|^{2} \chi_{j+k}(\xi)\right] d \xi \tag{8}
\end{equation*}
$$

For $j>1$ and $k \in \mathbb{Z}$,

$$
\begin{equation*}
\left|\hat{\sigma}_{k}(\xi)\right|^{2} \chi_{j+k}(\xi) \leq C\left(\frac{a_{k+1}}{a_{j+k-1}}\right)^{2} \leq C a^{-2 j+4} \tag{9}
\end{equation*}
$$

On the other hand, when $j<-1$,

$$
\begin{equation*}
\left|\hat{\sigma}_{k}(\xi)\right|^{2} \chi_{j+k}(\xi) \leq C\left[\log \left(\frac{a_{k+1}}{a_{j+k-1}}\right)\right]^{-2(1+\alpha)} \leq C|j|^{-2(1+\alpha)} \tag{10}
\end{equation*}
$$

holds for $k \in \mathbb{Z}$. By (7)-(10) and the finite overlapping property of $\left\{\Gamma_{j+k}: k \in \mathbb{Z}\right\}$, we obtain

$$
\begin{equation*}
\left\|T_{j} f\right\|_{2} \leq C(1+|j|)^{-(1+\alpha)}\|f\|_{2} \tag{11}
\end{equation*}
$$

By interpolating between (7) and (11), for every $p \in\left(\frac{2+2 \alpha}{1+2 \alpha}, 2+2 \alpha\right)$, there is a $\theta_{p}>1$ such that

$$
\begin{equation*}
\left\|T_{j} f\right\|_{p} \leq C(1+|j|)^{-\theta_{p}}\|f\|_{p} \tag{12}
\end{equation*}
$$

holds for $j \in \mathbb{Z}$. The lemma now follows from (6) and (12).
Lemma 2.2 Let $\alpha>0, m, d \in \mathbb{N}$ and $\left\{\sigma_{s, k}: 0 \leq s \leq m\right.$ and $\left.k \in \mathbb{Z}\right\}$ be a family of uniformly bounded Borel measures on \mathbb{R}^{d} with $\sigma_{0, k}=0$ for every $k \in \mathbb{Z}$. Let $\left\{\eta_{s}: 1 \leq s \leq m\right\} \subset \mathbb{R}^{+} \backslash\{1\},\left\{l_{s}: 1 \leq s \leq m\right\} \subset \mathbb{N}$, and $L_{s}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{l_{s}}$ be linear transformations for $1 \leq s \leq m$. Suppose that
(i) $\left|\hat{\sigma}_{s, k}(\xi)\right| \leq C\left[\log ^{+}\left(\eta_{s}^{k}\left|L_{s} \xi\right|\right)\right]^{-(1+\alpha)}$ for $\xi \in \mathbb{R}^{d}, k \in \mathbb{Z}$ and $1 \leq s \leq m$;
(ii) $\left|\hat{\sigma}_{s, k}(\xi)-\hat{\sigma}_{s-1, k}(\xi)\right| \leq C\left(\eta_{s}^{k}\left|L_{s} \xi\right|\right)$ for $\xi \in \mathbb{R}^{d}, k \in \mathbb{Z}$ and $1 \leq s \leq m$;
(iii) For every $q \in(1, \infty)$ there exists an $A_{q}>0$ such that

$$
\begin{equation*}
\left\|\sup _{k \in \mathbb{Z}}\left(\left|\sigma_{s, k}\right| *|f|\right)\right\|_{q} \leq A_{q}\|f\|_{q} \tag{13}
\end{equation*}
$$

for all $f \in L^{q}\left(\mathbb{R}^{d}\right)$ and $1 \leq s \leq m$.
Then for $p \in\left(\frac{2+2 \alpha}{1+2 \alpha}, 2+2 \alpha\right)$, there exists $a C_{p}>0$ such that

$$
\begin{equation*}
\left\|\sum_{k \in \mathbb{Z}} \sigma_{m, k} * f\right\|_{p} \leq C_{p}\|f\|_{p} \tag{14}
\end{equation*}
$$

holds for all $f \in L^{p}\left(\mathbb{R}^{d}\right)$. Moreover, the constant C_{p} is independent of the linear transformations $\left\{L_{s}: 1 \leq s \leq m\right\}$.

One may use the arguments in Section 5 of [5] and Lemma 2.1 to obtain a proof of Lemma 2.2. Details are omitted.

3 Proofs of Main Results

Proof of Theorem 2 Let $n \geq 2, m, d \in \mathbb{N}$ and $\mathcal{P}=\left(P_{1}, \ldots, P_{d}\right)$, where

$$
P_{j}(y)=\sum_{|\beta| \leq m} a_{j \beta} y^{\beta}
$$

for $j=1, \ldots, d$. Let Ω satisfy (2) and $\Omega \in \bigcap_{s=1}^{m} F(n, s, \alpha)$ for some $\alpha>0$. For $0 \leq s \leq m$ and $k \in \mathbb{Z}$ we define the measure $\sigma_{s, k}$ on \mathbb{R}^{d} by

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} f d \sigma_{s, k}=\int_{2^{k-1} \leq|y|<2^{k}} f\left(\sum_{|\beta| \leq s} a_{1 \beta} y^{\beta}, \ldots, \sum_{|\beta| \leq s} a_{d \beta} y^{\beta}\right) \frac{\Omega(y)}{|y|^{n}} d y . \tag{15}
\end{equation*}
$$

It follows from (2) that $\sigma_{0, k}=0$ for all $k \in \mathbb{Z}$ and

$$
\begin{equation*}
T_{\Omega, \mathcal{P}} f=\sum_{k \in \mathbb{Z}} \sigma_{m, k} * f \tag{16}
\end{equation*}
$$

By Theorem 7.4 in [6], (13) holds for all $f \in L^{q}\left(\mathbb{R}^{d}\right)$ and $1 \leq s \leq m$. Let l_{s} denote the number of multi-indices $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ satisfying $|\beta|=s$ and define the linear transformation $L_{s}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{l_{s}}$ by

$$
\begin{equation*}
L_{s} \xi=\left(\left(L_{s} \xi\right)_{\beta}\right)_{|\beta|=s}=\left(\sum_{j=1}^{d} a_{j \beta} \xi_{j}\right)_{|\beta|=s} . \tag{17}
\end{equation*}
$$

It follows from (15) and (17) that

$$
\begin{aligned}
\left|\hat{\sigma}_{s, k}(\xi)-\hat{\sigma}_{s-1, k}(\xi)\right| & \leq \int_{2^{k-1} \leq|y|<2^{k}}\left|\exp \left[i\left(\sum_{j=1}^{d} \sum_{|\beta|=s} a_{j \beta} \xi_{j} y^{\beta}\right)\right]-1\right| \frac{|\Omega(y)|}{|y|^{n}} d y \\
& \leq C\left(2^{s k}\left|L_{s} \xi\right|\right)
\end{aligned}
$$

for $1 \leq s \leq m$ and $k \in \mathbb{Z}$. Write

$$
\hat{\sigma}_{s, k}(\xi)=\int_{\mathbf{S}^{n-1}} I_{s, k}(\xi, y) \Omega(y) d \sigma(y)
$$

where

$$
I_{s, k}(\xi, y)=\int_{1 / 2}^{1} \exp \left[i\left(2^{s k}\left|L_{s} \xi\right| Q_{s \xi}(y) t^{s}+\text { lower powers in } t\right)\right] t^{-1} d t
$$

with

$$
Q_{s \xi}(y)=\left|L_{s} \xi\right|^{-1} \sum_{|\beta|=s}\left(L_{s} \xi\right)_{\beta} y^{\beta} .
$$

Then by van der Corput's lemma,

$$
\begin{equation*}
\left|I_{s, k}(\xi, y)\right| \leq C\left[2^{s k}\left|L_{s} \xi\right|\left|Q_{s \xi}(y)\right|\right]^{-1 / s} \tag{18}
\end{equation*}
$$

By combining (18) with the trivial inequality $\left|I_{s, k}(\xi, y)\right| \leq 1$ we obtain that

$$
\begin{equation*}
\left|I_{s, k}(\xi, y)\right| \leq C\left[\log ^{+}\left(2^{s k}\left|L_{s} \xi\right|\right)\right]^{-(1+\alpha)}\left(s+\alpha+\log \frac{1}{\left|Q_{s \xi}(y)\right|}\right)^{1+\alpha} \tag{19}
\end{equation*}
$$

Since $Q_{s \xi} \in V(n, s),\left\|Q_{s \xi}\right\|=1$, and $\Omega \in F(n, s, \alpha)$ for $1 \leq s \leq m$, by (5) and (19) we obtain

$$
\left|\hat{\sigma}_{s, k}(\xi)\right| \leq C\left[\log ^{+}\left(2^{s k}\left|L_{s} \xi\right|\right)\right]^{-(1+\alpha)}
$$

for $1 \leq s \leq m, k \in \mathbb{Z}$ and $\xi \in \mathbb{R}^{d}$. It follows from Lemma 2.2 and (16) that $T_{\Omega, \mathcal{P}}$ is bounded on $L^{p}\left(\mathbb{R}^{d}\right)$ for $p \in\left(\frac{2+2 \alpha}{1+2 \alpha}, 2+2 \alpha\right)$ with a bound on $\left\|T_{\Omega, \mathcal{P}}\right\|_{p, p}$ independent of the coefficients of the P_{j} 's. The proof of Theorem 2 is now complete.

We now show that $F_{\alpha}\left(\mathbf{S}^{1}\right) \subseteq F(2, m, \alpha)$ for $m \in \mathbb{N}$.
Lemma 3.1 Let $m \in \mathbb{N}, a_{0}, a_{1}, \ldots, a_{m} \in \mathbb{C}$ and $g(z)=a_{0}+a_{1} z+\cdots+a_{m} z^{m}$ for $z \in \mathbb{C}$. If z_{1}, \ldots, z_{l} are the roots of $g(z)$ which lie in $\{z \in \mathbb{C}:|z| \leq 2\}$, then

$$
|g(z)| \geq 6^{-m}\left(\sup _{|z|=1}|g(z)|\right) \prod_{s=1}^{l}\left|z-z_{s}\right|
$$

holds for $|z| \leq 1$.

Proof Without loss of generality we may assume that $a_{m}=1$. Let z_{l+1}, \ldots, z_{m} denote the roots of $g(z)$ which lie in $\{z \in \mathbb{C}:|z|>2\}$. By

$$
g(z)=\prod_{s=1}^{m}\left(z-z_{s}\right)
$$

we have

$$
\left|a_{j}\right| \leq \sum_{1 \leq k_{1}<\cdots<k_{m-j} \leq m}\left|z_{k_{1}} \cdots z_{k_{m-j}}\right| \leq \frac{\left(2^{m-j} m!\right)\left|z_{l+1}\right| \cdots\left|z_{m}\right|}{j!(m-j)!}
$$

for $j=0,1, \ldots, m$, which implies that

$$
\prod_{s=l+1}^{m}\left|z_{s}\right| \geq 3^{-m}\left(\sum_{j=0}^{m}\left|a_{j}\right|\right)
$$

Thus, for $|z| \leq 1$,

$$
\begin{aligned}
|g(z)| & \geq\left(\prod_{s=1}^{l}\left|z-z_{s}\right|\right)\left(\prod_{s=l+1}^{m} \frac{\left|z_{s}\right|}{2}\right) \geq 6^{-m}\left(\sum_{j=0}^{m}\left|a_{j}\right|\right)\left(\prod_{s=1}^{l}\left|z-z_{s}\right|\right) \\
& \geq 6^{-m}\left(\sup _{|z|=1}|g(z)|\right)\left(\prod_{s=1}^{l}\left|z-z_{s}\right|\right) .
\end{aligned}
$$

Lemma 3.1 is proved.
Corollary 3 follows from Theorem 2 and the following lemma:
Lemma 3.2 $\bigcap_{m=1}^{\infty} F(2, m, \alpha)=F_{\alpha}\left(\mathbf{S}^{1}\right)$.

Proof It suffices to show that $F_{\alpha}\left(\mathbf{S}^{1}\right) \subseteq F(2, m, \alpha)$ for $m \in \mathbb{N}$. Let $\Omega \in F_{\alpha}\left(\mathbf{S}^{1}\right)$. Then it follows from [7] that

$$
\begin{equation*}
\sup _{\zeta \in \mathbf{S}^{1}} \int_{\mathbf{S}^{1}}|\Omega(y)|\left(\log ^{+} \frac{1}{|y-\zeta|}\right)^{1+\alpha} d \sigma(y)=C_{\Omega}<\infty . \tag{20}
\end{equation*}
$$

For a fixed $m \in \mathbb{N}$, there exists a $\lambda_{m}>0$ such that

$$
\sup _{y \in \mathrm{~S}^{1}}|P(y)| \geq \lambda_{m}\|P\|
$$

holds for every $P \in V(2, m)$.
Let

$$
P(y)=P\left(y_{1}, y_{2}\right)=\sum_{j+k=m} a_{j k} y_{1}^{j} y_{2}^{k} \in V(2, m)
$$

and $\|P\|=1$. Define $g=g_{P}$ on \mathbb{C} by

$$
g(z)=2^{-m} \sum_{j+k=m}(-i)^{k} a_{j k}\left(z^{2}+1\right)^{j}\left(z^{2}-1\right)^{k}
$$

Then $\left|P\left(y_{1}, y_{2}\right)\right|=\left|g\left(y_{1}+y_{2} i\right)\right|$ for $\left(y_{1}, y_{2}\right) \in \mathbf{S}^{1}$. Let z_{1}, \ldots, z_{l} denote the roots of $g(z)$ in $\{0<|z| \leq 2\}$. By Lemma 3.1, for $y=\left(y_{1}, y_{2}\right) \in \mathbf{S}^{1}$,

$$
\begin{aligned}
|P(y)| & \geq 6^{-2 m} \lambda_{m} \prod_{s=1}^{l}\left|\left(y_{1}+y_{2} i\right)-z_{s}\right| \\
& \geq(12)^{-2 m} \lambda_{m} \prod_{s=1}^{l}\left|\left(y_{1}+y_{2} i\right)-\frac{z_{s}}{\left|z_{s}\right|}\right|
\end{aligned}
$$

Thus, by (20),

$$
\int_{\mathbf{S}^{1}}|\Omega(y)|\left(\log \frac{1}{|P(y)|}\right)^{1+\alpha} d \sigma(y) \leq C\left(\|\Omega\|_{L^{1}\left(\mathbf{S}^{1}\right)}+C_{\Omega}\right)
$$

which implies that $F_{\alpha}\left(\mathbf{S}^{1}\right) \subseteq F(2, m, \alpha)$ for $m \in \mathbb{N}$. Lemma 3.2 is proved.
There is no analogue of Lemma 3.1 when $n \geq 3$. We shall illustrate this with the following example for $n=3$:

Example For $y=\left(y_{1}, y_{2}, y_{3}\right) \in \mathbf{S}^{2}$, let

$$
\begin{aligned}
& \Omega(y)= \\
& \quad \frac{y_{3} \chi_{[\sqrt{2} / 2, \sqrt{3} / 2]}\left(\left|y_{3}\right|\right)}{\left|y_{3}\right|\left|y_{1}^{2}+y_{2}^{2}-y_{3}^{2}\right| \log \left(100\left|y_{1}^{2}+y_{2}^{2}-y_{3}^{2}\right|^{-1}\right)\left\{\log \left[\log \left(100\left|y_{1}^{2}+y_{2}^{2}-y_{3}^{2}\right|^{-1}\right)\right]\right\}^{2}} .
\end{aligned}
$$

Clearly

$$
\int_{\mathbf{S}^{2}} \Omega(y) d \sigma(y)=0
$$

For $\alpha>0, \varphi \in\left[\frac{\pi}{6}, \frac{\pi}{4}\right] \cup\left[\frac{3 \pi}{4}, \frac{5 \pi}{6}\right]=E$, and $\xi \in \mathbf{S}^{2}$, let

$$
J_{\alpha}(\varphi, \xi)=\int_{0}^{2 \pi}\left(\log \frac{1}{\left|\xi_{1} \sin \varphi \cos \theta+\xi_{2} \sin \varphi \sin \theta+\xi_{3} \cos \varphi\right|}\right)^{\alpha+1} d \theta
$$

Then there exists a $C>0$ such that

$$
\left|J_{\alpha}(\varphi, \xi)\right| \leq C
$$

for $\alpha>0, \xi \in \mathbf{S}^{2}$ and $\varphi \in E$. Thus

$$
\begin{aligned}
\int_{\mathbf{S}^{2}}|\Omega(y)| & \left(\log \frac{1}{|\langle\xi, y\rangle|}\right)^{1+\alpha} d \sigma(y) \\
& \leq \int_{E} \frac{(\sin \varphi) J_{\alpha}(\varphi, \xi) d \varphi}{|\cos 2 \varphi|\left(\log \left|\frac{100}{\cos 2 \varphi}\right|\right)\left[\log \left(\log \left|\frac{100}{\cos 2 \varphi}\right|\right)\right]^{2}}<\infty
\end{aligned}
$$

for $\alpha>0$ and $\xi \in \mathbf{S}^{2}$. Thus $\Omega \in F_{\alpha}\left(\mathbf{S}^{2}\right)$ for every $\alpha>0$.
On the other hand, if we take $P(y)=\left(y_{1}^{2}+y_{2}^{2}-y_{3}^{2}\right) / \sqrt{3} \in V(3,2)$, then

$$
\int_{\mathbf{S}^{2}}|\Omega(y)|\left(\log \frac{1}{|P(y)|}\right)^{1+\alpha} d \sigma(y)=\infty
$$

for $\alpha>0$, which implies that $\Omega \notin F(3,2, \alpha)$ for any $\alpha>0$.

4 Additional Results

Let Ω and \mathcal{P} be given as in Section 1. Define the maximal truncated singular integral operator $T_{\Omega, \mathcal{P}}^{*}$ by

$$
\begin{equation*}
\left(T_{\Omega, \mathcal{P}}^{*} f\right)(x)=\sup _{\varepsilon>0}\left|\int_{|y|>\varepsilon} f(x-\mathcal{P}(y)) \frac{\Omega(y)}{|y|^{n}} d y\right| \tag{21}
\end{equation*}
$$

We have the following results:
Theorem 4 Let $n \geq 2, m, d \in \mathbb{N}$ and $\mathcal{P}=\left(P_{1}, \ldots, P_{d}\right) \in(\mathcal{A}(n, m))^{d}$. Let Ω satisfy (2) and $\Omega \in \bigcap_{s=1}^{m} F(n, s, \alpha)$ for some $\alpha>1 / 2$. Then the operator $T_{\Omega, \mathcal{P}}^{*}$ is bounded on $L^{p}\left(\mathbb{R}^{d}\right)$ for $p \in\left(\frac{1+2 \alpha}{2 \alpha}, 1+2 \alpha\right)$. Moreover, the bound for the operator norm $\left\|T_{\Omega, \mathcal{P}}^{*}\right\|_{p, p}$ is independent of the coefficients of the polynomials $\left\{P_{j}\right\}$.

Corollary 5 Let $d \in \mathbb{N}, \mathcal{P}=\left(P_{1}, \ldots, P_{d}\right)$ where $P_{j}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a polynomial for $1 \leq$ $j \leq d$. If $\Omega \in F_{\alpha}\left(\mathbf{S}^{1}\right)$ for some $\alpha>1 / 2$ and satisfies (2), then, for $p \in\left(\frac{1+2 \alpha}{2 \alpha}, 1+2 \alpha\right)$, there exists a $C_{p}>0$ such that

$$
\left\|T_{\Omega, \mathcal{P}}^{*} f\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq C_{p}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

for $f \in L^{p}\left(\mathbb{R}^{d}\right)$. The constant C_{p} may depend on $\operatorname{deg}(\mathcal{P})=\max _{1 \leq j \leq m} \operatorname{deg}\left(P_{j}\right)$, but it is independent of the coefficients of the polynomials P_{1}, \ldots, P_{d}.

One may construct a proof for Theorem 4 by using the arguments in Section 3, [4] and [6] (see also [3] and [7]). We omit the details.

References

[1] A. P. Calderón and A. Zygmund, On singular integrals. Amer. J. Math. Soc. 78(1956), 289-309.
[2] W. C. Connett, Singular integrals near L^{1}. Proc. Sympos. Pure Math. of the Amer. Math. Soc., (eds., S. Wainger and G. Weiss), 35(1979), 163-165.
[3] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 84(1986), 541-561.
[4] D. Fan, K. Guo and Y. Pan, A note on a rough singular integral operator. Math. Inequal. Appl. 2(1999), 73-81.
[5] $\longrightarrow L^{P}$ estimates for singular integrals associated to homogeneous surfaces. J. Reine Angew. Math. 542(2002), 1-22.
[6] D. Fan and Y. Pan, Singular integral operators with rough kernels supported by subvarieties. Amer. J. Math. 119(1997), 799-839.
[7] L. Grafakos and A. Stefanov, L^{p} bounds for singular integrals and maximal singular integrals with rough kernel. Indiana Univ. Math. J. 47(1998), 455-469.
[8] W. Kim, S. Wainger, J. Wright and S. Ziesler, Singular integrals and maximal functions associated to surfaces of revolution. Bull. London Math. Soc. 28(1996), 291-296.
[9] F. Ricci and G. Weiss, A characterization of $H^{1}\left(\Sigma_{n-1}\right)$. Proc. Sympos. Pure Math. of the Amer. Math. Soc., (eds., S. Wainger and G. Weiss), 35(1979), 289-294.
[10] E. M. Stein, Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, 1993.
[11] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature. Bull. Amer. Math. Soc. 84(1978), 1239-1295.

Department of Mathematics
Yarmouk University
Irbid
Jordan
e-mail: alsalman@yu.edu.jo

Department of Mathematics
University of Pittsburgh
Pittsburgh, Pennsylvania 15260
USA
e-mail: yibiao@pitt.edu

[^0]: Received by the editors January 31, 2001.
 AMS subject classification: 42B20.
 (C)Canadian Mathematical Society 2004.

