Canad. Math. Bull. Vol. 47 (1), 2004 pp. 3-11

Singular Integrals With Rough Kernels

Ahmad Al-Salman and Yibiao Pan

Abstract. In this paper we establish the L^p boundedness of a class of singular integrals with rough kernels associated to polynomial mappings.

1 Introduction

Let $n \ge 2$ and \mathbb{R}^n be the *n*-dimensional Euclidean space. Let \mathbf{S}^{n-1} denote the unit sphere in \mathbb{R}^n equipped with the induced Lebesgue measure $d\sigma$. Consider the Calderón-Zygmund singular integral operator

(1)
$$(T_{\Omega}f)(x) = \text{p.v.} \int_{\mathbb{R}^n} f(x-y) \frac{\Omega(y)}{|y|^n} \, dy,$$

where Ω is a homogeneous function of degree zero and satisfies $\Omega \in L^1(\mathbf{S}^{n-1})$ and

(2)
$$\int_{\mathbf{S}^{n-1}} \Omega(y) \, d\sigma(y) = 0.$$

Since the publication of the fundamental papers of Calderón and Zygmund, the operators T_{Ω} have been studied by many authors. Calderón and Zygmund showed that $\Omega \in L \log^+ L(\mathbf{S}^{n-1})$ is essentially the weakest possible size condition on Ω for the L^p boundedness of T_{Ω} to hold ([1]). Subsequently, it was proved by Connet ([2]) and Ricci-Weiss ([9]) independently that T_{Ω} is bounded on L^p for every Ω in the Hardy space $H^1(\mathbf{S}^{n-1})$ (which contains $L \log^+ L(\mathbf{S}^{n-1})$ as a proper subspace) and $p \in (1, \infty)$.

In a more recent paper, Grafakos and Stefanov introduced the following condition:

(3)
$$\sup_{\xi \in \mathbf{S}^{n-1}} \int_{\mathbf{S}^{n-1}} |\Omega(y)| \left(\log \frac{1}{|\langle \xi, y \rangle|} \right)^{1+\alpha} d\sigma(y) < \infty,$$

and showed that it implies the L^p boundedness of T_{Ω} for p in a range dependent on the positive exponent α . For $\alpha > 0$ let $F_{\alpha}(\mathbf{S}^{n-1})$ denote the space of all integrable functions Ω on \mathbf{S}^{n-1} which satisfy (3).

Theorem 1 ([7]) Let $\Omega \in F_{\alpha}(\mathbf{S}^{n-1})$ and satisfy (2). Then T_{Ω} extends to a bounded operator from $L^{p}(\mathbb{R}^{n})$ into itself for $p \in (\frac{2+\alpha}{1+\alpha}, 2+\alpha)$.

Received by the editors January 31, 2001.

AMS subject classification: 42B20.

[©]Canadian Mathematical Society 2004.

The range for *p* was later improved to $(\frac{2+2\alpha}{1+2\alpha}, 2+2\alpha)$ in [4]. It should also be noted that Grafakos and Stefanov showed that

$$\bigcap_{\alpha>0} F_{\alpha}(\mathbf{S}^{n-1}) \not\subset H^{1}(\mathbf{S}^{n-1}) \not\subset \bigcup_{\alpha>0} F_{\alpha}(\mathbf{S}^{n-1}).$$

For details, see [7].

The main purpose of this paper is to investigate the L^p boundedness of singular integrals along subvarieties with kernels satisfying conditions similar to (3). More specifically, let $\mathcal{P} = (P_1, \ldots, P_d)$, where P_j is a real-valued polynomial in \mathbb{R}^n for $j = 1, \ldots, d$. Define the operator $T_{\Omega,\mathcal{P}}$ in \mathbb{R}^d by

(4)
$$(T_{\Omega,\mathcal{P}}f)(x) = \text{p.v.} \int_{\mathbb{R}^n} f\left(x - \mathcal{P}(y)\right) \frac{\Omega(y)}{|y|^n} \, dy,$$

where $x \in \mathbb{R}^d$. Clearly, when d = n and $\mathcal{P}(y) = y$, one obtains $T_{\Omega,\mathcal{P}} = T_\Omega$. For general polynomial mappings \mathcal{P} , the L^p boundedness was first established for $\Omega \in C^1(\mathbf{S}^{n-1})$ as the model case for singular Radon transforms ([10]), and more recently for $\Omega \in H^1(\mathbf{S}^{n-1})$ (see [6]).

In order to state our main results, we let $\mathcal{A}(n, m)$ denote the set of polynomials on \mathbb{R}^n which have real coefficients and degrees not exceeding *m*, and let V(n, m) denote the collection of polynomials in $\mathcal{A}(n, m)$ which are homogeneous of degree *m*.

For $P(y) = \sum_{|\beta| \le m}^{n} a_{\beta} y^{\beta}$ we set $||P|| = (\sum_{|\beta| \le m} |a_{\beta}|^2)^{1/2}$.

Definition Let $n \ge 2$, $m \in \mathbb{N}$ and $\alpha > 0$. An integrable function Ω on \mathbf{S}^{n-1} is said to be in the space $F(n, m, \alpha)$ if

(5)
$$\sup_{P \in V(n,m), \|P\|=1} \int_{\mathbf{S}^{n-1}} |\Omega(y)| \left(\log \frac{1}{|P(y)|}\right)^{1+\alpha} d\sigma(y) < \infty.$$

Clearly $F(n, 1, \alpha) = F_{\alpha}(\mathbf{S}^{n-1})$. We have the following:

Theorem 2 Let $n \ge 2$, $m, d \in \mathbb{N}$ and $\mathcal{P} = (P_1, \ldots, P_d) \in (\mathcal{A}(n, m))^d$. Let Ω satisfy (2) and $\Omega \in \bigcap_{s=1}^m F(n, s, \alpha)$ for some $\alpha > 0$. Then the operator $T_{\Omega, \mathcal{P}}$ is bounded on $L^p(\mathbb{R}^d)$ for $p \in (\frac{2+2\alpha}{1+2\alpha}, 2+2\alpha)$. Moreover, the bound for the operator norm $||T_{\Omega, \mathcal{P}}||_{p,p}$ is independent of the coefficients of the polynomials $\{P_i\}$.

For n = 2 we shall show that (see Lemma 3.2)

$$\bigcap_{m=1}^{\infty} F(2,m,\alpha) = F_{\alpha}(\mathbf{S}^1),$$

which leads to the following:

Corollary 3 Let $d \in \mathbb{N}$ and $\mathcal{P} = (P_1, \ldots, P_d)$ where $P_j \colon \mathbb{R}^2 \to \mathbb{R}$ is a polynomial for $1 \leq j \leq d$. If $\Omega \in F_{\alpha}(\mathbf{S}^1)$ for some $\alpha > 0$ and satisfies (2), then, for $p \in (\frac{2+2\alpha}{1+2\alpha}, 2+2\alpha)$, there exists a $C_p > 0$ such that

$$\|T_{\Omega,\mathcal{P}}f\|_{L^p(\mathbb{R}^d)} \le C_p \|f\|_{L^p(\mathbb{R}^d)}$$

for $f \in L^p(\mathbb{R}^d)$. The constant C_p may depend on $\deg(\mathcal{P}) = \max_{1 \le j \le m} \deg(P_j)$, but it is independent of the coefficients of the polynomials P_1, \ldots, P_d .

Singular Integrals With Rough Kernels

2 Some Lemmas

Lemma 2.1 Let $d, m \in \mathbb{N}$, $\alpha > 0$, and $L: \mathbb{R}^d \to \mathbb{R}^m$ be a linear transformation. Let $\{a_k\}_{k\in\mathbb{Z}}$ be a sequence of positive numbers satisfying $\inf_{k\in\mathbb{Z}}(a_{k+1}/a_k) = a > 1$, $\{\sigma_k\}_{k\in\mathbb{Z}}$ be a sequence of uniformly bounded measures on \mathbb{R}^d and set $Tf = \sum_{k \in \mathbb{Z}} \sigma_k * f$, initially for $f \in S(\mathbb{R}^d)$. Suppose that

- (i) $|\hat{\sigma}_k(\xi)| \leq C \min\{a_{k+1}|L\xi|, [\log^+(a_k|L\xi|)]^{-(1+\alpha)}\}$ holds for $\xi \in \mathbb{R}^d$ and $k \in \mathbb{Z}$; (ii) $\|(\sum_{k \in \mathbb{Z}} |\sigma_k * g_k|^2)^{1/2}\|_q \leq A_q \|(\sum_{k \in \mathbb{Z}} |\sigma_k * g_k|^2)^{1/2}\|_q$ holds for arbitrary functions $\{g_k\}_{k\in\mathbb{Z}}$ on \mathbb{R}^d and $1 < q < \infty$.

Then T extends to a bounded operator from $L^p(\mathbb{R}^d)$ into itself for $p \in (\frac{2+2\alpha}{1+2\alpha}, 2+2\alpha)$. Moreover, the bound on $||T||_{p,p}$ is independent of L.

Proof We shall combine the method of Duoandikoetxea and Rubio de Francia ([3]) with ideas from [4, 6, 7]. By an argument in [6], we may assume that $m \leq d$ and $L\xi = (\xi_1, \dots, \xi_m) = \xi' \text{ for } \xi = (\xi_1, \dots, \xi_d) = (\xi', \xi'') \in \mathbb{R}^d. \text{ Choose } C^{\infty} \text{ functions}$ $\{\psi_j\}_{j \in \mathbb{Z}} \text{ on } \mathbb{R} \text{ such that } \operatorname{supp}(\psi_j) \subseteq [a_{j+1}^{-1}, a_{j-1}^{-1}], |\psi_j^{(s)}(t)| \leq Ct^{-s}, \text{ and}$

$$\sum_{j\in\mathbb{Z}} [\psi_j(t)]^2 = 1$$

for t > 0, $s \ge 0$. Define the operator S_i by

$$\widehat{S_jf}(\xi) = \psi_j(|\xi'|)\hat{f}(\xi)$$

for $j \in \mathbb{Z}$ and set

$$T_j f = \sum_{k \in \mathbb{Z}} S_{j+k}(\sigma_k * S_{j+k} f).$$

Thus we have

(6)
$$Tf = \sum_{j \in \mathbb{Z}} T_j f$$

It follows from Littlewood-Paley theory and (ii) that

$$||T_j f||_q \le C_q ||f||_q$$

holds for $1 < q < \infty$, $f \in L^q(\mathbb{R}^d)$ and $j \in \mathbb{Z}$ with C_q independent of j. Let $\Gamma_j = \{\xi \in \mathbb{R}^d : a_{j+1}^{-1} \le |\xi'| < a_{j-1}^{-1}\}$ and $\chi_j = \chi_{\Gamma_j}$. By Plancherel's Theorem,

(8)
$$||T_j f||_2^2 \le C \int_{\mathbb{R}^d} |\hat{f}(\xi)|^2 \Big[\sum_{k \in \mathbb{Z}} |\hat{\sigma}_k(\xi)|^2 \chi_{j+k}(\xi) \Big] d\xi.$$

For j > 1 and $k \in \mathbb{Z}$,

https://doi.org/10.4153/CMB-2004-001-8 Published online by Cambridge University Press

(9)
$$|\hat{\sigma}_k(\xi)|^2 \chi_{j+k}(\xi) \le C \left(\frac{a_{k+1}}{a_{j+k-1}}\right)^2 \le C a^{-2j+4}.$$

On the other hand, when j < -1,

(10)
$$|\hat{\sigma}_k(\xi)|^2 \chi_{j+k}(\xi) \le C \Big[\log \Big(\frac{a_{k+1}}{a_{j+k-1}} \Big) \Big]^{-2(1+\alpha)} \le C |j|^{-2(1+\alpha)}$$

holds for $k \in \mathbb{Z}$. By (7)–(10) and the finite overlapping property of $\{\Gamma_{j+k} : k \in \mathbb{Z}\},\$ we obtain

(11)
$$||T_j f||_2 \le C(1+|j|)^{-(1+\alpha)} ||f||_2$$

By interpolating between (7) and (11), for every $p \in (\frac{2+2\alpha}{1+2\alpha}, 2+2\alpha)$, there is a $\theta_p > 1$ such that

(12)
$$||T_j f||_p \le C(1+|j|)^{-\theta_p} ||f||_p$$

holds for $j \in \mathbb{Z}$. The lemma now follows from (6) and (12).

Lemma 2.2 Let $\alpha > 0$, $m, d \in \mathbb{N}$ and $\{\sigma_{s,k} : 0 \le s \le m \text{ and } k \in \mathbb{Z}\}$ be a family of uniformly bounded Borel measures on \mathbb{R}^d with $\sigma_{0,k} = 0$ for every $k \in \mathbb{Z}$. Let $\{\eta_s: 1 \leq s \leq m\} \subset \mathbb{R}^+ \setminus \{1\}, \{l_s: 1 \leq s \leq m\} \subset \mathbb{N}, and L_s: \mathbb{R}^d \to \mathbb{R}^{l_s} be linear$ transformations for $1 \leq s \leq m$. Suppose that

- (i) $|\hat{\sigma}_{s,k}(\xi)| \leq C[\log^+(\eta_s^k|L_s\xi|)]^{-(1+\alpha)}$ for $\xi \in \mathbb{R}^d$, $k \in \mathbb{Z}$ and $1 \leq s \leq m$; (ii) $|\hat{\sigma}_{s,k}(\xi) \hat{\sigma}_{s-1,k}(\xi)| \leq C(\eta_s^k|L_s\xi|)$ for $\xi \in \mathbb{R}^d$, $k \in \mathbb{Z}$ and $1 \leq s \leq m$;

(iii) For every $q \in (1, \infty)$ there exists an $A_q > 0$ such that

(13)
$$\left\|\sup_{k\in\mathbb{Z}}(|\sigma_{s,k}|*|f|)\right\|_{q} \le A_{q}\|f\|_{q}$$

for all $f \in L^q(\mathbb{R}^d)$ and $1 \leq s \leq m$.

Then for $p \in (\frac{2+2\alpha}{1+2\alpha}, 2+2\alpha)$, there exists a $C_p > 0$ such that

(14)
$$\left\|\sum_{k\in\mathbb{Z}}\sigma_{m,k}*f\right\|_{p}\leq C_{p}\|f\|_{p}$$

holds for all $f \in L^p(\mathbb{R}^d)$. Moreover, the constant C_p is independent of the linear transformations $\{L_s : 1 \leq s \leq m\}$.

One may use the arguments in Section 5 of [5] and Lemma 2.1 to obtain a proof of Lemma 2.2. Details are omitted.

3 Proofs of Main Results

Proof of Theorem 2 Let $n \ge 2$, $m, d \in \mathbb{N}$ and $\mathcal{P} = (P_1, \ldots, P_d)$, where

$$P_j(y) = \sum_{|\beta| \le m} a_{j\beta} y^{\beta}$$

for j = 1, ..., d. Let Ω satisfy (2) and $\Omega \in \bigcap_{s=1}^{m} F(n, s, \alpha)$ for some $\alpha > 0$. For $0 \le s \le m$ and $k \in \mathbb{Z}$ we define the measure $\sigma_{s,k}$ on \mathbb{R}^d by

(15)
$$\int_{\mathbb{R}^d} f \, d\sigma_{s,k} = \int_{2^{k-1} \le |y| < 2^k} f\Big(\sum_{|\beta| \le s} a_{1\beta} y^{\beta}, \dots, \sum_{|\beta| \le s} a_{d\beta} y^{\beta}\Big) \frac{\Omega(y)}{|y|^n} \, dy.$$

It follows from (2) that $\sigma_{0,k} = 0$ for all $k \in \mathbb{Z}$ and

(16)
$$T_{\Omega,\mathcal{P}}f = \sum_{k\in\mathbb{Z}}\sigma_{m,k}*f.$$

By Theorem 7.4 in [6], (13) holds for all $f \in L^q(\mathbb{R}^d)$ and $1 \le s \le m$. Let l_s denote the number of multi-indices $\beta = (\beta_1, \ldots, \beta_n)$ satisfying $|\beta| = s$ and define the linear transformation $L_s \colon \mathbb{R}^d \to \mathbb{R}^{l_s}$ by

(17)
$$L_s\xi = \left((L_s\xi)_\beta \right)_{|\beta|=s} = \left(\sum_{j=1}^d a_{j\beta}\xi_j \right)_{|\beta|=s}.$$

It follows from (15) and (17) that

$$\begin{aligned} |\hat{\sigma}_{s,k}(\xi) - \hat{\sigma}_{s-1,k}(\xi)| &\leq \int_{2^{k-1} \leq |y| < 2^k} \left| \exp\left[i\left(\sum_{j=1}^d \sum_{|\beta|=s} a_{j\beta}\xi_j y^{\beta}\right)\right] - 1 \left| \frac{|\Omega(y)|}{|y|^n} \, dy \right. \\ &\leq C(2^{sk}|L_s\xi|) \end{aligned}$$

for $1 \le s \le m$ and $k \in \mathbb{Z}$. Write

$$\hat{\sigma}_{s,k}(\xi) = \int_{\mathbf{S}^{n-1}} I_{s,k}(\xi, y) \Omega(y) \, d\sigma(y),$$

where

$$I_{s,k}(\xi, y) = \int_{1/2}^{1} \exp\left[i\left(2^{sk}|L_s\xi|Q_{s\xi}(y)t^s + \text{lower powers in } t\right)\right]t^{-1}dt$$

with

$$Q_{s\xi}(y) = |L_s\xi|^{-1} \sum_{|\beta|=s} (L_s\xi)_{\beta} y^{\beta}.$$

Then by van der Corput's lemma,

(18)
$$|I_{s,k}(\xi, y)| \le C \left[2^{sk} |L_s\xi| |Q_{s\xi}(y)| \right]^{-1/s}$$

By combining (18) with the trivial inequality $|I_{s,k}(\xi, y)| \leq 1$ we obtain that

(19)
$$|I_{s,k}(\xi, y)| \le C \left[\log^+ (2^{sk} |L_s \xi|) \right]^{-(1+\alpha)} \left(s + \alpha + \log \frac{1}{|Q_{s\xi}(y)|} \right)^{1+\alpha}.$$

Since $Q_{s\xi} \in V(n,s)$, $||Q_{s\xi}|| = 1$, and $\Omega \in F(n,s,\alpha)$ for $1 \le s \le m$, by (5) and (19) we obtain

$$\left|\hat{\sigma}_{s,k}(\xi)\right| \le C \left[\log^+(2^{sk}|L_s\xi|)\right]^{-(1+\alpha)}$$

for $1 \le s \le m$, $k \in \mathbb{Z}$ and $\xi \in \mathbb{R}^d$. It follows from Lemma 2.2 and (16) that $T_{\Omega,\mathcal{P}}$ is bounded on $L^p(\mathbb{R}^d)$ for $p \in (\frac{2+2\alpha}{1+2\alpha}, 2+2\alpha)$ with a bound on $||T_{\Omega,\mathcal{P}}||_{p,p}$ independent of the coefficients of the P_j 's. The proof of Theorem 2 is now complete.

We now show that $F_{\alpha}(\mathbf{S}^1) \subseteq F(2, m, \alpha)$ for $m \in \mathbb{N}$.

Lemma 3.1 Let $m \in \mathbb{N}$, $a_0, a_1, \ldots, a_m \in \mathbb{C}$ and $g(z) = a_0 + a_1 z + \cdots + a_m z^m$ for $z \in \mathbb{C}$. If z_1, \ldots, z_l are the roots of g(z) which lie in $\{z \in \mathbb{C} : |z| \le 2\}$, then

$$|g(z)| \ge 6^{-m} (\sup_{|z|=1} |g(z)|) \prod_{s=1}^{l} |z-z_s|$$

holds for $|z| \leq 1$.

Proof Without loss of generality we may assume that $a_m = 1$. Let z_{l+1}, \ldots, z_m denote the roots of g(z) which lie in $\{z \in \mathbb{C} : |z| > 2\}$. By

$$g(z)=\prod_{s=1}^m(z-z_s),$$

we have

$$|a_j| \leq \sum_{1 \leq k_1 < \dots < k_{m-j} \leq m} |z_{k_1} \cdots z_{k_{m-j}}| \leq \frac{(2^{m-j} m!)|z_{l+1}| \cdots |z_m|}{j! (m-j)!}$$

for $j = 0, 1, \ldots, m$, which implies that

$$\prod_{s=l+1}^{m} |z_{s}| \geq 3^{-m} \Big(\sum_{j=0}^{m} |a_{j}| \Big) \,.$$

Thus, for $|z| \leq 1$,

$$\begin{split} |g(z)| &\geq \Big(\prod_{s=1}^l |z-z_s|\Big) \left(\prod_{s=l+1}^m \frac{|z_s|}{2}\right) \geq 6^{-m} \Big(\sum_{j=0}^m |a_j|\Big) \left(\prod_{s=1}^l |z-z_s|\right) \\ &\geq 6^{-m} \Big(\sup_{|z|=1} |g(z)|\Big) \left(\prod_{s=1}^l |z-z_s|\Big). \end{split}$$

Lemma 3.1 is proved.

Corollary 3 follows from Theorem 2 and the following lemma:

Lemma 3.2 $\bigcap_{m=1}^{\infty} F(2, m, \alpha) = F_{\alpha}(\mathbf{S}^{1}).$

Singular Integrals With Rough Kernels

Proof It suffices to show that $F_{\alpha}(S^1) \subseteq F(2, m, \alpha)$ for $m \in \mathbb{N}$. Let $\Omega \in F_{\alpha}(S^1)$. Then it follows from [7] that

(20)
$$\sup_{\zeta \in \mathbf{S}^1} \int_{\mathbf{S}^1} |\Omega(y)| \left(\log^+ \frac{1}{|y - \zeta|} \right)^{1+\alpha} d\sigma(y) = C_{\Omega} < \infty.$$

For a fixed $m \in \mathbb{N}$, there exists a $\lambda_m > 0$ such that

$$\sup_{y\in\mathbf{S}^1}|P(y)|\geq\lambda_m\|P\|$$

holds for every $P \in V(2, m)$.

Let

$$P(y) = P(y_1, y_2) = \sum_{j+k=m} a_{jk} y_1^j y_2^k \in V(2, m)$$

and ||P|| = 1. Define $g = g_P$ on \mathbb{C} by

$$g(z) = 2^{-m} \sum_{j+k=m} (-i)^k a_{jk} (z^2 + 1)^j (z^2 - 1)^k.$$

Then $|P(y_1, y_2)| = |g(y_1 + y_2 i)|$ for $(y_1, y_2) \in \mathbf{S}^1$. Let z_1, \ldots, z_l denote the roots of g(z) in $\{0 < |z| \le 2\}$. By Lemma 3.1, for $y = (y_1, y_2) \in \mathbf{S}^1$,

$$\begin{aligned} |P(y)| &\geq 6^{-2m} \lambda_m \prod_{s=1}^l |(y_1 + y_2 i) - z_s| \\ &\geq (12)^{-2m} \lambda_m \prod_{s=1}^l \left| (y_1 + y_2 i) - \frac{z_s}{|z_s|} \right| \end{aligned}$$

Thus, by (20),

$$\int_{\mathbf{S}^1} |\Omega(y)| \left(\log \frac{1}{|P(y)|}\right)^{1+\alpha} d\sigma(y) \le C(\|\Omega\|_{L^1(\mathbf{S}^1)} + C_{\Omega}),$$

which implies that $F_{\alpha}(\mathbf{S}^1) \subseteq F(2, m, \alpha)$ for $m \in \mathbb{N}$. Lemma 3.2 is proved.

There is no analogue of Lemma 3.1 when $n \ge 3$. We shall illustrate this with the following example for n = 3:

Example For $y = (y_1, y_2, y_3) \in S^2$, let

 $\Omega(y) =$

$$\frac{y_3\chi_{[\sqrt{2}/2,\sqrt{3}/2]}(|y_3|)}{|y_3| |y_1^2 + y_2^2 - y_3^2| \log(100|y_1^2 + y_2^2 - y_3^2|^{-1}) \{\log[\log(100|y_1^2 + y_2^2 - y_3^2|^{-1})]\}^2}$$

Clearly

$$\int_{\mathbf{S}^2} \Omega(y) \, d\sigma(y) = 0.$$

For $\alpha > 0, \varphi \in [\frac{\pi}{6}, \frac{\pi}{4}] \cup [\frac{3\pi}{4}, \frac{5\pi}{6}] = E$, and $\xi \in \mathbf{S}^2$, let
$$J_{\alpha}(\varphi, \xi) = \int_0^{2\pi} \left(\log \frac{1}{|\xi_1 \sin \varphi \cos \theta + \xi_2 \sin \varphi \sin \theta + \xi_3 \cos \varphi|} \right)^{\alpha+1} d\theta.$$

Then there exists a C > 0 such that

$$|J_{\alpha}(\varphi,\xi)| \le C$$

for $\alpha > 0, \xi \in \mathbf{S}^2$ and $\varphi \in E$. Thus

$$\begin{split} \int_{\mathbf{S}^2} |\Omega(y)| \left(\log \frac{1}{|\langle \xi, y \rangle|}\right)^{1+\alpha} d\sigma(y) \\ &\leq \int_E \frac{(\sin \varphi) J_\alpha(\varphi, \xi) \, d\varphi}{|\cos 2\varphi| (\log |\frac{100}{\cos 2\varphi}|) [\log(\log |\frac{100}{\cos 2\varphi}|)]^2} < \infty \end{split}$$

for $\alpha > 0$ and $\xi \in \mathbf{S}^2$. Thus $\Omega \in F_{\alpha}(\mathbf{S}^2)$ for every $\alpha > 0$. On the other hand, if we take $P(y) = (y_1^2 + y_2^2 - y_3^2)/\sqrt{3} \in V(3, 2)$, then

$$\int_{\mathbf{S}^2} |\Omega(y)| \left(\log \frac{1}{|P(y)|}\right)^{1+\alpha} d\sigma(y) = \infty$$

for $\alpha > 0$, which implies that $\Omega \notin F(3, 2, \alpha)$ for any $\alpha > 0$.

4 Additional Results

Let Ω and \mathcal{P} be given as in Section 1. Define the maximal truncated singular integral operator $T^*_{\Omega,\mathcal{P}}$ by

(21)
$$(T^*_{\Omega,\mathcal{P}}f)(x) = \sup_{\varepsilon > 0} \left| \int_{|y| > \varepsilon} f\left(x - \mathcal{P}(y)\right) \frac{\Omega(y)}{|y|^n} \, dy \right|.$$

We have the following results:

Theorem 4 Let $n \ge 2$, $m, d \in \mathbb{N}$ and $\mathfrak{P} = (P_1, \ldots, P_d) \in (\mathcal{A}(n, m))^d$. Let Ω satisfy (2) and $\Omega \in \bigcap_{s=1}^m F(n, s, \alpha)$ for some $\alpha > 1/2$. Then the operator $T^*_{\Omega, \mathcal{P}}$ is bounded on $L^p(\mathbb{R}^d)$ for $p \in (\frac{1+2\alpha}{2\alpha}, 1+2\alpha)$. Moreover, the bound for the operator norm $||T^*_{\Omega, \mathcal{P}}||_{p, p}$ is independent of the coefficients of the polynomials $\{P_j\}$.

Corollary 5 Let $d \in \mathbb{N}$, $\mathcal{P} = (P_1, \ldots, P_d)$ where $P_j \colon \mathbb{R}^2 \to \mathbb{R}$ is a polynomial for $1 \leq j \leq d$. If $\Omega \in F_{\alpha}(\mathbf{S}^1)$ for some $\alpha > 1/2$ and satisfies (2), then, for $p \in (\frac{1+2\alpha}{2\alpha}, 1+2\alpha)$, there exists a $C_p > 0$ such that

$$\|T_{\Omega,\mathcal{P}}^*f\|_{L^p(\mathbb{R}^d)} \le C_p \|f\|_{L^p(\mathbb{R}^d)}$$

for $f \in L^p(\mathbb{R}^d)$. The constant C_p may depend on $\deg(\mathcal{P}) = \max_{1 \le j \le m} \deg(P_j)$, but it is independent of the coefficients of the polynomials P_1, \ldots, P_d .

10

One may construct a proof for Theorem 4 by using the arguments in Section 3, [4] and [6] (see also [3] and [7]). We omit the details.

References

- [1] A. P. Calderón and A. Zygmund, On singular integrals. Amer. J. Math. Soc. 78(1956), 289–309.
- W. C. Connett, *Singular integrals near L¹*. Proc. Sympos. Pure Math. of the Amer. Math. Soc., (eds., S. Wainger and G. Weiss), **35**(1979), 163–165.
- [3] J. Duoandikoetxea and J. L. Rubio de Francia, *Maximal and singular integral operators via Fourier transform estimates*. Invent. Math. **84**(1986), 541–561.
- [4] D. Fan, K. Guo and Y. Pan, A note on a rough singular integral operator. Math. Inequal. Appl. 2(1999), 73–81.
- [5] $\underline{\qquad}, L^P$ estimates for singular integrals associated to homogeneous surfaces. J. Reine Angew. Math. **542**(2002), 1–22.
- [6] D. Fan and Y. Pan, Singular integral operators with rough kernels supported by subvarieties. Amer. J. Math. 119(1997), 799–839.
- [7] L. Grafakos and A. Stefanov, L^p bounds for singular integrals and maximal singular integrals with rough kernel. Indiana Univ. Math. J. 47(1998), 455–469.
- [8] W. Kim, S. Wainger, J. Wright and S. Ziesler, Singular integrals and maximal functions associated to surfaces of revolution. Bull. London Math. Soc. 28(1996), 291–296.
- [9] F. Ricci and G. Weiss, A characterization of H¹(Σ_{n-1}). Proc. Sympos. Pure Math. of the Amer. Math. Soc., (eds., S. Wainger and G. Weiss), 35(1979), 289–294.
- [10] E. M. Stein, Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, 1993.
- [11] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature. Bull. Amer. Math. Soc. 84(1978), 1239–1295.

Department of Mathematics Yarmouk University Irbid Jordan e-mail: alsalman@yu.edu.jo Department of Mathematics University of Pittsburgh Pittsburgh, Pennsylvania 15260 USA e-mail: yibiao@pitt.edu