Radiocarbon, Vol 00, Nr 00, 2023, p 1-12

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022

© The Author(s), 2023. Published by Cambridge University Press on behalf of University of Arizona. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

CENTENNIAL TO MILLENNIAL-SCALE FLUCTUATIONS OF THE LAKE SUIGETSU ATMOSPHERIC ¹⁴C RECORD REPRESENT AUTHENTIC ¹⁴C FEATURES OVER LAST GLACIAL-TO-DEGLACIAL TIMES

Michael Sarnthein¹*^(D) • Pieter M Grootes²^(D) • Manfred Mudelsee³^(D)

¹Institute of Geosciences, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany ²Institute of Ecosystem Research, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany ³Climate Risk Analysis, Kreuzstrasse 27, Heckenbeck, 37581 Bad Gandersheim, Germany

ABSTRACT. Short-term fluctuations in atmospheric radiocarbon (¹⁴C) concentration mark the tree-ring record for the last ~15 kyr. Terrestrial macrofossils from sediment cores of Lake Suigetsu, Japan, extend this record of fluctuations back to >35 cal ka BP. Their significance, however, is under debate since the signal-to-noise ratio of the Suigetsu record is low and progressively decreases with increasing age. Coherent semi-millennial-scale structures of the Suigetsu ¹⁴C record have nevertheless been identified by three different techniques, namely visual inspection, analyses of the first derivative of ¹⁴C vs. calendar age, and Bayesian spline inflections of ¹⁴C concentration vs. calendar age, and hence appear objectively real. These ¹⁴C fluctuations correlate closely with those of the tree-ring-based ¹⁴C master record ~10–14 cal ka. Thus, Suigetsu fine structures attain global significance and may properly reflect atmospheric ¹⁴C variability back to ~35 cal ka. Carbonate-based ¹⁴C records from speleothems and ocean sediments are far smoother and form, together with Suigetsu and other data, the backbone of the IntCal20 record >14 cal ka that largely lacks the Suigetsu fine structure. ¹⁴C esignal amplitudes over time, so Holocene-style ¹⁴C signals of solar modulation disappear in the noise beyond ~10 cal ka. The remaining older ¹⁴C fine structures had larger forcings, most likely linked to climate and carbon cycle, especially ocean-atmosphere CO₂ exchange, and thus contain valuable information about these factors. They may also provide global stratigraphic tie points to correlate ¹⁴C records of oceanic plankton sediments and climate signals independent of problems with local ¹⁴C reservoir effects.

KEYWORDS: fluctuations in atmospheric radiocarbon record 10–30 cal ka, fluctuations in tree-ring-based radiocarbon record, origin of pre-Holocene atmospheric radiocarbon fluctuations, Suigetsu atmospheric radiocarbon record.

INTRODUCTION

For the conversion of radiocarbon $({}^{14}C)$ ages of last glacial-to-early-deglacial times into calendar age equivalents we are faced with the problem of finding two differently focused, in part intimately interrelated empirical data sets that compare ${}^{14}C$ years with paired calendar years as outlined further below.

The IntCal20 calibration curve with its 1 σ standard deviation predictive envelope provides the best-possible conversion of atmosphere-related ¹⁴C ages to calendar age equivalents back to 55 cal. ka BP that is presently available. Back to ~14 or ~15 cal ka BP, it relies on the tree ring-based "master records" of atmospheric ¹⁴C concentration (Reimer et al. 2020). Prior to ~15 cal ka BP and the continuous tree-ring record, IntCal20 uses a Bayesian spline to integrate evidence from a broad mixture of different ¹⁴C records (Reimer et al. 2020). On the one hand, the IntCal20 (international consensus) calibration curve thus incorporates atmospheric ¹⁴C ages of (short) floating tree-ring records and lacustrine sediment records based on carefully picked plant macrofossils for the record of Lake Suigetsu (Bronk Ramsey et al. 2020).

On the other hand, IntCal20 is strongly controlled by many ¹⁴C records of marine sediment piles (hardly laminated), corals, and speleothem sections. Several carbonate-based records have

^{*}Corresponding author. Email: michael.sarnthein@ifg.uni-kiel.de

2 M Sarnthein et al.

the great advantage of paired U/Th age control (e.g., those from Hulu Cave; Cheng et al. 2018), but widely suffer from, in part little known, variable short-term ¹⁴C offsets either from the coeval atmospheric concentration due to variable marine reservoir ages or from changes in the soil reservoir effect of cave deposits. Those variables are only rarely constrained by multiple precise data series (Wang et al. 2022). The carbonate-based indirect atmospheric ¹⁴C records show less fine structure than the Suigetsu record.

Problems to refine and correlate the outlined different time series were overcome by new statistical analyses, using a Bayesian spline procedure that also incorporates calendar age uncertainty and an additive error term on the ¹⁴C determinations to provide a statistically robust calibration curve (with uncertainties no greater than on previous iterations). As a result, most fine-scale fluctuations in the relationship between ¹⁴C concentration and cal. age estimates are smoothed out and/or treated as "noise" in IntCal20 beyond the range of tree-ring calibration (Reimer et al. 2020).

Prior to ~15 cal ka BP, the Suigetsu ¹⁴C record, although a component of IntCal20, forms the only direct and quasi-continuous record of atmospheric ¹⁴C concentrations free of any potential inherent variations of reservoir and dead-carbon age back to >35 cal ka BP (a limit chosen for practical use in this paper). Originally optical varve counts of Suigetsu sediment sections had been considered as a valuable tool to generate an independent line of evidence of absolute age control, a great perspective (Schlolaut et al. 2018). This approach was proven false by further independent age information outlined below.

Sections between 17.285 and 40.408 m core depth with weak-and-thin or no lamination resulted in different calendar ages for varve counts by microscopy and μ XRF (micro-X-Ray fluorescence) and necessitated a varve interpolation program to derive a time scale down to 40 m (Schlolaut et al. 2018). Sarnthein et al. (2020) tested the two varve timescales using as test case the age of the lower end of ¹⁴C plateau no. 2b, the oldest ¹⁴C structure and tie point that can be constrained by μ XRF-based varve counts (Marshall et al. 2012). In contrast to an age of 16.4 cal ka BP proposed by optical varve counts (Schlolaut et al. 2018), the μ XRF-based counts reveal an age of ~16.9 cal ka BP. This value matches directly a third, independent age estimate, the U/Th model-based Suigetsu timescale with an age estimate of 16.94 cal ka BP (Bronk Ramsey et al. 2020); Sarnthein et al. 2020; Figure 3) clearly support the use of the latter ages for the Suigetsu record as "best possible" approximation.

In summary, we followed Bronk Ramsey et al. (2020) and finally replaced the ages based on optical varve counts by the updated U/Th-based model ages deduced from a complex correlation scheme to U/Th-based ages of the Hulu speleothem record (Bronk Ramsey et al. 2020; ages updated by dataset of Cheng et al. 2018).

Different from the widely smoothed IntCal20 curve, the Suigetsu record of atmospheric ¹⁴C concentrations ~10 to ~35 cal ka BP appears to display a whole suite of fairly distinct centennial-to-millennial-scale fluctuations. Their quality, authenticity, and origin are the topic of this study that mainly re-evaluates data sets recently published (Bronk Ramsey et al. 2020). If confirmed, these fluctuations, at least the ¹⁴C plateau boundaries, will provide a suite of atmospheric, thus global stratigraphic tie points to correlate glacial-to-deglacial records of changes in climate and ocean. In particular, the age tie points provided by these ¹⁴C structures will reduce the problem of properly assigning cal. age estimates by interpolation over long ¹⁴C plateau periods with varying climate and sedimentation conditions down to the scale of a ¹⁴C

plateau. During LGM and early deglacial times, however, long, largely horizontal scatter bands of approximately constant ¹⁴C ages may span up to 1200 yr. Also, the suite of structures *per se* may provide tie points for initial age correlation (Sarnthein et al. 2007, 2020).

THE SUIGETSU ATMOSPHERIC ¹⁴C RECORD—DATA BASE

The noisy Suigetsu ¹⁴C record is based on an average macrofossil sample density of ~8 to ~20, rarely 35 ¹⁴C dates per thousand years (kyr), as compared to a modeled time resolution of 200 ¹⁴C ages/cal. kyr for IntCal20 (Reimer et al. 2020). The glacial-to-deglacial Suigetsu record of ¹⁴C ages between 14 and 28 cal ka BP (Figure 1) is not a straight slope line but shows a suite of sections with no or little slope, other sections with a rapid decrease in ¹⁴C age with decreasing calendar age, labeled "plateaus" and "jump" structures. Comparison with ¹⁴C structures displayed by the tree-ring record 10–15 cal ka BP (Figure 3) shows close similarity making the probability that the Suigetsu ¹⁴C structures might result from chance deposition low. The significance of these Suigetsu centennial to millennial-scale features beyond the tree ring record and 15 cal ka BP is under debate since their signal-to-noise ratio in the record is low and, in some cases, does not allow rejection of the null hypothesis assuming a straight line for the correlation of ¹⁴C and cal age data (Bard and Heaton 2021).

Plateaus extend over ~400 to ~1200 yr each, some being less, some more distinct (Sarnthein et al. 2020), where the lower value of (300 to) 400 yr has been dictated by the ¹⁴C sample density of hemipelagic *marine* sediment sections from all over the ocean (in contrast to the much higher sample resolution of the Suigetsu *lacustrine* record discussed here), moreover by the ¹⁴C measuring uncertainty in this age range. The question is in which way this apparent centennial-to-millennial-scale structure of the Suigetsu ¹⁴C record can be identified objectively and reproducibly. In the ¹⁴C age domain the suite of ¹⁴C age fluctuations has been defined by visual inspection of "age plateaus" (rules of definition described in the Text Box 1; Sarnthein et al. 2007) giving a result fully congruent with structures based on the first derivative of the ¹⁴C age-to-calendar age relationship and its 1 σ uncertainty range, obtained by using a running kernel window (Sarnthein et al. 2015).

An independent approach plots the Suigetsu atmospheric ¹⁴C record for the period 14–30 cal ka BP as Δ^{14} C deviations from the standard atmosphere vs. IntCal20 cal age (Figure 2). The curve is here defined by a Bayesian spline (Bronk Ramsey et al. 2020; Bard and Heaton 2021). All in all, periods of gradually decreasing Δ^{14} C values are reflecting 15 atmospheric ¹⁴C age plateaus (blue numbers) and their 1 σ -uncertainty range. In between, (rapid) rises in Δ^{14} C are directly compared with ¹⁴C age "jump" between plateaus. In Figure 2 these inflections in the Bayesian spline directly face the Suigetsu-based plateau and jump structures as derived by visual inspection and by the first derivative of ¹⁴C ages in the time domain, here plotted as dark pink line segments in the Δ^{14} C domain (Supplementary Table 1S). In general, the two presentations agree well especially considering the exaggerated jumps in atmospheric ¹⁴C age over a "horizontal" ¹⁴C scatter band of a plateau-episode. This assumption is needed where insufficient data was available to say, whether very short-term ¹⁴C changes within the plateau may be real.

For the period from 27 to 30 cal ka BP, plateaus numbered 10b and 11 deviate from the Bayesian plot. Here the Suigetsu ¹⁴C data appear to have a problem since ¹⁴C ages, generated by different laboratories, diverge by up to 1000 yr at analytical 1σ uncertainties of ~150 to below 400 yr (Bronk Ramsey et al. 2012). Our plateau definitions tried to bridge the

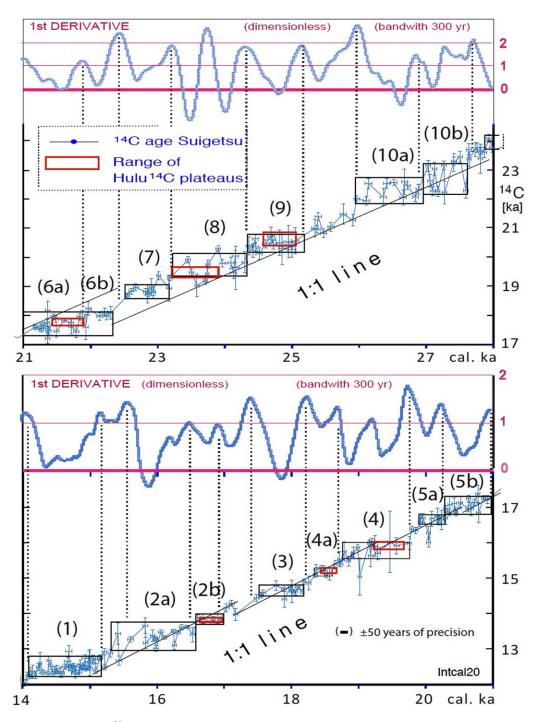


Figure 1 Atmospheric ¹⁴C ages and error bars of Lake Suigetsu plant macrofossils vs. U/Th-based model age of 15–21 (bottom) and 21–27 (top) cal ka BP (blue dots; Sarnthein et al. 2020, modified, using age data of Bronk Ramsey et al. 2020). ¹⁴C plateaus longer than 400 yr (in case of plateau 4a: 250 yr) are outlined by a suite of labeled horizontal boxes that envelop scatter bands of largely constant or slightly rising ¹⁴C ages, separated by "¹⁴C jumps," statistically best defined by maximum spikes in the 1st derivative plot and 1 σ uncertainty range. For rules of plateau definition see Text Box 1.

Box 1 Definition of atmospheric ¹⁴C plateaus derived from tree rings and the Lake Suigetsu sediment section (following Sarnthein et al. 2007, 2015, 2020).

- (1) The term "¹⁴C plateau" is assigned to a set of largely constant atmospheric ¹⁴C ages over a range extending over 250/400 to 1200 consecutive cal yr. This leads to a horizontal, in part slightly oblique scatter band of atmospheric ¹⁴C ages (Figure 1), in the Lake Suigetsu section measured with a time resolution of 8–20, rarely up to 35 ¹⁴C data per 1000 yr.
- (2) ¹⁴C age is assumed constant over the full period of the plateau ("horizontal" plateau) because data resolution is insufficient to define a statistically significant true ¹⁴C slope over the plateau period.
- (3) The upper and lower margin of the plateau (Y-axis) are chosen such that 90% of the ¹⁴C ages are within these boundaries (1.6 σ criterion; in Figure 1 delineated by horizonal lines).
- (4) From 10 to 21 cal. ka, the typical scatter/uncertainty range of an average plateau ¹⁴C age amounts to ±100–250 ¹⁴C yr, at cal ages of >21 cal ka BP, especially >23 cal. ka, the uncertainty range is rising up to ±500 yr due to an increased analytical error.
- (5) Most lower and upper cal age boundaries (X-axis) of an atmospheric ¹⁴C plateau are identified visually by ¹⁴C age jumps, that form tipping points of the ¹⁴C curve, where the ¹⁴C curve is crossing the horizontal border lines assigned to the upper and lower margins of the plateau's uncertainty range, hence is deviating beyond the scatter band of a ¹⁴C plateau.
- (6) The rapid change in ¹⁴C age over cal. age at plateau boundaries is reflected by a distinct maximum of the 1st-derivative of the curve for the ¹⁴C age vs. cal age record. The 1st-derivative thus provides a second, statistical plateau identification.
- (7) The cal. age of most atmospheric plateau boundaries, assigned halfway between the two nearest ¹⁴C ages, can be constrained with a precision of ±50 to ±70 yr on the basis of Suigetsu ¹⁴C ages calibrated by U/Th model ages of Bronk Ramsey (2020).

discrepancy by weighted average values. The Bard and Heaton (2021) Bayesian spline in Figure 2, apparently, treated the discrepancy differently.

Although comparison of Figure 1 and 2 indicates that it is possible to objectively and reproducibly identify a fine structure in the noisy atmospheric ¹⁴C Suigetsu record, the question remains whether this fine structure is local or has wider significance. The answer is found in Figure 3 that presents a further important line of evidence for the reasoning discussed in this study: It shows the high-resolution Suigetsu atmospheric record (Bronk Ramsey et al. 2020) (Figure 3, right Y-axis) together with the highly detailed tree-ring-based ¹⁴C master record (Reimer et al. 2020; Adolphi et al. 2017) (Figure 3, left Y-axis). Atmospheric ¹⁴C-age jumps and plateaus between ~10 and ~15 cal ka BP have been defined by scatter bands of largely constant ¹⁴C ages extending over >400 yr each. Based on visual inspection most Suigetsu structures agree with the analogous, largely coeval ¹⁴C-age structures of the tree-ring-based master record of atmospheric ¹⁴C ages. The fit largely applies to the length of the various plateaus, in some cases also to internal plateau structures. This finding suggests that the clearly paired Suigetsu-based centennial-to-millennial-scale fluctuations in ¹⁴C concentration for the period 10 to ~15 cal ka BP are indeed real and reflect a global atmospheric ¹⁴C signal.

DISCUSSION

In a next step, we tried to corroborate the authenticity of Suigetsu atmospheric ${}^{14}C$ structures by testing our visual match of Suigetsu- and tree ring-/floating tree ring-based ${}^{14}C$ structures

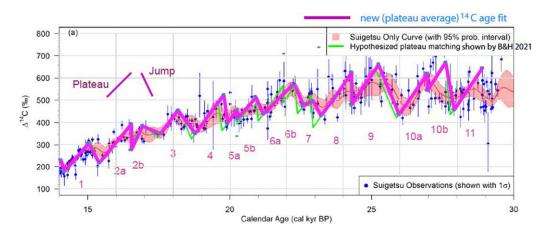


Figure 2 Raw ¹⁴C data of Lake Suigetsu (blue dots), converted into the deviation of atmospheric ¹⁴C concentration from the (modern) standard atmosphere (in $\% \Delta^{14}$ C units), plotted vs. cal. ages of Bronk Ramsey et al. (2020). A Bayesian spline named "Suigetsu only curve" (pink band) (Bard and Heaton 2021, Figure 3a modified) shows periods of gradually decreasing atmospheric Δ^{14} C values, reflecting 15 atmospheric ¹⁴C age plateaus and their uncertainty range as defined and listed by Sarnthein et al. (2020; Table 1). In between, rapidly increasing atmospheric Δ^{14} C values reflect short gaps and/or ¹⁴C age "jumps" between plateaus. Periods where gradually decreasing Δ^{14} C values balance out the rate of ¹⁴C decay provide the horizontal age plateaus, as outlined in the Discussion section. Superimposed are straight line segments in green (Bard and Heaton 2021, called "B&H 2021") and dark pink (modified from Sarnthein et al. 2020; using the revised ages of Bronk Ramsey et al. 2020) that display the atmospheric Δ^{14} C structures as defined both by visual inspection of raw ¹⁴C ages and the 1st derivative technique (Figure 1; Sarnthein et al. 2015). Based on a careful check of the position of plateau boundaries (rules of definition in Text Box 1), we slightly revised three of them previously published (Sarnthein et al. 2020): (i) a slight upward shift of the base of plateau 7, (ii) omission of the boundary between plateaus 6b and 6a, and (iii) a minimal backward shift of the 5a-b plateau boundary by a single age date.

from ~10 to ~15 cal ka BP by means of statistical methods, that is, by calculating the "binned correlation coefficients" (Mudelsee 2014: Section 7.5.1 therein) for both time series (Figures 3 and 4a, b). Indeed, the visual match is well supported by these quantitative analyses of the association between the two time least-squares regression and used to derive short-term trend residuals and binned correlation coefficients both for ¹⁴C records, shown in Figure 4 and Supplement Figure S1.

The "binned correlation coefficient" is the same as the ordinary Pearson's correlation coefficient, however, calculated on the respective averages within time bins of the two time series. The very existence of persistence or "memory" in a time series (which is typical for climate) on a particular grid of time values allows us to infer the correlation with other time series that are observed on a different grid. From the estimated persistence times and the average temporal spacings, we determined an optimal bin width of 100 years (Mudelsee 2014: Eq. 7.48 therein). The calculated binned correlation coefficient between the Suigetsu- and the tree-ring-based values then equals 0.90 with a 95% calibrated Student's *t* confidence interval of [0.86; 0.93], which means a significant correlation that is very high. Thus, the visual match is well supported by these quantitative analyses of the association between the two time series.

Thus, the paired tree ring-based master record of annual changes in atmospheric ¹⁴C concentration provides conclusive evidence that the suite of semi-millennial features of Suigetsu provides insights into a kind of authentic feature of ¹⁴C records that was intrinsic for late deglacial times, a feature with global significance.

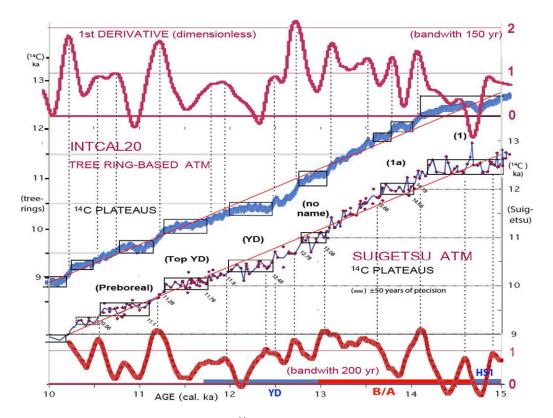


Figure 3 High-resolution record of atmospheric ¹⁴C age jumps and plateaus (i.e., a suite of labeled horizontal boxes that envelop scatter bands of largely constant ¹⁴C ages extending over >400 cal. yr; for definition of plateaus see Text Box 1) in a sediment section of Lake Suigetsu (Figure 2 of Sarnthein et al. 2020) vs. tree ring-based ¹⁴C age jumps and plateaus 10–15 cal ka BP (Reimer et al. 2020; 14.0–14.8 cal. ka BP: suppl. by data of Adolphi et al. 2017). Also, ¹⁴C age jumps and most plateau boundaries are highlighted by maximums in the 1st derivative record of ¹⁴C per cal years and 1 σ uncertainty range (bandwith of 150 yr for tree-ring record; 200 yr for Suigetsu record). Blue line averages paired double and triple ¹⁴C ages of Suigetsu plant macrofossils. Age control points (black, at plateau boundaries, in cal. ka) follow varve counts (Schlolaut et al. 2018) incorporated by U/Th model-based ages of Bronk Ramsey et al. (2012, 2020) on the 2020-time scale. YD = Younger Dryas, B/A = Bølling-Allerød (after Steffenson et al. 2008). Red lines depict long-term trend of tree ring- and Suigetsu-based ¹⁴C ages 10–15 cal ka BP each. The perfectly overlapping trendlines (joint slope of 0.78 ± 0.03 and intercepts of 1009 ± 364 yr for Suigetsu vs. 992 ± 415 yr for tree ring record) are derived from linear ordinary least-squares regression and used to derive short-term trend residuals and binned correlation coefficients both for ¹⁴C records, shown in Figure 4 and Supplement Figure S1.

Necessarily, the significance of the centennial to millennial structure of the Suigetsu atmospheric ¹⁴C record may be extrapolated to the preceding early deglacial and peak glacial time span 15–30 cal ka BP, when major tree ring records are widely absent for further confirmation and ¹⁴C records without much fine structure from carbonate archives have largely dominated the IntCal20 record. Accordingly, Suigetsu terrestrial macrofossils extend—without break—the actual atmospheric ¹⁴C record beyond the range of tree rings from ~15 cal ka BP back to >~35 cal ka BP. The latest results on ¹⁴C variability in floating tree-ring sections older than 14 cal ka BP, presented at the 24th Radiocarbon Conference in Zürich (Friedrich et al. 2022), largely agree with the Suigetsu atmospheric ¹⁴C record.

From 20 to 35 cal ka BP, the global significance of the plateau and jump structures in the Suigetsu ¹⁴C record is supported by the fact that a large portion of these structures can also be

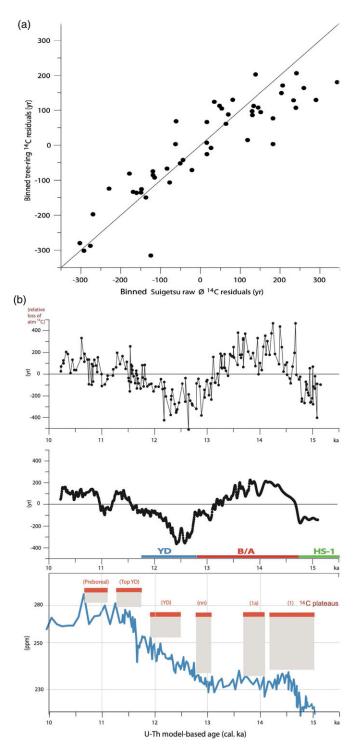


Figure 4 Binned correlation coefficient for the atmospheric 14 C records of Lake Suigetsu and tree-ring-based 14 C record of IntCal20 (Bronk Ramsey et al. 2020; Reimer et al. 2020; methods of binned correlation in Mudelsee 2014). (a) Binned correlation coefficient of Suigetsu- vs. tree-ring-based trend residuals, assuming a bin width of 100 yr. Correlation coefficient is r = 0.90 with 95% confidence interval (0.85; 0.93). (b) Trend residuals (plus zero lines) of Suigetsu- and tree ring-based 14 C ages 10–15 cal ka BP (shown in Figure S1) are compared to the cal. age range of the Younger Dryas (YD), Bølling-Allerød (BA), and Heinrich-1 stadial (HS-1) (following Steffensen et al. 2008), the position and extent of atmospheric 14 C plateaus (*sensu* Sarnthein et al. 2020), and the late deglacial rise in atmospheric pCO₂ at 15–10 cal ka BP (West Antarctic CO₂ record of Marcott et al. 2014), showing that 14 C plateaus are clearly related to a coeval rise in pCO₂.

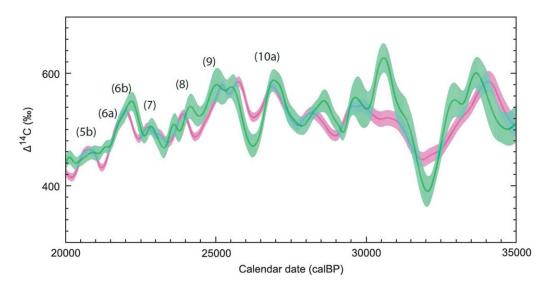


Figure 5 A comparison of Bayesian spline compilations of datasets of Suigetsu (green) and Hulu speleothem, transformed using a MatLab deconvolution algorithm (linear ramp with mean of 420 yr) (magenta) over the period 20–35 cal. ka. Gradually decreasing atmospheric Δ^{14} C values reflect atmospheric 14 C age plateaus and their uncertainty range (black numbers in brackets). Rising Δ^{14} C values reflect atmospheric 14 C age jumps. (Courtesy of Bronk Ramsey et al. 2020.)

seen in a Bayesian spline of analogous Δ^{14} C-based structures in the independent deconvoluted U/Th-dated ¹⁴C record derived from Hulu Cave data (Figure 5; Bronk Ramsey et al. 2020). The Hulu Cave record was admittedly smoothed and is generally interpreted as being subject to a ~460 yr dead-carbon reservoir effect with limited variability. In fact, however, the Hulu speleothem may have (also) been affected by allegedly constant, but fairly unknown variations of the local "reservoir effect of soil organic carbon" in the Hulu speleothem over the time span under discussion (Southon et al. 2012; Noronha et al. 2015; Cheng et al. 2018; Reimer et al. 2020). In view of the joint U/Th basis of age control for both the ¹⁴C records of Suigetsu und Hulu Cave (as presented by Bronk Ramsey et al. 2020), various distinct centennial-scale offsets of some Hulu Cave ¹⁴C features from those of Suigetsu (such as near to 22, 24, 26, and 28.5 cal ka BP) perhaps may reflect short-lasting shifts in the soil-carbon fraction of the Hulu record, now treated as a constant dead carbon fraction of 460 yr (Southon et al. 2012).

Our conclusions on the authenticity of atmospheric ¹⁴C-age structures have important implications for global age correlation of marine and terrestrial sediment records records that concern (i) their dating, (ii) quantification of local differences in ¹⁴C concentration, and (iii) information on carbon cycle and climate interactions. As detailed in Sarnthein et al. (2020), both visual inspection and spikes of the 1st derivative of the Suigetsu atmospheric ¹⁴C record (Figure 1), that are sharp in marking episodes of rapid change, suggest that the cal. ages of the upper and lower plateau boundaries may serve as global age tie points for the age correlation of marine sediment records. The robustness and uncertainty of these structures are best age-calibrated by the data of Bronk Ramsey et al. (2020) at the marked ¹⁴C-age jumps that separate two subsequent ¹⁴C plateaus each, the range of which is marked by enveloping "boxes" in the Suigetsu record of Figures 1 and 3. Accordingly, the uncertainty of cal. age estimates of the beginning and/or end of an atmospheric ¹⁴C plateau hardly exceeds ~50 to ~100 years each, when employing the trends of age estimates listed by Bronk Ramsey et al. (2020). ¹⁴C plateau identification in marine sediment records requires a largely constant marine reservoir age

10 M Sarnthein et al.

(MRA) over the total length of a plateau. Otherwise, the atmospheric ¹⁴C plateaus would not be reflected as a plateau in ocean surface plankton. Also, the average ¹⁴C age of any tree-ringand/or Suigetsu-based ¹⁴C plateau may be compared to that of any coeval plateau properly identified in ocean sediment archives. The difference in ¹⁴C average age estimated for paired, that is, for coeval atmospheric and marine plateaus will serve as robust estimate of local marine reservoir ages.

Finally, a major question concerns the potential origin of the centennial-to-millennial-scale fluctuations of atmospheric ¹⁴C concentration found at Suigetsu, the only purely atmospheric record without any assumptions on secondary effects. ¹⁴C decay reduces the original ¹⁴C-signal amplitude over time so, different from the Holocene, clear ¹⁴C signals of solar modulation with peak-to-peak values of ~3 pMC (percentage Modern Carbon) necessarily disappear below the 2σ level of detection sensitivity in deglacial-to-glacial records. As a result, most of the ¹⁴C structure visible beyond 8–10 cal ka BP originally was connected to larger signals and, most likely, to changes in climate and the ocean-atmosphere CO₂ exchange (first suggested by Stuiver and Braziunas 1993, on the basis of residual Δ^{14} C of the Holocene long-term trend).

The latter hypothesis receives independent support by distinct structures, that is, from two pronounced negative millennial-scale excursions in the record of ¹⁴C-age residuals at 15.2–14.4 and 13.2–11.7 cal. ka (Figure 4b top and Figure S1). They represent a negative deviation of actual ¹⁴C ages from the long-term detrended ¹⁴C-age records 10-15 cal ka BP for the tree ringand Suigetsu-based ¹⁴C records each. The subsequent rise in ¹⁴C-age residuals parallels the very end (and subsequent interstadial) of a pronounced cold climate spell such as the Younger (YD) (12.8–11.7 cal ka BP) and the final phase of Heinrich Stadial 1 (HS1) (~15.1–14.6 cal ka BP). A third increase in ¹⁴C-age residuals, a distinct fast rise in ¹⁴C age, follows a minor negative excursion of ¹⁴C trend residuals, that is centered near 11 cal ka BP and goes along with the Preboreal cold spell.

Near the end of cold stadials, the positive excursion of ¹⁴C-age residuals, that is, a relatively fast increase in ¹⁴C ages and reduced deviation from the long-term average in years (Figure S1) reflects *per se* a transient dilution of atmospheric ¹⁴C by "old" oceanic CO₂ (Figure 4b bottom). In particular, this drop in ¹⁴C has paralleled a major ¹⁴C plateau and/or cluster of ¹⁴C plateaus named "YD" and "1". Most likely, they were linked to short-term deglacial events of enhanced release of "old" CO₂ from the (deep) ocean to the atmosphere reaching 12–13 ppm each (Figure 4b bottom) (Marcott et al. 2014). The CO₂ release may reflect a major change, in part a reversal in ocean Meridional Overturning Circulation (Sarnthein et al. 1994, 2013; Bauska et al. 2021; Yu et al. 2022). If the causal relationships deduced for Figure 4b are extrapolated to earlier times, that is, to the early deglacial and peak glacial ¹⁴C record, they may suggest a series of events marked by a short-term ocean-driven rise in atmospheric CO₂ and corresponding transient, gradually fading out reduction in atmospheric ¹⁴C unrecorded till now. Altogether, these processes may form a mechanism suitable to explain the origin of the suite of ¹⁴C plateaus characteristic of the Suigetsu ¹⁴C record (Figures 1, 2, and 5) (Yu et al. 2022; cf. Vettoretti et al. 2022).

In summary, the Suigetsu ¹⁴C fine structure may contain valuable information on past interactions between climate change, ocean-atmosphere CO_2 exchange and the carbon cycle beyond 15 cal. ka during deglacial and peak glacial times. These centennial-to-millennial-scale signals can also be traced in high-resolution ¹⁴C records of (hemipelagic) ocean plankton sediments (Sarnthein et al. 2020).

CONCLUSIONS AND IMPLICATIONS

Detailed evaluation and tests of the Suigetsu atmospheric ¹⁴C record suggest the following results:

- The centennial-to-millennial-scale features in the noisy Suigetsu ¹⁴C record can be objectively identified. Such structures in the Suigetsu atmospheric ¹⁴C record can be identified by three different techniques, namely visual inspection, first derivative, and Bayesian spline inflections, the results of which largely agree.
- The atmospheric ¹⁴C features of the Suigetsu record are authentic and have global significance because on the basis of "binned correlation coefficients" the fine structures of both the highly detailed global IntCal20 tree ring and the noisier Suigetsu ¹⁴C record ~10–15 cal ka BP are closely coherent.
- Suigetsu ¹⁴C ages extend beyond the reach of tree-ring dates ~15 cal ka BP, without break, the record of atmospheric ¹⁴C oscillations back to >35 cal. ka BP. Between 20 and 35 cal ka BP, they are widely reproduced by structures depicted in the carbonate-based and U/Th dated ¹⁴C record of the Hulu speleothem, though the oscillations may have been smoothed.
- Most likely the origin of semi-millennial-scale ¹⁴C fluctuations was linked to the global carbon cycle, that is, to changes in global climate, ocean meridional overturning circulation, and ocean-atmosphere CO₂ exchange, since ¹⁴C decay has too strongly attenuated the potential forcing of solar modulation of ¹⁴C signals prior to the Holocene.

Once precisely age-calibrated, the suite of features and age tie points in the atmospheric Suigetsu ¹⁴C record have major implications, providing a potential tool and corner stone for the global stratigraphic correlation of analogous ¹⁴C records deduced from shallow-dwelling oceanic plankton in sediment records that follows the ¹⁴C-age signals of the atmosphere.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit https://doi.org/10.1017/RDC. 2023.47

ACKNOWLEDGMENTS

We are grateful to Dr. S. Beil, University of Kiel, for generous computer assistance. We particularly appreciate the highly constructive and careful suggestions of a reviewer in two successive reviews. He was exceptionally aware of a robust reasoning important for the general implications of our manuscript, and its linguistically sound wording.

REFERENCES

- Adolphi F, Muscheler R, Friedrich M, Güttler D, Wacker L, Talamo S, Kromer B. 2017. Radiocarbon calibration uncertainties during the last deglaciation: insights from new floating tree-ring chronologies. Quaternary Science Reviews 170:98–108.
- Bard E, Heaton TJ. 2021. On the tuning of plateaus in atmospheric and oceanic ¹⁴C records to derive calendar chronologies of deep-sea cores and records of ¹⁴C marine reservoir age changes.

Climate of the Past 17:1701–1725. doi: 10.5194/ cp-17-1701-2021

- Bauska TK, Marcott SA, Brook EJ. 2021. Abrupt changes in the global carbon cycle during the last fgacial period. Nature Geoscience 14:91–96.
- Bronk Ramsey C, Staff RA, Bryant CL, Brock F, Kitagawa H, van der Plicht J, Schlolaut G, Marshall MH, Brauer A, Lamb HF, et al. 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science 338:370–374.

12 M Sarnthein et al.

- Bronk Ramsey C, Heaton TJ, Schlolaut G, Staff RA, Bryant CL, Lamb HF, Marshall MH, Nakagawa T. 2020. Reanalysis of the atmospheric radiocarbon calibration record from Lake Suigetsu, Japan. Radiocarbon. doi: 10.1017/RDC.2020.18
- Cheng H, Edwards RL, Southon J, Matsumoto K, Feinberg JM, Sinha A, Zhou W, Li H, Li X, Xu Y, et al. 2018. Atmospheric ¹⁴C/¹²C changes during the last glacial period from Hulu Cave. Science 362:1293–1297.
- Friedrich M. 2022. European glacial tree-ring chronologies—new high-resolution ¹⁴C series. ¹⁴C. 24th Radiocarbon and 10th ¹⁴C & Archaeology international Conference. C04-04.
- Marcott SA, Bauska TK, Buizert C, Steig EJ, Rosen JL, Cuffey KM, Fudge TJ, Severinghaus JP, Ahn J, Kalk ML, et al. 2014. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514:616–619. doi: 10.1038/ nature13799
- Marshall, M, Schlolaut, G, Nakagawa, T, Lamb, H, Brauer, A, Staff, R, Bronk Ramsey, C, Tarasov, P, Gotanda, K, Haraguchi, T, Yokohama, Y, Yonenobu, H, Tada, R, Suigetsu 2006 Project members. 2012. A novel approach to varve counting using mXRF and X-radiography in combination with thin-section microscopy, applied to the Late Glacial chronology from Lake Suigetsu, Japan. Quaternary Geochronology 13:70–80.
- Mudelsee M. 2014. Climate time series analysis: classical statistical and bootstrap methods. 2nd edition. Springer Ed. Cham, Heidelberg, New York, London. doi: 10.1007/978-3-319-04450-7.
- Noronha AL, Johnson KR, Southon JR, Hu C, Ruan J, McCabe-Glynn S. 2015. Radiocarbon evidence for decomposition of aged organic matter in the vadose zone as the main source of speleothem carbon. Quaternary Science Reviews 127:37–47.
- Reimer PJ, Austin WEN, Bard E, Bayliss A, Blackwell PG, Ramsey CB, Butzin M, Cheng H, Edwards RL, Friedrich M, et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725–757. doi: 10.1017/RDC.2020.41
- Sarnthein M, Balmer S, Grootes PM, Mudelsee M. 2015. Planktic and benthic ¹⁴C reservoir ages for three ocean basins, calibrated by a suite of ¹⁴C plateaus in the glacial-to-deglacial Suigetsu atmospheric ¹⁴C record. Radiocarbon 57:129–151.
- Sarnthein M, Grootes PM, Kennett JP, Nadeau M. 2007. ¹⁴C reservoir ages show deglacial changes in

ocean currents and carbon cycle. Geophysical Monograph – American Geophysical Union 173:175–196.

- Sarnthein M, Küssner K, Grootes PM, Ausin B, Eglinton T, Muglia J, Muscheler R, Schlolaut G. 2020. Plateaus and jumps in the atmospheric radiocarbon record – potential origin and value as global age markers for glacial-to-deglacial paleoceanography, a synthesis. Climate of the Past 16:2547–2571. doi: 10.5194/cp-16-2547-2020
- Sarnthein M, Schneider B, Grootes PM. 2013. Peak glacial ¹⁴C ventilation ages suggest major drawdown of carbon into the abyssal ocean. Climate of the Past 9(1):925–965.
- Sarnthein M, Winn K, Jung SJ, Duplessy JC, Labeyrie L, Erlenkeuser H, Ganssen G. 1994. Changes in east Atlantic deep-water circulation over the last 30,000 years: eight time slice reconstructions. Paleoceanography 9(2):209–267.
- Schlolaut G, Staff RA, Marshall MH, Brauer A, Bronk Ramsey C, Lamb HF, Nakagawa T. 2018. Microfacies analysis of the Lake Suigetsu (Japan) sediments from ~50 to ~10 ka BP and an extended and revised varve based chronology. Quaternary Science Reviews 200:351–366.
- Southon J, Noronha AL, Cheng H, Edwards RL, Wang Y. 2012. A high-resolution record of atmospheric ¹⁴C based on Hulu Cave speleothem H82. Quaternary Science Reviews 33:32–41.
- Steffensen JP, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Fischer H, Goto-Azuma K, Hansson M, Johnsen SJ, Jouzel J, et al. 2008. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321:680. doi: 10.1126/science.1157707
- Stuiver M, Braziunas TV. 1993. Modeling atmospheric ¹⁴C influences and ¹⁴C ages of marine samples to 10,000 B.C. Radiocarbon 35:137–189.
- Vettoretti G, Ditlevsen P, Jochum M, Rasmussen SO. 2022. Atmospheric CO₂ control of spontaneous millennial-scale ice age climate oscillations. Nature geoscience 15:300–306.
- Wang Zh, Zhang F, Cao Y. 2022. Linking sedimentary and speleothem isotope proxy records to improve lacustrine and marine ¹⁴C chronologies. Quaternary Science Reviews 282:107444. doi: 10.1016/quascirev2022.107444
- Yu J, Oppo DW, Jin Z, et al. 2022. Millennial and centennial CO2 release from the Southern Ocean during the last deglaciation. Nature Geoscience. doi: 10.1038/s4156-022-00910-9