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NUMERICAL EVIDENCE FOR A CONJECTURAL
GENERALIZATION OF HILBERT'S THEOREM 132

W.BLEY
with an appendix by D. Kusnezow

Abstract

This paper presents an algorithm for computing numerical evidence
for a conjecture whose validity is predicted by the requirement that
the equivariant Tamagawa number conjectures for Tate motives as
formulated by Burns and Flach are compatible with the functional
equation of the ArtinL-series. The algorithm includes methods for
the computation of Fitting ideals and projective lattices over the in-
tegral group ring.

1. Introduction

For any number field., we write @, for its ring of algebraic integers. For each natural
numbern, we let¢, denote a primitive:th root of unity, and we writ&)(¢,,) for thenth
cyclotomic field. Ifn is squarefree, then Hilbert proved (see [16, Theorem 132]) that

Z[GaI(Q(Cn)/Q)] “ln = @Q(Cn)' (1)

Let L/K denote a Galois extension of number fields with gr@upin [3] and §] we
formulated a conjecture that is a wide-ranging generalization of equa)ityn(this paper,

we will deal exclusively with the abelian case (as presente@]i vhere this conjecture
takes the form of an equality between two rank-@i& ]-sublattices ofC[G], namely a
lattice constructed from Galois Gauss sums and a lattice that is related to the choice
a finitely generated projective-sublattice.L of L. If L/K is at most tamely ramified,
then Noether proved tha?; is a projectiveZ[G]-module. In this case, we always take
£ = 0. In general, however, if we allow wild ramification, we are not aware of any
canonical candidate faf, and we use invariants that arise from the étale cohomology of
G,, to compensate for our choice 4.

In [3] and [4] it is shown that our conjecture is a strong refinement of Chinbueg’s
conjecture (see [9]). In another (probably more important) direction, it can be interprete
in terms of functional equation compatability of the ‘equivariant Tamagawa number cor
jectures’ of [6] and [7] for the pairé:%(Spec(L))Z[G]) and(h°(Spec(L))(1) Z[G]).

There is some evidence in favour of the conjecture. It has already been proved in t
case wherd./K is at most tamely ramified (sed,[Corollary 7.7]), or ifK = Q and
L/Qis an abelian extension of odd conductor (see [3, Theorem 4.1] and [4, Theorem 6.1
Concerning wildly ramified (abelian) extensiohgK, K # Q, there is only a very little
evidence. In this paper we will deal with this situation, and we will present an algorithn
that verifies the above-mentioned conjecture (up to the precision of the computation) f
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Hilbert’'s theorem132

certain abelian extensiors/ K . The algorithm has been implemented under PARI-GP [
for extensiond./K of odd prime degree of a real-quadratic fi&d and has been applied
to many examples, so that we can provide new numerical evidence for the validity of tf
conjecture in the wildly ramified relative case. Very recently, M. Breun&jdps used an
adapted version of this implementation, together with interesting new theoretical results,
prove (!) the conjecture for all dihedral extensiongJobf order 6.

The structure of the paper is as follows. In Sectiowe recall the formulation of the
conjecture. In SectioBwe describe our algorithm, and in Sectibwe work out an explicit
example.

2. The conjecture

First we briefly recall the notion of the Grothendieck—Knudsen—Mumford determinan
functor. For more details, the reader is referred to [17], or for a short summary of the releva
facts, to [3, Section 2].

If R isanoetherian commutative ring, we wrigg R) for the category of graded invertible
R-modules. For eactl., o) € Ob(£(R)), one setd.~1 := Homg(L, R) and(L, o)~ :=
(L1, —a). Forafinitely generated projectiemoduleP, we write dek ( P) for the highest
exterior power ofP and we use rk(P) to denote the locally constant function given by the
R-rank of P. One sets

Detg(P) := (detg(P), rkg(P)) € P (R),

and for a bounded compleRk® of finitely generated projectivR-modules, one defines

Detz(P*) == X) Dete(PH) V" € 2(R).
i€Z

A perfect complex oR-modulesis a complex ofR-modules that is quasi-isomorphic to
a bounded complex of finitely generated projectianodules. We writeD (R) for the
derived category of the abelian category®modules, andDPe"(R) for the subcategory
consisting of perfect complexes. Then Reixtends to give a well-defined functor from
DPe(R) (with morphisms restricted to isomorphisms) to the category of graded invertibl
R-modules.

We say that aR-module N is perfectif it is finitely generated and of finite projective
dimension. Such a module, viewed as a complex centered in degree 0, is a perfect comp
and we set Dgt(N) := Detg (N[—1]). We write Fitl (N) for the (first) Fitting ideal ofv.

(We refer the reader td P, Appendix] or 1, Section 1.4] for the basic properties of Fitting

ideals.) Then
Detg(N) = (Fittg(N) %, —rkg(N)).

_ Now, letL/K be an abelian extension of number fields with Galois gréupve write
G for the group of linear characters 6f, and for eachy € G we set

ey = %' > x(@¢ e CIGI.
geG
If H is a subgroup o6, we writeey = (1/|H|) Y_, .y h for the associated idempotent.
For any element € C[G], we define an invertible elemerit of C[G] by specifying the
components by
eyx, ife,x#0,

EIN
ex (") = ey, if e;x =0.

https://doi.org/10.1112/51461157000000383 Published online by Ca@®ridge University Press


https://doi.org/10.1112/S1461157000000383

Hilbert’'s theorem132

We letG, andI, denote, respectively, the decomposition and the inertia subgroup of a finit
placev of K, and we choose an element € G, that projects to the Frobenius element
in G,/I,. We then defingf, := o,¢;,, and we note thaf, does not depend on the choice
of gy,.

We define the equivariant Galois Gauss sum by

k=Y r(@, ind%(x))ex e C[GT*,

xeG

where for any number field” we write T (F, —) for the Galois Gauss sum described in
[14, Chapter I, Section 5].
We writed; for the absolute discriminant df, and finally we define

Eyk =tk [ | F(—£,1 e CIGT™.

v\dL

Recall that the Galois Gauss sum is the essential part of the epsilon factor, which aris
in the functional equation of Artir.-functions (see [14, (5.22)]). Roughly speaking, the
conjecture of §] asserts that the lattic&{ G| - £; /¢ is equal to &[G]-sublattice ofC[G]
constructed from certain algebraic data associatéd .

To recall the definition of this lattice, we have to introduce some more notation. For an
number fieldF, we write X (F) for the set of embeddings df into C, and we writeS(F)
andSy (F) for the set of places and the set of non-archimedean places, respectivély, of
We defineHr := [[y ) QandHr z = [[5r) Z.

Then the natural action @ on X (L) induces the structure of4 G]-module onH, 7.

We write N
JTLZL®Q(C—> Hp, ®Q(C,

for the canonicaC[G]-isomorphism defined by ® x — (o («)x)sex(r). After choosing
for eacht € X(K) an extensionr € X(L), we can identifyH; 7 with H; x 7 =
1_[2(10 Z[G], and so we obtain @[ G]-equivariant isomorphism

mrk - LegC — [ CIGl.
2(K)

aARx > (Z fg(tx)xg_l)

2eG reX(K)

We now write'W(L/K) for the set of non-archimedean placeskothat ramify wildly
in L/K. For a placew € Sy(L) abovev, we letK, andL,, denote the completions of
K and L with respect tow andw respectively, and we identify the decomposition group
G, with the local Galois group Gél,,/K,). We choose a finitely generated projective
Ok[G]-sublattice.L of L such that, for each plaaeof S¢(K), thev-adic completiong,
satisfies

0L, if vg WL/K), o
" 9k, [G1®0y, (6 Lws TV E WL/K).

Here,w € Sy(L) is a chosen place aboweand.L,, is any projectivedg, [G,]-sublattice
of the maximal ideal o9, such that thev-adic exponential map is both well defined

and injective. These conditions are satisfied for any projective lattice that is contained in
sufficiently large power of the maximal ideal 61, .
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Essentially, we will compar&[G] - &1 /¢ to

dekj[G](ﬂL/K) (detZ[G](£)) C detC[G](HL/K@)Z(C) ~ C[G].

In [3], in order to compensate for our choice of latti€ewe used the cohomology of the
sheafG,, on the étale site Spék,), v € W(L/K), to define a natural compleX? (L)

in DPe(Z[G,)). This complex is then the starting point for the construction of local cor-
rection termd (v, £) for eachv € W(L/K). The following description oK, (L) is very
convenient for computational purposes. Let

0—LS—>A —B—>7Z-—0 3)

be a 2-extension df by LS with Z[G,]-modulesA’ and B of finite projective dimen-
sion. Assume further thaBJ represents the local fundamental classHif(G,, LX) ~
Extf;v (Z, L). Then B, Proposition 3.5(a)] implies that there existst®®(Z[G,))-
isomorphism betweew$ (£) := [A’/(1 + £,) — B] (centered in degrees 0 and 1)
andK; (£) inducing the identity maps on cohomology. Hence we canlfsel) to define
the correction termg (v, L£).

We letir k., denote the composite isomorphism

(Detzg,) Vg (L[1]) ® Q
=5 Detgg,; (¥5(£)[1]1® Q)

—  Detgg,| (Ls/(1+ £u) ® Q) ®qc, Detyg,1 (@

Det(1%,,)®id _
—"" Detgg,1(Q) ®qc,1Detye, 1 (@

—  (QIG,].0),

wherev,, denotes the isomorphisify; /(1 + £,) @ Q = Q, which is induced by the
w-adic valuation map.
For each place € S¢(K), we set

. *<e <—|Gv|)> *(er, = fuNv™h)
L/K,v -— Gy ’
[y |1l “(er, 1= f)
and we define a (graded) invertitig¢G|-sublattice ofQ[G] by setting
1(v, L) := &Lk - Ar/k,w(Detzig,) (Y5 (L[1])).

We are now in position to state the central conjecture3df l[Let p; x denote the map
Detciei (L k)-

CONJECTURE 2.1. For any lattice£ that satisfies (2), the following statement holds:

(ZIG) - &1/k, [K : Q1) = pr k (Detzio)(L£) ® ) (v, L). &
veW(L/K)

REMARKS 2.2. (a) In [3], Conjecture2.1is formulated as an equality between graded

invertible Z[G]-sublattices of Det;5)(L®gC). The translation is achieved by applying
-1
PL/K: . . . . .
(b) The central Conjecture (4.1) of][generalizes Conjectutel for arbitrary Galois

extensiond./K of number fields (see [4, Section 5]).
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3. An algorithm

Let K denote a number field of degreeverQ. We let L/ K denote an abelian extension
of number fields of degree. Our aim is to develop an algorithm to check the validity of
Conjecture2.1 up to the precision of the computation.

We assume thdt/ K is given by class field-theoretic data as described1n Chapters 3
and 4]. In particular, we lgt= f.,x denote the conductor d@f/ K, and we write Gl(K') for
the ray class group modujoLet # < cl;(K) denote the subgroup of indexcorresponding
to the given extensioh. If F is any intermediate field af /K, we further assume that we
are able to compute a defining polynomial #6y and also its ring of algebraic integers. In
this context, recently developed algorithms due to Cohen and Roblotl($e€lhapter 6]
or [22]) are very useful.

For some (essential) parts of the algorithm we will have to make the following assumyj
tion.

Hypotuesis (H). If v € S¢(K) is wildly ramified in L /K, then the decomposition group
G, is cyclic.

3.1. Computation ofc

Let L/K denote an abelian extension of number fields, andiset Gal(L/K). In this
subsection we do not assume Hypothé€kis As before, we writeW(L/K) for the set
of finite places ofK that ramify wildly in L /K. For each place € W(L/K), we fix an
extensionw € Sy (L) abovev. Henceforth we identify the placewith a prime ideab of
Ok, and we writew,, for the associated normalized valuations. Likewisds identified
with a prime ideaf3 of @, and we writews; for the associated normalized valuations. For
v € S¢(K) and a finitely generated ¢ -moduleY, we write Y, for the localization and
Y, for the completion ofv with respect ta.

We first give a brief outline of the algorithm for the computationffand then we work
out the single steps in greater detalil.

Stepl. For each place € W(L/K), setF = L% and construct a normal basis element
0, € O for L/F (thatis,L = F[G,]0,) such that

€w

— ]_

Here,e,, denotes the ramification index efin L/Q andpZ = 3 N Z. We set
Xw) = OF,5[Gv]0y,

wheres € S¢(F) is the place uniquely determined by| s | v.

ws‘p(ev) > »

Step2. For each place € W(L/K), computex/(v) =X NOorL.

Step3. ComputeL := (] X{,.
veW(L/K)

ProrosITION 3.1. £ is a finitely generated projectivE G]-sublattice ofL and satisfie$2)
with £, = Ok, [G,16,. Moreover, the-adic exponential map is well-defined and injective
onLy,.
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Proof. We consider th&[G]-projective sublattice¢ C L specified by ite-adic localisa-
tions (see [12, Proposition (4.21)])

OrL, ) if vg W(L/K),

Xy = )
V7N 060 ) [Gulbs, v e WEL/K), wls]v.

)
Passing from localisations to completions shows that it is enough to prov& thait. By
construction, we havé € @, so we can conclude that

X= (] Xw= [) Xnno= () X, ==L

veSy(K) veSy(K) veW(L/K)

By [20, Kapitel Il, Satz (5.5)] and the choice@fthev-adic exponential map is well-defined
and injective, as claimed. O

Proposition3.1 guarantees thaft is a lattice, as required in the formulation of Conjec-
ture2.1.

REMARK 3.2. Let L/K be a weakly ramified Galois extension of number fields (that is, all
the second ramification groups in lower numbering are trivial) of odd degree, Lgtde-
note the square root of the inverse different (see [13, (1.2)]). ®hgpis afinitely generated
Z[G]-projective sublattice oL (see [13, Theorem 2.2]). We seﬁ‘;),( = [[Ppwe@LK),
where the product extends over all primgof O that are wildly ramified inL/K. Then
a(L“;)K is alsoZ[G]-projective. If we choose an elemefite Ok such thaﬁum(ﬂa(L“;)K) >

ew/(p —1)forallv e W(L/K), then we may take® = faj" .

We now go into greater detail concerning Steps 1-3.N,etlenote the smallest integer
such thatv, > e,,/(p — 1). For our purposes later, it is of advantage to construct a norma
basis elemertt, such that the indef3™> : O r[G,10,]is small. To achieve this, itis possible
in principle to adapt the algorithm o2[ Section 2.1]. In practice, however, the following
naive approach is usually sufficient. A randomly chosen elethen®;, will almost always
generate a normal basis bf F. Letp’ denote the prime ideal @ corresponding to the
places. If (p, m,) is a two-element representationpd{such as, for example, that computed
by [10, Algorithm 4.7.10]), themy, (r,) = 1 and we may take, := 76 with € No large
enough to ensure that,s + wp (@) > ew/(p — 1). Here,e, s denotes the ramification
index ofw | sin L/F.

Henceforth, we assume that ea&h,) is given by an explicit basis ovef. For the
computation ofx/(v) in Step 2, we first use Hermite normal form (HNF) techniques over
Z to compute a finite sety < P of representatives 8" /O, 6,[G,16,, wheren,, :=
wi (6y). LetZ := Z1 N Xy).

LEMMA 3.3. Letv € W(L/K), and setF = L. LetZ’ denote a finite set &-generators
of Or[G,10,. ThenZ U Z' is a finite set ofZ-generators ofx’(v).

Proof. It is enough to show that constitutes a set of representativeS)«f{L) /OF[G410,.
Hence it suffices to prove that( | = X, N P", which is clear from the definitions.

In order to compute the sét, we represent eache Z1 in the form

7= Z xgg(6y), Xg € LS,
geGy
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and we check that the conditian, (xg) > 0,8 | p" | pin L/L% /K, holds forallg € G,
(see [10, Algorithm 4.8.17]). Again using HNF techniques (dfgrwe may assume that
each of the(9K—Iatticesx’v is given by aZ-basisws, ... ,w,, m = [L : Q], w; € Of.
This completes the description of Step 2.

To carry out Step 3, it suffices to explain how to compute the intersegtiory’ of two
full Z-sublatticesX, Y C L given in the form

X=Zp1®...0 Zum, i €L,
Y=7Zvi®...0 Zv,, vi € L.

Leth : L x L — Q, b(a, B) = tryp(ap) denote the usual trace form. For any full
Z-latticeV . C L, we set V' := {« € L | b(a, V) C Z}. Then one has the formula
XNY = (X*+Y*" So we compute the dual basis (with respecb)a., ... 1), and
vy, ...y of X* andY*. Applying HNF techniques t&* + Y*, we obtain aZ-basis of
X* 4+ Y*. Dualizing again yields the intersectichn Y.

3.2. The local fundamental class

In this subsection (and also in the next one) we have to assume HypotHgside
fix v € W(L/K) and an extensiow | v, and we writeD = G, for the decomposition
group. Letgg denote a generator d@. Our aim is to describe an algorithm that computes
a 2-extension (3) that represents the fundamental class of local class field theory.

We consider the canonical exact sequence

-1
0— 72 72ip1%=5 7201 2% 7z — o,

whereaugisinducedby+— 1, g € D,andNp = deD 2. We willcomputeH?(D, L) ~
Ext%(Z, L*) with respect to this resolution. Lét_, L,,/K,) denote the local Artin sym-
bol, and lets,, € K, be such thage,, L,,/K,) = go. Then theG-embedding : Z — L
defined byp (1) = ¢, represents the local fundamental class. We shall now explain how
find &,.

Let p again denote the prime ideal 6fx corresponding t@. We writef = p*f with
pt{.LetU, C K, denote the local units, and writeﬁ’),i > 0, for the higher principal
units. ThenUU(S) C Nr,/k, (L), and the composite map

KX JUS — KNk, (L)~ D

is surjective. Ifr, € K* is a uniformizing element foo, thenk X = =% x U, and we
obtain the isomorphisms

KUY =l x Uy US =7 x (0 /p°) "

Sincenl')D‘ € ker( _, L, /K,), we finally obtain an epimorphism

w27 lPIZ x (O /p*)" — D,

induced by the local Artin map. Provided that we know how to compute local Artin symbols
it is now a finite problem to computs .

REMARK 3.4. Inthis way we have actually constructedin K *. By multiplying with n,',D |
(if necessary), we may also assume thats,) > 0. For computational purposes it is an

advantage to choosg with smallv-adic valuation. Sincelv/U,Ss) ~ (O /p*)* is mapped
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surjectively onto the inertia subgroup, we can always achiewe, (¢,) = 1 in the totally
ramified case.

It finally remains to describe how to compute local Artin symbols for elemerts) ¢,
a # 0. Letf =[] p‘,i" be the prime ideal factorization of the conducfpand assume
thatp = po. We set e= wy (), and we choose an elemente O such that

) o, ifj=>0,
Wn.(TT) =
Pi 1, ifj=0.

If we let& € Ok denote a solution of the simultanous congruences

£ = ¢ (modp;*), k=1,...,r
e i
£ = — (modpy),
o
then class field theory shows that L,,/K,) = (¢, L/K), where

c ZE 1_[ q—evq(n).
qlm,q#p
Recall thatZ/K is given by c}(K) and a subgroug# of index |G|. Assume that the
integral idealco corresponds tgo via the global reciprocity isomorphism. Using1],
Algorithm 4.3.2] it is then easy to compudlee Z/|D|Z such that = c‘é inclg(K)/#. So
in order to solve our problem we have to find an elenaegt ¢, such that/ = 1 (mod|D|).

3.3. Computation off (v, L£)

We continue to use the notation introduced in the previous subsection. In particule
we assume Hypothesi$l). For any subgroud/ of LS that contains X £,,, we set
U(Ly) :=U/A+ Ly).

So far we have constructed a maguch that the following diagram has exact rows and
columns.

0 0
| |
00—z 2, zip) 2% 710 - 7z 0
i | | |
0 — LX(Ly) —— A —— Z[D] —— Z— 0 (6)
| |
cok(@) ——— cok(@)
| |
0 0

Here,¢ is the composite op and the canonical map;; — L) (L), andA denotes the
push-out ofp andNp. Since we assume that theadic valuation ofp(1) = ¢, is positive ¢

is indeed injective. In addition, this assumption ensures thaggak a finiteZ[ D]-module.
Sinceg represents the local fundamental class, it is also of finite projective dimension.
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We define objects aDPe"(Z[ D]):
=[z[D1 %> Z[D]]
w;(x) = [A — ZID]],

where the first terms are placed in degree 0. Then diagfgneéds to a distinguished
triangle inDPe(Z[ D)):

e — Wi (L) —> cok@)][O]. @)
Applying Detz;p( _) to (7) gives an equality
Ak, w(Detzp) (W (L[1]) = Aw,g( Detzp(W°[1]))®zp) Detzp)(cok@)[1]),
wherel,, ; denotes the composite isomorphism
(Detzp(V*[1) ® Q@  —>  Detgp; (¥*[11® Q)
—  Detg;p|(Q) ®qip; Detgip) (@~
PO Detgp) (L (£u) ® Q) ®grp) Detgrp (@)~

Detgp)(Q) ®qip) Detgpy(@)*
—  (Q[D],0).

Det(z?w)®|d

A standard computation yields

1
huw,g( Detzrpy(W°[1]) = ((IDI wp(e(1))ep + (g0 — (1 - eD)) Z[D], 0) 8

(see [4, Section 4.2] for a computation in a similar, but more complicated situation).
Therefore the main task in the computation bfv, £) is the computation of
detzpy(cok@)[1]) = Fittz(p)(cok@)) .
To that end, we first describe a procedure to compute a representation of thé|[finjte
module cokg) of the form

cok(@) = (a1) x ... x (ay), ord(a) = m;, 9)
together with itsD-action, determined by a matrisy = S(go) € Mat; (Z) such that
gola, ... ,as) = Sola, ..., as)". (10)

Here and in what followsy™ means the transpose of a matrix or veatoNote that theth
column of Sy is only defined modula:; .

In the next subsection we will then develop an algorithm which uses data of this kind t
compute the Fitting ideal of a finité[ D]-module.

We setF = L?, and we recall thaxgv) = OF,[D10yNOL withw | s | v (see Section
3.1). As in Propositior8.1, we set & = Ok, [D]6,. Letp, andB,, denote, respectively,
the valuation ideals iK', and inL,,.

LemMA 3.5. There exists a positive integer such thatp3™ C x’(v). For each such, one
hasp” < £, and the natural map

a Xy /B —> Lu/ Py,
is an isomorphism.
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Proof. Let q be the prime of9r corresponding to the place Let 4 be a positive integer
such tha'qh = bOp, b € OF. SinceOg[D]0, is of finite index in®, there is a positive
integers such that’ O C O (5[D16,. Hencephtenss x’(v). BecauseX, = Fy, one

obviously hasp?” < .£,. The natural mag,/PB" — O, /P is an isomorphism.
Hence it suffices to show thatis surjective. Len9, € £, with A € Ok, [D]. If we choose
u € Ok[D] such that — u € p, then

Ay = pby + (A — W)y = uby (ModPy). H

We choosen minimal, subject to the condition of Lemnia5. ThenUw/Ulﬁiﬂ) ~
(@, /1™, and in addition

w2 x Uw/UIS)m)
P(E x (L+ £4,)/US
We write ex: x’(v)/fﬁ’" — (@ /™) for the truncated exponential map. Thdri)
together with Lemma (3.5) implies that
7l < (OL/F")
QD% x ex(X(,, /Bm)

cok(@) ~ (11)

cok(@) = (12)

REMARK 3.6. Letn, = wg(6,). Thev-adic exponential map is defined fere @, with
wy (@) > ey /(p — 1) by
o
expla) = a—r:.
=0 n:
Our objective is to determing € N such thatwg(a”/n!) > m foralln > N. One
easily shows thatv, (n!) < n/(p — 1) (see [23, p. 49]), and it therefore suffices to take

N > m/(n, —ey/(p —1)). Then we have
N n

ex@) =Y % C N (13)

n=0 "
We shall now describe how to apply Smith normal form (SNF) techniques to determin

generatorsy, ... , ag as in @) together with a matrixy that explicitly gives theD-action
on cok@). Using [11, Algorithm 4.2.21], we first compute a representatio(qf/B3")
of the form

(OL/P™) = (b1) x ... x (by),  ord(h) = k. (14)
We sethg := 7, and we computd € Mat, 1 ,+1(Z) such that

go(bo, ... b)Y = A(bog, ... ,by).

To achieve this, we apply Algorithm 4.2.24 dfl] to b, ... , b;, and we immediately
obtain rows 1 ta. For the computation of the first row, we appi], Algorithm 4.2.24] to
go(my)/my. This leads to a matrid of the form

1 apn - ao
0 ann -+ ay

A=\ . . . ) . (15)
0 a1 -+ au
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Without loss of generality, we may assume that the subgrowpgy‘pm) is also generated

by ¢ elements. Denote by, ..., ¢, € (O /B™)* a set of such generators, and ggt=
¢(1). Using the same techniques as for the computatiof, afe obtain a matrix3 such
that

(CO, ey C[)~ = B(bo, ceey bt)~' (16)
LetS = UBVwithU, V € Gl;11(Z) denote the SNF a8. Letc andb denote the transposes
of (co, ..., ¢;) and(bo, ... , b;), respectively. Thew ¢ = SV—1b and the components of

a := V~1p form a set of generators of c@k). The corresponding ordens; = ord(g;) are
given by the diagonal elements®fMoreover, the action afp on cok) ona is explicitly
described byo - a = (V"1AV) - a. Hence we havey = V~1AV. Of course, we may
delete the'th row and column irf if the diagonal element; of S equals 1.

3.4. Computation of Fitting ideals

In this subsection we l&t denote any finite abelian group. LE&be a finiteZ[ G]-module
given as a direct product

C = {c1) X ...x{cg), ord(¢) = m;,
together with matriced (g), g € G, such that
glet, ..., c) = A(g)et, ..., cs)

Note that theth column ofA(g) is only determined modula; .
Our objective is to compute the Fitting ideal Ejt;(C). LetG = {g1, ... , gn}.

Stepl. Compute the integer kernal of the matrix

mi
M = A(gl)~7 cee A(gn)~’
mg
Putm = ns, and letzy, ... , z,, denote &-basis ofN.
Step2. FOr z = (X1gg, -+ » Xsg> Xlgpr - -« s Xsgor o+ s Xlgys oo v s Xsgus V1o oo » Vs) €
{z1,...,zm}, define an element, € Z[G)’® by
n
Ay = (ingkgk)
k=1 i=1,...,s

Step3. Let Q2 denote the set of all subsdtsC {1, ... , m} of cardinalitys. For each subset

I € Q, computes; := det();,)ies € Z[G].

Step4. Let A denote the matrix defined by

(6n)1eq = (81, .-+, &n)A.
Compute the HNFH of A.

Step5. OutputH (the columns off correspond to &-basis of Fitf;s(C)).
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Proof of the correctness of the algorithn€onsider the epimorphism
7 :Z[G] — C,

N
Ao hs) > Y Aici
i=1

Let QO denote the kernel of. By definition, the Fitting ideal ofC is generated by all
determinants of x s matrices with columns iQ. If we setA; = Y} _; xixgk, Xix € Z,
then one easily deduces that

n N
=1 A €0 & Y A(gijxik =0(modm)),  j=1,...s.
k=1i=1
Hencel € Q if and only if thex;; are the firstn components of an integer solution of
the system of linear equations in Step 1. Therefore the elements. . , 1, of Step 2
constitute &-basis ofQ, so that the correctness of the algorithm is now immediate from
the definition of the Fitting ideal. O

REMARKS 3.7. (@) This naive approach is in fact very inefficient. As a consequence o
working entirely ovelZ, we must computé”;) determinants of x s matrices oveZ[G].
Possibly a more efficient approach is to use a{sgt... , b}, t < s, b; = ijl TijCj,

of Z[G]-generators o€ in order to definer, as follows:

7 :Z[G] — C;
t

Ao M) > > Ay
i=1

This leads to a smaller system of linear equations in Step 1, and in Step 3 one has only
evaluate("") determinants of x r matrices.

In applications, one often knows th@ = ker(xr) is Z[G]-projective. Moreover, for
small groupsG, the Picard group P{Z[G]) is often trivial, so thatQ is actually a free
Z[G]-module. It would be very desirable to have an algorithm (analogous to the HNI
algorithm ovelZ) that computes @[ G]-basis in this case. A method that computes a small
set of Z[ G]-generators (without assuming the triviality of BI¢G1)) is described below in
Appendix A.

(b) For the computation of the determinants(@gt), 1;; € Q[G], we suggest comput-
ing the Wedderburn decomposition@fG] explicitly, as follows:

w:@[G]i)le...xKl, a7

and then evaluating the determinants in the single components. This is easy, because
can work over fields. Then one goes backia ] via w1
(c) If M denotes the maxima-order inQ[G], then

M~ Ok, X ... %X Ok,
Thus we can use the isomorphiginio compute the Fitting ideal

FittM (C®Z[G]M) = FittZ[G](C)®Z[G]M
= Fittz6(C) M.
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Letes, ..., ¢; denote the idempotents corresponding to the decomposition (17). Then

!
Fitt 4 (CRziGIM) = @ FitteiM(C®Z[G]eiM) and e M ~ Ok, .
i=1
Thus we can use HNF techniques over Dedekind domains to compute the Fitting ideal o\
the maximal order. Unfortunately, we could not find an algorithm that computegd(i€)
from knowledge of Fitt;¢1(C) M.

3.5. Computation o,k (detz;gi(L))

The algorithm of Subsectidgh1produces a finitely generated project&fgs |-sublattice
L of L given by aZ-basisws, ..., w,, m = [L : Q], w; € Or. We choose a normal basis
element of L/K and aZ-basisvi, ..., v, k = [K : Q], of Og. Thenvi0, ... , v 6 is
aQ[G]-basis ofL.

In the first step of our procedure to comppig  (detz;c (L)), we determine the matrix
A € Mat_, (Q[G]) such that

(w1, ... ,05) =0, ...,0)A.

Let Q2 denote the set of all subsetsC {1, ... , m} of cardinalityk, and writeq; for theith
column ofA. For eacll € 2, we set

8y := det(a;)jer
and we compute the invertibi G]-module
a=10ag,u,.. v =07 : 1 €Q)z.
Then we have
pr/k (detzg(L) = a- pr/x (V10 A ... A b)),

so that it remains to give an explicit expressionggyx (v16 A ... Avi0). By the definition
of pr/x, we obtain

PL/K(Vle A...AVEO)

= ng(v19)g_l A A ng(va)g_l

8€G Tex(K) 8€G TeX(K)

= det Z Tg(vi0)g ™t (WL A ... Awg),

geG T € X(K)
i=1,...k

wherews, ... , wy denotes the canonic@[G]-basis ofC[G]*. Finally, we obtain

det[ > 2g(io)g | = det(z(v))e; Nk/(®)
geG i

with the norm-resolvent
Niio®) == [] D_t20)¢ " eCIGI.

t€X(K) geG
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Summing up, we have derived the following expression, which is very convenient for oL
computational purposes:

pL/k (detzGi(L)) = a-det(t(v)); e sk - Ni/Q(0).
k

i=1,...,

REMARKS 3.8. (a) Forthe computation of the same remarks apply as for the computation
of Fitting ideals (see Remafk7).

(b) We represent each elemermf a as a column vectar € Q" with respect to thé)-
basis ofQ[G] consisting of the group elemengs, . .. , g,. By clearing denominators and
applying the HNF algorithm, we may assume that the inverfil)@]-submoduler C Q[G]
is given in HNF.

3.6. Computation oy /x

Recall thaty ;x = t7/x HU|dL *(—f;l). If we write xo for the trivial character of7,
then by [14, Chapter Ill, (2.1)], one has

o(Qindf(0) = 7(Q indf o)) 7K. 0.
Furthermore, by [18, Chapter Il, Theorem 8.1(iii)], we have

T(Q, ind%(}(o)) = £ det(r(vi))rex(k)i=1,.. &k

where we continue to use the notation of Subsed@iédnHence we have

Ek =+ (H *(—f[l)) Ldet(T()r,i - Y T(K, x)ey.

vldr xeG

Finally, we apply [11, Algorithm 6.2.4 (4)] for the computationiK, ).

3.7. Numerical verification of the conjecture

It is easily checked that the grading in the formulation of Conjecture (2.1) is correct, s
that the real task is to check the equality of the underlying inverfip&]-modules. Hence
we have to verify that

EL/Kil'PL/K(detZ[G](oc)) l_[ I(v, £) = Z[G].
veW(L/K)

Summarizing the computations and results of the previous subsections, we see that thi
equivalent to proving that the invertibl G]-submodule. - I ¢ C[G], with

1 1
A= (l_[ *(_fv_l)) (Z T(K,x)ex) Nk j0(0), (18)

vlde xeG
and
I=a J[ €k Aug, - Fittzg,i(cok@) Y, (19)
veW(L/K)
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is actually equal t&Z[G]. Here, we writep, for the mapy constructed in Subsectidh?2
for a fixed placev € W(L/K), andA,, ,, is defined by

1
A, = G, lwm(%(l))ec + (gv.0 — D1 —eg,)

with (g,.0) = G, (compare this tog)). By definition,/ is an invertibleZ[G]-submodule

of Q[G] for which we compute its HNF (see Rema&@ (b)). The element lives a priori in
C[G], but from [15, Section 9, (i) and (ii)] one may actually deduce that it is an elemen
in Q[G]. Multiplying I by the scalak gives aZ[G]-submodule of£[G], given by aZ-basis

A, ..., &y € C[G]. These elements are expected to bE[i&]. If this is confirmed by the
results of our computauon we round off the coefficients of eactsee Remark.9 (a))

and obtain elemenvsl » € Z[G]. Then we compute the HNF ¢f1, ... , 1,,)7, and
check whethetiy, ... ,A )Z = Z[G]. If this holds true, Conjecturg.1is verified up to
the precision of the computation.

REMARKS 3.9. (a) In principle, it is possible to do all the computations exactly, so that
our algorithm would really prove the validity of Conjectud for a given extensioi. /K .
Indeed, the Galois Gauss sums', x) and also the coefficients ofy ,(9) are algebraic
numbers, so that we could perform all the computations in a large enough number field.

(b) Forthe computation of the ide&) we need to know how to invert invertible ideals
M = (A1,..., )z € Q[G]. Letd : Q[G] x Q[G] —> Q denote the non-degenerate
bilinear form induced by

1, ifgh=1,

b(g,h) = .
&, 1) 0, otherwise,

for g, h € G. Then it is easily shown that

1= {x € QIG] | b(x, M) C Z}.

ThereforeM =t = (A3, ..., A%)z, wherer], ... , A’ denotes the dual basis bf, ... , A,
with respect ta.

4. Anexample

The algorithm described in Section 3 was implemented under PARI1GR/&rsion
2.0.20, for cyclic extensions/ K of odd prime degrekof a real quadratic number fiekd.
For simplicity we also assumed that the class numbér isftrivial. We describe an explicit
example. All the computations were done with a real precision of 28 significant digits. Le
K = Q(+/3), and seto = /3. We letf = p3p1 with

po = (w), p1=(5).

The PARI functionbnrinit ~ computes the ray class group(@), which is of order 36,
generated by two elemerit$: | and[g2], whereg:s = (1+ 6w), g2 = (11), ord([g]) = 12
and ord([g]) = 3. We letL denote the class field corresponding to the subgr#up-
(3[g1], [g1] + [g2]). Then L has conductof. We use the PARI-routinénrstark  to
compute the defining polynomial

h(x) = x8 — 30x* — 10x3 + 22542 + 15Qr — 275.

Let o denote a root ofi, so thatL = Q(«).
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By applyingbnfinit, we obtain the ring of integers, the ideal class group and a system
of fundamental units fof.. The class number df is 1.

We letco = g1 be a fixed representative of;¢k)/#, and we us@fgaloisconj to
computeG = Gal(L/K). It is absolutely essential for the subsequent computations the
we choosezp € G such that(cg, L/K) = go. In this specific examplegg is given by the
substitution

1 2
a<—§a5—§a4—5a3+8a2+24a—20.

If we carry out the algorithm of Subsectiéhl, we obtain &[G]-projective sublattice
£ C L, which is given by.L = Og[G10,, whered, = 3« + 3 is a normal basis element
satisfying the valuation condition of Step 1 at the only wildly ramified place pg €
W(L/K).

As described in Subsectidh2, we fix a mapp, : Z — L5 by settinge, (1) =
—2w + 3. The main effort of the whole computation is now the determination of
Fittz;61(COK(@,)). We easily check thaB!? € Ok[G16,, so that we may take = 12. By
applyingidealstar, we obtain a representation of (9. /™)* as in (14), with

25 1,4 15 1, , 3 .
bl—?a—ﬁa E(X —52(1 —éa—i—l,
by =a? 420 +2;

1 1 5 3 9
hae —ob 4 a4 224> b
3T TR Y T3

-2 1 1 7 7
b=_5 _4__3 32__ -
S-S T L

-3 3 3 3
bs=—a®— —a*— —a®—Za -2

10 10 10 2
-3 3 3 9
—a®— ot =P - Za-2

bg =
*~ 10 10 10 2

The corresponding orders ate = 54,kp = 9,k3 = 9, kg = 9,k5 = 3andkg = 3. As a
uniformizing element fof3, we use
1, 15 3, 3
7Tw—1—006 +50{ —EOK —EO[+4,
and we sebg := m,,. Using the PARI-functiorideallog, we compute the matrix A of
(15), which is given by

1 48 7 6 0 1 2
0O 7 2 3 4 1 2
0 36 4 8 3 0 2
A=]10 18 6 1 6 0 O
0 18 6 8 7 1 1
0O 0 06 010
0 18 6 0 3 0 1

The finite groupO@g[G16, /™ is of order 27, and we us®¥ = 4 for the computation
of the truncated exponential map. Computing the SNF of the ma&trof (16), we get
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S =diag(549,9,3,3,1,1) and

13 4 0 0 1

30 7 3 0 1
So=] 0 2 4 1 0},

18 6 6 1 1

36 6 0 0 1

as described at the end of Subsecfioh
The Fitting ideal algorithm of Subsecti@¥ produces

54 27 27
H = 0 27 0 |,
0O 0 27

where the columns off correspond to group ring elements 8fG] with respect to the
basis 1, g, g3.

For the computation 0bz,x (detz;g (L)), we usevy = 1, = o andd = 6,. This
choice leads to the invertibl&[ G]-submoduler = Z[G]. For the extensiong; andz, of
71 = id andt, : v/d — —+/d, we choose the embeddingsiofnto C uniquely determined

by
71 : o > —4.232158344254195574103447999,
Tp 1o > —2.313012978428015564785340824
Then we obtain
Nk g(0) = 8100178076311728417523371276
+255.9451754435894942208957514)
+(—785.370752248604214421786571@5.
The evaluation of the Gauss sums leads to
TL/K
= (39.72195711957161110837690214.000000000000000000000000006:)
+(—57.9337646423532320329862838%9.000000000000000000000000014g0
+(21.67590913791937551166427443).00O000000000000000000000007;;7%.
The quotient. := Nk, (0)/&L/k, Which is known to be rational, is then given by
A = (26.9999999999999999999999999%.00000000000000000000000060H0
+(35.9999999999999999999999999%.000000000000000000000000001 )
+(17.99999999999999999999999999).0000OOOOOOOOOOOOOOOOOOOO(DDZgS,

and for theZ[G]-submodulel of (19) we obtain

9'9°7 243
Finally, we compute./, which is given by theZ-generators
2.99999... 4 3.99999 . .g0 + 1.99999.. .g%;
1.99999 .. + 2.99999.. .g0 + 3.99999 . .gé;
2.99999... 4 3.99999 . .go + 2.999909.. .gg.

11 1
1=<— ~g0. == (19+ 10go+g§)> .
Z
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As predicted by Conjectur2 1, all the coefficients are approximately rational integers. To
simplify the presentation of these numerical results, we have given only 6 decimal digits.
fact, the computation produced group ring elements whose coefficients agree with ratior
integers in the first 27 decimal digits. If we round off and compute the HNF, we finally se
thatAl = Z[G], and we have thus numerically verified ConjectRre.

The algorithm has been applied to many more examples, each time establishing t
validity of Conjecture?.1; seeAppendix Bfor the numerical results.

Acknowledgements.l am very grateful to D. Kusnezow, who implemented the algorithm
under PARI-GP, and to M. Breuning, for his careful reading of this manuscript. This worl
was supported by a DFG grant.

Appendix A. Small generating sets fét[G]-lattices

by D. Kusnezow

Let G denote an abelian group of orderIn this appendix, we address the problem of
computing a small set df[G]-generators of &[G]-sublatticeM C Z[G]*, s € N.

Let G denote the group of abelian characterstof The absolute Galois grou@ =
Gal(Q¥/Q) acts onG, and theQ[G-irreducible characters are parametrized by he
orbits of G. If we setQ(x) := Q(x(G)), then the orbit of an abelian characjeis given
by [x] := {x* | v € Gal(Q(x)/Q)}. We choose a s¢j1, ... , x-} of representatives of
G modulo the action of2. For eachy € G, we extendy by linearity toQ[G], and we fix
an isomorphism

,
»:QIGl— PG, A ().
i=1

Note thatw depends on the choice @f, ..., x;.

The primitive idempotents d[G] are then given by; = Z vea v i =1 ...,
whereey, denotes the usual idempotent associated to the absolutely irreducible character

The strategy for our algorithm is to adapt the Hermite normal form (HNF) algorithm
overZ. As a first step, we develop a method that will replace the Euclidean algorithm.

ALGORITHM A.1. Given aZ[G]-ideall = (A1, ..., Au)zi6) € Z[G], this algorithm com-
putes a set of generatc¥sfor 1 of cardinality 2.

Stepl. Perform the HNF-algorithm ovef to obtain at mosk Z-generators for. Set
K «— I,V «—@Pandi < 1.

Step2. Compute atwo-element representation ofdhg,,)-idealx; (X), x; (K) = (a, b),
and leta, 8 € K be such thay; («) = a andy; (8) = b. SetV < V U {«, B}.

Step3. If i = r terminate the algorithm. if < r, compute the kernel of; : X — Oq(y;)
and setK <« ker(y;),i < i + 1. Go to Step 2.

REMARKS A.1. (a) InStep2,onecouldalsocheckwhethgrX) is principal. This leadsto
a generating sé? with |'V| < 2r (note that for the trivial charactgp one haf)(xo) = Q).
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(b) To compute the kernel gf; in Step 3, one has to compute the integer kernel of a
system of linear equations arising frome ker(x;) <= ie; = 0. Applying the HNF
algorithm ovefZ, we may assume that in each iterati&iris given by at most Z-generators.

(c) Sincey; : Z[G] — Oqy,) is surjective, it follows that in Step 2 one has =
(o, BYz1G1 + ker(x;). This proves the correctness of the algorithm.

Now letM C Z[G)*,s > 0, be aZ[G]-module. Using HNF techniques ovér we may

always assume thall is given byZ[G]-generatorsny, ... ,m; € Z[G]® with k < ns.
Letm; = (A1, ..., As;)” With ;; € Z[G]. We will always identifyM with the matrix
(ma, ..., myg).

ALGORITHM A.2. Given M as above, this algorithm computes a seZp€;]-generators
ma,...,my of M with N < 2rs.

Stepl. Seti < 5, M < andA < M. (We always identifyA = (a;;) with the Z[G]-
module generated by the columnsAl)

Step2. Setl <« (a1, ..., aik)z[c) and apply AlgorithmA.1 to compute asety, ... , s
of Z[G]-generators of with r < 2r.

Step3. Computeas, ... ,a, € A such thata;; = u;, j = 1,...,¢ and setM «
{ai,....a} UM.

Stepd. For j = 1,...,k representy; as a linear combination of thg, = u,, v =
1,...,tas follows:

t
aij =Y &di. & €ZIG],
v=1
and eliminate theéth row in A by elementary column operations.

Step5. If i = 1, terminate the algorithm. Otherwise, $et- i — 1 and go to Step 2.

REMARKS A.2. (a) AlgorithmA.2 produces a matri#/ in the following block form.

*ok ok ok ok Kk * ok %
0 * ok % * % %
0 0 . %k %
0 0 o - * % %
0 0 0 0 - k%%

0 0 0 0 0 xx*=x

In addition, each of the blocks has at most-2columns.

Applying AlgorithmA.2 to the modulgh, . . .. , A, )7 arising in Step 2 of the Fitting
ideal algorithm of Sectio3.4 enormously reduces the number of determinants that have
to be computed in Step 3 of that algorithm. Even without considering the special form c
the new generating system, we have only to evaluate at (?gd;ujeterminants (compare
Remark3.7 (a)).

(b) For the computation aiy, ... , a, in Step 3 of AlgorithmA.2, we need to find a
representation of the form; = Z’;levaiv, xy € Z|G] foreachj = 1,...,t. Then
aj = Zﬁzl Xyay. This leads to a system of linear equations with integral coefficients, for
which we compute an integral solution.
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Appendix B. Numerical computations

This appendix contains the PARI sources of our implementation of the algorithm de

scribed in Sectior3, and also a file of examples to which it was applied. These files may

be

10.

11.

12.

13.

14.

15.

16.

found at
http://www.Ims.ac.uk/jcm/6/Ims2002-021/appendix-b.
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