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characteristic classes of the fixed point set of h in SbX.
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1. Introduction. Let h be a finite order automorphism of a smooth complex
projective variety W . The components of the fixed point set of h are smooth subvarieties
of W . Let N be the normal bundle of a component of the fixed point set of h. Then
N has a decomposition N = ⊕p−1

i = 1 N(ν i) where N(ν i) is a vector bundle on which h
acts as ν i, ν i = e2π i/p and p is the order of h. Each N(ν i) has Chern classes and these
Chern classes can be used to compute the so called stable characteristic classes of N(ν i)
defined as

U(N(ν i)) =
∏

j

(
1 − e−xj

ν i

1 − 1
ν i

)−1

, (1)

where {xj} are the Chern roots of N(ν i). These characteristic classes are required if one
wants to apply the Holomorphic Lefschetz Theorem (see [2, Theorem 4.6]). In this work
we study the situation where W is the symmetric product SbX of a complex curve X
and h is an automorphism of X . The fixed point set turns out to be a disjoint union
of varieties which are isomorphic to symmetric products SkY , where Y is the quotient
curve X/〈h〉. We can compute these characteristic classes if 〈h〉 \ {1} is contained
in a conjugacy class of the automorphism group of X and our main result is the
Theorem 3.8.

2. Fixed points in SbX . Suppose that X is a curve with an automorphism h. Let
p be the order of h. If we consider the map

fk,0 : SkX → SpkX

D �→
p−1∑
i=0

hiD,
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then fk,0(SkX) is a subset of fixed points of h in SpkX . Let D be an effective divisor of
degree d invariant under the action of h. Consider the embedding

AD : SpkX ↪→ Spk + dX
u −→ u + D.

The image of SkX under the map fk,D =AD ◦ fk,0 is a subset of fixed points of h in
Spk + dX . Notice that when k = 0 the image of f0,D is the divisor D.

We shall now describe the fixed point set fix(h) of h in SbX . Take integers m, l
such that

b = pm + l

and m ≥ 0 and p > l ≥ 0. For each integer k such that m ≥ k ≥ 0, let dk = b − kp.
Let (Sdk X)h denote the fixed point set of h in Sdk X . Define Ak as the set of divisors
D ∈ (Sdk X)h satisfying the following property: if x ∈ X is a point in the support of D
then D − ∑p−1

i = 0 hix is not an effective divisor nor the zero divisor.
Now consider the set

Fk =
⋃

D∈Ak

fk,D(SkX).

Notice that Fi ∩ Fj = ∅ and fD1 (SiX) ∩ fD2 (SiX) = ∅ for D1, D2 ∈ Ai. It is easy to verify
the following result.

LEMMA 2.1.

m⋃
k=0

Fk = fix(h).

Notice that if p is a prime number then

Ak =
{

D = a1x1 + · · · + asxs | 0 ≤ aj ≤ p − 1 and
s∑

j = 1

aj = dk

}
,

where x1, . . . , xs are the fixed points of h in X and there are

m−k∑
j=0

(−1) j
(

s
j

)(
s − 1 + dk − jp

dk − jp

)
(2)

divisors in Ak.
If p is not a prime number then the divisors in Ak are not necessarily supported

on the fixed points of h in X . For instance there are situations in which h has no fixed
points in X but h2 has finitely many.

Let f : X → Y be a morphism of degree p of smooth curves. Then there is an
embedding

i : SkY → SpkX

that sends D ∈ SkY to the divisor f ∗D ∈ SpkX . If we take f to be the quotient map
f : X → X/〈h〉= Y , then the map fk,0 splits as

fk,0 : SkX
a
� SkY

i
↪→ SpkX,
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where a is the natural map induced by f on the symmetric product. From this we see
that the fixed point set of h in SbX is a disjoint union of varieties which are isomorphic
to symmetric products of the quotient curve Y .

We refer to [6] for the definition of the cohomology classes η, σi on the symmetric
product of a curve. Let ϑ = ∑g

i = 1 σi. The proof of the following Lemma involves at least
two different symmetric products and we shall use the same notation to represent these
cohomology classes regardless of the symmetric product on which they are defined as
this will be clear from the context.

LEMMA 2.2. Consider the induced map i∗ : H∗(SpkX, �) → H∗(SkY, �). Then we
have i∗η = η and i∗ϑ = pϑ .

Proof. Consider the maps

f ∗
k,0 : H∗(SpkX, �)

i∗→ H∗(SkY, �)
a∗→ H∗(SkX, �).

We will first show that a∗ is injective and that a∗η = pη, then we will see that f ∗
k,0ϑ = pa∗ϑ

and f ∗
k,0η = pη. From this we deduce that i∗η = η and i∗ϑ = pϑ .

Notice that the natural map f ∗ : H∗(Y, �) → H∗(X, �) is injective by (1.2) in [6].
The commutative diagram

Xk −→ Y k

SkX → SkY

� �

induces another commutative diagram

H∗(SkY, �)
a∗−→ H∗(SkX, �)

H∗(Y k, �) −→ H∗(Xk, �)

� �

where the vertical maps and the lower map are injective; therefore a∗ is injective. Now
fix a symplectic basis

α1, . . . , αγ , αγ + 1, . . . , α2γ

for H1(Y, �). Above each cycle αi there are p cycles ri, hri, . . . , hp−1ri on X, and they
satisfy

hmrihlrj =
{

rirj = αiαj if m = l

0 otherwise.
(3)

The set A= {hmri | m = 0, . . . , p − 1 and i = 1, . . . , 2γ } forms part of a symplectic basis

B= {α′
1, . . . , α

′
g, α

′
g + 1, . . . , α

′
2g}
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of H1(X, �) in which

α′
m = hjrq+1

α′
m+g = hjrq+1+γ

for m = q p + j, where 1 ≤ j ≤ p and 0 ≤ q ≤ γ − 1. Abusing our notation we shall
write αm instead of α′

m. Consider the map

f ∗ : H∗(Y, �) → H∗(X, �).

Under this map we have

f ∗αi =
p−1∑
j=1

hjri =
p−1∑
j=0

αj+p(i−1) (4)

and

f ∗αi+γ =
p−1∑
j=0

h jri+γ =
p−1∑
j=1

αj+p(i−1)+g.

One can check that if αi ∈ B \ A then
∑p−1

j = 0 h jαi = 0. We refer to [6] for the definition
of the cohomology classes β, αi,l, βi,l, and ξi.

Using the relations (3) we have

f ∗(β) = (αiαi+γ ) =

p−1∑

j=0

hjri





p−1∑

j=0

hjri+γ


 = pβ. (5)

Now under the map

a∗ : H∗(Y k, �) → H∗(Xk, �)

we have from (4) that

a∗(αi,l) =
p−1∑
j=0

αj+p(i−1),l

and

a∗(βl) = pβl.

Suppose that i ≤ γ . Then, using the definition of ξi, we get

a∗(ξi) =
k∑

l=1

p−1∑
j=0

αj+p(i−1),l.

Notice from the definition of B that

p−1∑
r=0

hrαpi,l =
p∑

j=1

αj + p(i−1),l.

Then

a∗(ξi) =
p−1∑
j=0

hjξpi
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and

a∗(ξi + γ ) =
k∑

l=1

p−1∑
j=0

αj + p(i−1) + g,l =
p−1∑
j = 0

hjξpi + g.

From the definition of η and from (5) we have

a∗(η) =
k∑

l=1

pβl = pη.

Consider the map

f ∗
k,0 : H∗(Xpk, �) → H∗(Xk, �).

In this case fk,0 : Xk → (Xk)p is defined by the rule D �→ (D, hD, . . . , hp−1D
)
. Now

we shall compute f ∗
k,0(ξm). We first compute f ∗

k,0(αil). Notice that

H∗(Xpk, �) = H∗(X, �)⊗pk = H∗(Xk, �)⊗p.

In particular

H1(Xpk, �) =
p⊕

i=1

H0(Xk, �) ⊗ · · · ⊗ H0(Xk, �) ⊗ H1(Xk, �)︸ ︷︷ ︸
ith place

⊗H0(Xk, �) ⊗ · · · ⊗ H0(Xk, �).

(
∼=

p⊕
i=1

H1(Xk, �).

)

Suppose that l = sk + j, where s, j are non-negative integers and 1 ≤ j ≤ k. We
now can see that

f ∗
k,0(αil) = hsαi,j

and

f ∗
k,0(βl) = hs(αi,jαi + g,j) = hsβj = βj.

Thus

f ∗
k,0(η) =

pk∑
l=1

f ∗
k,0(βl) = p

k∑
j=1

βj = pη

and

f ∗
k,0(ξi) = f ∗

k,0

( pk∑
l=1

αi,l

)
=

p−1∑
s=0

hs
k∑

j=1

αi,j =
p−1∑
j=0

h jξi =
k∑

j=1

p−1∑
s=0

hsαi,j.

From this we see that if αm ∈ B \ A then

f ∗
k,0(ξm) = 0.

Let m ≤ g such that αm ∈ A. Write m = q p + j with 1 ≤ j ≤ p. So

f ∗
k,0(ξm) =

p−1∑
j=0

hjξp(q+1) = a∗(ξq+1)
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and

f ∗
k,0(ξm+g) =

p−1∑
j=0

hjξp(q+1)+γ = a∗(ξq+1+γ ).

Then we have

f ∗
k,0(ϑ) =

g∑
m=1

f ∗
k,0(ξmξ(m+g)) = p

γ−1∑
q=0

a∗(ξ(q+1)ξ(q+1)+γ

)= pa∗(ϑ). �

3. Normal bundles of the fixed point sets. Now we shall consider the normal
bundles of the components of the fixed point set of h in SbX . The aim will be to find
a way to compute the characteristic classes of their eigenvector bundles as defined in
(1). Consider the quotient map

f : X → X/〈h〉= Y.

Let g and γ be the genus of X and Y respectively and let R be the ramification divisor
of f in X . From section 2 we know that a component of dimension k is the image of
SkX under the map fk,D for some D ∈ Ak and we identify it with SkY ; the embedding
of SkY into SbX is given by the composition map

SkY
i

↪→ SpkX
AD
↪→ Spk + dk X. (6)

We shall use the following notation:
• Ni for the normal bundle of SkY in SpkX ,
• NAD◦i for the normal bundle of SkY in Spk+dk X and
• NAD for the normal bundle of SpkX in Spk+dk X .

The total Chern class of Ni is given by

c(Ni) = i∗c
(
SpkX

)
c
(
SkY

) .

The Chern class of SdX is given by

(1 + η t)(d−g + 1) e(− ϑ t
1 + η t ) (7)

where g is the genus of X (see [1, p. 339]). Using formula (7) and Lemma 2.2 we obtain

c(Ni) =
(

(1 + η t)A e(− ϑ t
1 + η t )

)p−1
, (8)

where

A =
(

k + γ − g
p − 1

)
= k + 1 − γ − deg(R)

2(p − 1)
.

In particular when k = 1 the normal bundle has degree

(p − 1)
(

2 − 2γ − deg(R)
2(p − 1)

)
.
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Let D ∈ SdX . Using (7) and that A∗
Dη = η and A∗

Dϑ = ϑ we see that the normal bundle
NAD has total Chern class

c
(
NAD

)= (1 + η)d . (9)

LEMMA 3.1. Let x ∈ X be a fixed point of an automorphism h of X of order p. Let
d be a positive integer and let Q = dx ∈ SdX. Suppose that h acts as νa on the tangent
space TX,x of X at x. Then h|(TSd X )Q has eigenvalues νa, ν2a, . . . , νda, where ν = e2iπ/p.

Proof. In a neighbourhood of (x, x, . . . , x) ∈ Xd choose coordinates (x1, . . . , xd)
so that (x, x, . . . , x) is in the origin. Then in a neighbourhood of Q = dx ∈ SdX there
are coordinates (σ1, . . . , σd) (see [1, chap. IV, section 2]) defined by the property that
the natural morphism

Xd → SdX

is given in a neighbourhood of (x, x, . . . , x) by

σi(x1, . . . , xd) = ith symmetric function of (x1, . . . , xd).

Now, if x is a fixed point of an automorphism h of X , we can assume that in a
neighbourhood of x, the action of h is the multiplication by a scalar λ. Then in our
system of coordinates

hxi = λxi

implies

hσi = λiσi. �
Using similar arguments one can proof the following two Lemmas.

LEMMA 3.2. Consider the map fk,0 of section 2. Let

Q = x + hx + · · · + hp−1x

be a point in the image of this map (that means x ∈ SkX). Then h |(TSpkX )Q has eigenvalues
1, ν, . . . νp−1, ν = e2iπ/p, and the eigenspace of ν i has dimension k.

LEMMA 3.3. Consider the divisor D = d1x1 + · · · + dsxs, where xi is a fixed
point of h in X (xi �= xj) and di is a positive integer. Suppose that h acts as νai

(notice (ai, p) = 1) on the tangent space TX,xi . Consider the composition map (6). Let
Q = x + hx + · · · + hp−1x + D be a point in the image of this map. Then the dimension
of the eigenspace for ν i of h | (TSpk + d X )Q is k + ri, where ri is the number of times that ν i

appears in the following list

νa1 , ν2a1 , . . . , νd1a1 ,

νa2 , ν2a2 , . . . , νd2a2 ,
...

νas , ν2as , . . . , νdsas .

The normal bundle NAD◦i has a decomposition

NAD◦i =
p−1⊕
j=0

NAD◦i(ν j).
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We will need to know the Chern classes of the vector bundles NAD◦i(ν j) in order to
compute their characteristic classes. We have an exact sequence

0 → Ni → NAD◦i → i∗NAD → 0

from which we obtain exact sequences

0 → Ni(ν j) → NAD◦i(ν j) → i∗NAD (ν j) → 0. (10)

DEFINITION. Given D ∈ Ak, the class of D is the vector (r1, . . . , rp−1), where rj is
the rank of i∗NAD (ν j).

REMARK 3.4. Consider the exact sequence

0 → TSkY → (AD ◦ i)∗TSnk+d X → NAD◦i → 0.

Since h acts trivially on TSkY we have

(AD ◦ i)∗TSnk+d X (ν j) ∼= NAD◦i(ν j)

for ν j �= 1. Let (r1, . . . , rp−1) be the class of D. Notice from Lemma 3.2 and from the
exact sequence (10) that

rank ((AD ◦ i)∗TSnk + d X (ν j)) = k + rj.

If D is supported on the fixed points of h in X , say D = d1x1 + · · · + dsxs, then from
Lemma 3.3 we see that rj is the number of times that ν j appears in the list

νa1 , ν2a1 , . . . , νd1a1 ,

νa2 , ν2a2 , . . . , νd2a2 ,
...

νas , ν2as , . . . , νdsas .

LEMMA 3.5. Let r be the rank of (i∗NAD )(ν j). Then

c((i∗NAD ) (ν j)) = (1 + η)r.

Proof. It is enough to notice that the Chern class of i∗NAD is (1 + η)d by (9) and
Lemma 2.2. �

LEMMA 3.6. Suppose that h is an automorphism of X of order p such that h is
conjugate to hj in Aut(X). Then c(Ni(νs)) = c(Ni(νsj )).

Proof. Let h be an automorphism of a variety W and suppose that hj = u−1hu
where u ∈ Aut(W ). If Z is a subvariety contained in the fixed point set of h at W such
that u acts on Z, then the action of u on the tangent bundles of W and Z extends to an
action on the normal bundle NZ/W . From this one can see that under the isomorphism
u : NZ/W → NZ/W the eigenvector bundle NZ/W (νs) is mapped to NZ/W (νs j).

In our case the embedding of Z = SkY into W = SpkX is equivariant with respect
to u because fk,0(ux) = ∑p−1

i = 0 uhi jx and, since (p, j) = 1, this is equal to u fk,0(x).
Notice that the composition map (6) is not necessarily equivariant with respect
to u. �
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LEMMA 3.7. Let h be an automorphism of X of prime order p. Assume that 〈h〉 \ {1}
is contained in a conjugacy class of Aut(X). Then

U(Ni(ν)) =
(

1 − 1
ν

)A (
1 − e−tη

ν

)−A

etϑ
(

e−tη

ν−e−tη

)
,

where ν �= 1 is a power of e2iπ/p and A is given by (8). In particular

p−1∏
j=1

U(Ni(ν j)) = pAm(e−ηt)−Aetϑq(e−ηt)

= pAm(e−ηt)−A
γ∑

i = 0

(
tϑq(e−ηt)

)i

i!
, (11)

where m(z) = ∑p−1
i = 0 zi, and q(z) = −zm′(z)

m(z) .

Proof. Using Lemma 3.6 and (8), the Chern class of Ni(νs) is given by

(1 + tη)Ae( −ϑt
1 + ηt )

.

The last can be written as

(1 + tη)A−γ

γ∏
i=1

(1 + tη − tσi).

So using (1), the characteristic class of Ni(ν) is given by

U(Ni(ν)) =
(

1 − e−tη

ν

1 − 1
ν

)γ−A γ∏
i = 1

(
1 − etσi−tη

ν

1 − 1
ν

)−1

.

From (5.4) in [6] (or see proof of Proposition 10.1 (3) in [7]), we have

1 − etσi−tη

ν
= ν − e−tη − e−tηtσi

ν
=

(
ν − e−tη

ν

)(
1 − e−tηtσi

ν − e−tη

)
.

Then

U(Ni(ν)) =
(

1 − e−tη

ν

1 − 1
ν

)γ−A (
ν − e−tη

ν
(
1 − 1

ν

)
)−γ γ∏

i = 1

(
1 − e−tηtσi

ν − e−tη

)−1

=
(

1 − 1
ν

)A (
1 − e−tη

ν

)−A

etϑ
(

e−tη

ν−e−tη

)
. �

Now the following result is clear.

THEOREM 3.8. Let h be an automorphism of X of prime order p. Assume that 〈h〉 \ {1}
is contained in a conjugacy class of Aut(X). Let N be the normal bundle of a component
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of the fixed point set of h in SbX corresponding to the divisor D ∈ Ak. Then

p−1∏
j = 1

U(N(ν j)) = pAm(e−ηt)−Aetϑq(e−ηt)
p−1∏
j = 1

(
1 − e−ηt

ν j

1 − 1
ν j

)−rj

,

where m(z) = ∑p−1
i = 0 zi, q(z) = −zm′(z)

m(z) and (r1, . . . , rp−1) is the class of D.

We have no formula to compute U(Ni(ν j)) for any h ∈ Aut(X), not even in the case
that h has prime order (unless it satisfies the condition that 〈h〉 \ {1} is contained in a
conjugacy class of Aut(X)). In what follows we will explain a way to compute U(Ni(ν j))
when enough information about the quotient map f : X → Y is known and for the
case in which Ni is the normal bundle of the curve Y in SpX under the embedding

i : Y ↪→ SpX.

.

LEMMA 3.9. Let f : X → Y be a degree p morphism of smooth curves. We have

i∗TSpX ∼= f∗f ∗(K−1
Y

)= K−1
Y ⊗ f∗OX .

Proof. Consider the graph map

� : X → X × Y

x �→ (x, f (x)).

Let  be the universal divisor of degree p on X . Consider the following diagram

X ∼= ′ ↪→ X × Y X × SpX


∩

Y SpX

��

�

�i

IdX × i

πφ

where φ : X × Y → Y and π : X × SpX → SpX are the natural projections and ′

denotes (1X × i)∗(). By [1, IV, Lemma 2.1], we have ′ = �(X) ∼= X . Thus by the
adjunction formula we have

O′(′) ∼= f ∗K−1
Y .

Now from [1, IV, section 2], we have i∗π∗O() ∼= φ∗O′(′) and π∗O() ∼=
TSpX . �

Using the following lemma we can compute the degrees of the eigen line bundles
of i∗TSnX and since i∗TSnX (ν j) ∼= Ni(ν j) for ν j �= 1, that is all we need to compute
U(Ni(ν j)). Let Z be a smooth projective variety defined over � and let L be a
line bundle on Z such that a positive power Lp admits a global section s and its
corresponding divisor D has normal crossings. Write D as C + ∑

ajEj where C denotes
the components of multiplicity 1 and Ej is a component of multiplicity aj.
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For every real number x, [x] represents the integral part of x, defined as the only
integer such that

[x] ≤ x < [x] + 1.

Consider the line bundles

L(i) =Li ⊗ OZ


−

∑
j

[
iaj

p

]
Ej


 . (12)

The sheaf of OZ modules
p−1⊕
i = 0

L−i

admits a structure of OZ-algebra, given by the inclusion

s∨ : L−p ↪→ OZ.

Let

Z′ = SpecZ

( p−1⊕
i = 0

L−i

)
,

let τ ′ : Z′ → Z be the associated morphism and n : Z → Z′ the normalization of Z′

and τ the composition of n and τ ′.

LEMMA 3.10. With the previous notation we have

τ∗OZ =
p−1⊕
i=0

L(i)−1
.

Moreover τ is a Galois cyclic cover of degree p, then we have an automorphism
h of Z which acts on τ∗OZ and h acts as multiplication by ν i on L(i)−1

, where
ν = e2πI/p. If Z is irreducible then Z is nothing but the normalization of Z in
K(Z)( p

√
f ), where K(Z) is the function field of Z and f is a rational function giving the

section s.

Proof. See [4, Lemma 2]. �
EXAMPLE 1. Let X be the Klein quartic curve (see [3]). If h is an automorphism of

order 7 then we have that h, h2, h4 are in the same conjugacy class whereas h3, h5, h6

belong to another conjugacy class of Aut(X) = �SL2(F7). In this case we have

X/〈h〉 ∼= �1

and if we consider the normal bundle N of

i : �1 ↪→ S7X

then we see that the eigenvector bundles of N do not have the same degree because the
number A in formula (8) is not an integer.

Let G2 = 〈h〉 and let G1 be the normalizer of G2 in �SL2(F7). One can imitate
the steps followed by Macbeath in [5] to compute the equation of X and then
one notices that X can be constructed by adding a seventh root of a polynomial
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q(z) = (z − a)4(ωz − a)2(ω2z − a) (where ω = e2π i/3) to �(z) (one can also use the
formula (2.2) from [3]). The divisor defined by q(z) in �1 has the form 4p0 + 2p1 + p2,
then by Lemma 3.9 and by Lemma 3.10 we have that

N ∼= K−1
�1 ⊗

6⊕
i=1

L(i)−1
.

Using (12) we see that

L(i)−1 =
{
O�1 (−1) for i = 1, 2, 4

O�1 (−2) i = 3, 5, 6.
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