(C, \uparrow, \mathfrak{u})-HOMOGENEITY OF PROJECTIVE PLANES AND POLARITIES

W. JÓNSSON

In (1) Baer introduced the concept of (C, γ)-transitivity and (C, γ)homogeneity. A projective plane (see (5) for the requisite definitions and axioms) is (C, γ)-transitive if, given an ordered pair (P_{1}, P_{2}) of points collinear with C but distinct from C and not on γ, there is a collineation which maps P_{1} into P_{2} and leaves fixed every point on γ as well as every line through C. A projective plane is (C, γ)-homogeneous for a non-incident point-line-pair if it is (C, γ) transitive and there is a correlation which maps every line through C into its intersection with γ and every point on γ into its join with C.

The concept of (C, γ)-homogeneity was extended in (4) to what was there called (C, γ, μ)-homogeneity.

A projective plane is (C, γ, μ)-homogeneous if
(1) it is (C, γ)-transitive,
(2) there is a correlation τ whose square is a central collineation with centre C and axis γ (i.e., τ^{2} fixes every point on γ and every line through C).

The correlation τ induces a mapping μ of the lines through C onto the points of γ. Clearly τ and $\sigma \tau$ (where σ is a central collineation with centre C and axis γ) induce the same mapping μ.

Note. C could be incident with γ. There are examples of projective planes which are (C, γ, μ)-homogeneous for both incident and non-incident point-linepairs (4).

It is of some interest to know whether one can always choose the correlation τ in such a way that τ^{2} is the identity. In what follows, it will be seen that this is always possible if C lies on γ. If C does not lie on γ this is still an open question.

Theorem 1. Let © be a projective plane which is (C, γ, μ)-homogeneous, $C \in \gamma$. Then 区 has a polarity (correlation of order 2) which interchanges C with γ and induces the mapping μ.

Proof. Set up a ternary ring (we use here Pickert's version of the Hall ternary ring (5) in the plane with the fundamental quadrangle O, U, V, E). Choose $C=V, O$ not on $\gamma, U=(O V)^{\mu}$, and for later convenience we choose $E=O W \cap(W)^{\mu}$, where W is a point on $U V$ distinct from U and V. Points have co-ordinates (x, y) with $x, y \in \mathfrak{I}$ if they are not on $U V$; and $(m), m \in \mathfrak{T}$,

Received January 14, 1964.
if they are on $U V$ but distinct from V. The points on the line $O E$ but not on $U V$ satisfy the equation $y=x ; O=(0,0), E=(1,1), U=(0)$. The line joining (m) and $(0, b)$ has the co-ordinates $[c]$. The ternary operation \mathbf{T} maps $\mathfrak{I} \times \mathfrak{I} \times \mathfrak{I} \rightarrow \mathfrak{T}$ and is defined by $y=\mathbf{T}(m, x, b)$ if and only if the point (x, y) lies on the line $[m, b]$. Addition $(\mathfrak{I},+)$ is defined by $a+b=\mathbf{T}(1, a, b)$, $a, b \in \mathfrak{T}$; multiplication (\cdot) is defined by $a \cdot b=\mathbf{T}(a, b, 0)$.

E is $(V, U V, \mu)$-homogeneous and therefore $(V, U V)$-transitive. It is well known ($5, \mathrm{p} .100$) that $(V, U V)$-transitivity is equivalent to the first splitting law, $\mathbf{T}(m, x, b)=m x+b$, together with the associativity of addition.

We now consider an analytic representation of \mathbb{E}. Since a line through V is mapped into a point on $U V$, and furthermore $(U V)^{\mu}=V$, there is a mapping of \mathfrak{I} onto \mathfrak{I} which may (without danger of confusion) also be called μ, such that:

$$
[c]^{\mu}=\left(c^{\mu}\right)
$$

Because $(O V)^{\tau}=U, 0^{\mu}=0$ and because $(E V)^{\tau}=W, 1^{\mu}=1$. Since a point on $U V$ is mapped onto a line through V, there is a mapping ν of \mathfrak{I} onto \mathfrak{I} such that:

$$
(m)^{\tau}=\left[m^{\nu}\right]
$$

Because $U^{\tau}=O V, 0^{\nu}=0$ and because $W^{\tau}=E V, 1^{\nu}=1$. Since a point of $O V$ is mapped onto a line through U, there is a mapping π of \mathfrak{I} onto \mathfrak{I} such that:

$$
(0, b)^{\tau}=\left[0, b^{\pi}\right]
$$

By definition,

$$
[m, b]=(m) \cup(0, b)
$$

Thus

$$
[m, b]^{\tau}=(m)^{\tau} \cap(0, b)^{\tau}=\left[m^{\nu}\right] \cap\left[0, b^{\pi}\right]=\left(m^{\nu}, b^{\pi}\right) ;
$$

therefore $[0, b]^{\tau}=\left(0, b^{\pi}\right)$ because $0^{\nu}=0$. Because $(x, y)=[x] \cap[0, y]$, we get

$$
(x, y)^{\tau}=[x]^{\tau} \cup[0, y]^{\tau}=\left(x^{\mu}\right) \cup\left(0, y^{\pi}\right)=\left[x^{\mu}, y^{\pi}\right] .
$$

Incidence is preserved by a correlation; thus

$$
y=m x+b \rightleftharpoons b^{\pi}=x^{\mu} m^{\nu}+y^{\pi}
$$

and we get the incidence equation

$$
b^{\pi}=x^{\mu} m^{\nu}+(m x+b)^{\pi}
$$

for all $m, x, b \in \mathfrak{T}$. Let

$$
\begin{aligned}
x & =1: b^{\pi}=m^{\nu}+(m+b)^{\pi} ; \\
m & =1: b^{\pi}=x^{\mu}+(x+b)^{\pi} .
\end{aligned}
$$

This clearly implies that $\mu=\nu$.

Let $x=1, b=0: 0^{\pi}=m^{\nu}+m^{\pi}$. Thus $m^{\pi}-0^{\pi}=-m^{\nu}$ for all $m \in \mathbb{I}$ since \mathfrak{I} is a group under addition. Consider the incidence equation

$$
\begin{aligned}
b^{\pi} & =x^{\nu} m^{\nu}+(m x+b)^{\pi} \\
b^{\pi} & -0^{\pi}=x^{\nu} m^{\nu}+(m x+b)^{\pi}-0^{\pi} \\
-b^{\nu} & =x^{\nu} m^{\nu}-(m x+b)^{\nu}
\end{aligned}
$$

Setting $b=0$ gives $x^{\nu} m^{\nu}=(m x)^{\nu}$. Setting $m=1$ gives $-x^{\nu}-b^{\nu}=-(x+b)^{\nu}$, i.e.,

$$
(x+b)^{\nu}=b^{\nu}+x^{\nu} .
$$

Thus ν is an anti-isomorphism with respect to both addition and multiplication.
The mapping ρ defined below is the required polarity:

$$
\begin{aligned}
(x, y)^{\rho} & =\left[x^{\nu},-y^{\nu}\right], & {[m, b]^{\rho} } & =\left(m^{\nu},-b^{\nu}\right), \\
(m)^{\rho} & =\left[m^{\nu}\right], & {[x]^{\rho} } & =\left(x^{\nu}\right), \\
V^{\rho} & =U V, & (U V)^{\rho} & =V .
\end{aligned}
$$

We need only check two things: first that ρ preserves incidence, and second that ρ induces the same mapping μ of lines through V onto points on $U V$ as did τ. The second is easily verified. To verify that ρ preserves incidence we need only show that

$$
y=m x+b \rightleftharpoons-b^{\nu}=x^{\nu} m^{\nu}-y^{\nu}
$$

and this follows immediately from the fact that ν is an anti-isomorphism with respect to both addition and multiplication.

The existence of this anti-isomorphism has as an immediate consequence that \mathbb{E} is $\left(U, O V, \mu^{\prime}\right)$-homogeneous for a suitable mapping μ^{\prime} if and only if \mathfrak{F} is $(U, O V)$-transitive. This is because the polarity ρ interchanges U with $O V$.

In (4) a Lenz-Barlotti classification of projective planes according to the amount of (C, γ, μ)-homogeneity was given. This can be thought of as a refinement of the original classification of Lenz and Barlotti. They classified projective planes according to the amount of (C, γ)-transitivity.

Because of Theorem 1 and the above remarks we have the following:
Corollary 1. A plane of class III-2 belongs to either class A- β, c- β, or A- α.
Corollary 2. A plane of class II-2 belongs to one of the classes A- α, А- β or в- β.
Proof. Here the notation of (2) and (3) is used. A plane belongs to class III-2 if there is a point R and a line r not incident with R such that \mathbb{E} is (C, γ) transitive for the point-line-pairs of the set

$$
\{(R, r)\} \cup\{(P, P R) ; P I r\}
$$

and for no others.
A plane belongs to class II-2 if it is (C, γ)-transitive for the two point-linepairs (C_{1}, γ_{1}), (C_{2}, γ_{2}) whereby $C_{i} I \gamma_{1}, C_{1} I \gamma_{j}, i, j=1,2$. A plane belongs to
class A- α according to (4) if there is no point-line-pair (C, γ) such that \mathbb{E} is (C, γ, μ)-homogeneous. Clearly a plane of class II-2 or III-2 could belong to the class A- α.

A plane belongs to class A- β according to (4) if there is exactly one point-linepair (C, γ) such that C is not on γ, for there is a mapping μ such that \mathbb{E} is (C, γ, μ)-homogeneous. If the plane were also of class II-2, then clearly $C=C_{2}, \gamma=\gamma_{2}$ because the (C, γ, μ)-homogeneity implies the (C, γ)-transitivity. If the plane were also of class III-2 then $C=R$ and $\gamma=r$.

A plane belongs to class c- β if there is a point R and a line r such that those point-line-pairs (C, γ) for which there is a μ with $\Subset(C, \gamma, \mu$)-homogeneous is the set $\{(R, r)\} \cup\{(P, P R) ; P I r\}$.

Assume that \mathbb{E} belongs to class III-2 and that there is a $P I r$ for which there exists a μ such that \mathbb{E} is $(P, P R, \mu)$-homogeneous. Clearly the group of central collineations of \mathbb{F} is transitive on the points of R. Therefore to every QIr there is a collineation σ such that $P^{\sigma}=Q, R^{\sigma}=R, r^{\sigma}=r$. Because of Theorem 1, there is a polarity ρ which interchanges P and $P R$ and induces μ. The correlation $\sigma^{-1} \rho \sigma$ is also a polarity and $Q^{\sigma^{-1} \rho \sigma}=P^{\sigma \sigma^{-1} \rho \sigma}=(P R)^{\sigma}=Q R$. Consider $R^{\sigma^{-1} \rho \sigma}$; every automorphism of \mathbb{E} maps the pair (R, r) onto itself since this is the only point-line-pair for which \mathbb{E} is (C, γ)-transitive. Hence, since $\sigma^{-1} \rho \sigma$ is a correlation, $R^{\sigma^{-1} \rho \sigma}=r$. Furthermore, $\sigma^{-1} \rho \sigma$ induces the mapping $\sigma^{-1} \mu \sigma$ of the lines through Q onto the points of $Q R$. The ($P, P R$)-transitivity implies the $\left(P^{\sigma},(P R)^{\sigma}\right)=(Q, Q R)$-transitivity. Therefore © is $\left(Q, Q R, \sigma^{-1} \mu \sigma\right)$ homogeneous. Because of previous remarks, there is also a mapping μ^{\prime} of the lines through R onto the points of r such that © is $\left(R, r, \mu^{\prime}\right)$-homogeneous. This shows that the plane belongs to the class c- β. There are no other possibilities for a plane of class III-2.

In (4) it was shown that the classical Moulton plane belongs to class c- β.
Corollary 2 is proved in the same way as Corollary 1, so the proof will be omitted.

References

1. R. Baer, Homogeneity of projective planes, Amer. J. Math., 64 (1942), 137-52.
2. A. Barlotti, Le possibili configurazioni del sistema delle coppie punto-retta (A, a) per cui un plano grafico risulta (A, a) transitivo, Boll. U.M.I., 12 (1957), 212-26.
3. H. Lenz, Kleiner Desarguesscher Satz und Dualität in projektiven Ebenen, Jber. Dtsch. Math. Ver., 57 (1954), 20-31.
4. W. J. Jónsson, Transitivität und Homogenität projektiver Ebenen, Math. Z., 80 (1963), 269-92.
5. G. Pickert, Projektive Ebene (Berlin, 1955).

University of Manitoba

