Multimodality imaging in delineation of complex sinus venosus defects and treatment outcomes over the last decade*

Li Y. Ng†, Lars Nolke‡, Adam James§, Brian Grant∥, Orla Franklin†,
J. Mark Redmond‡, Jonathan McGuinness§, Kevin Walsh† and Colin J. McMahon†∥‡

1Department of Paediatric Cardiology, Children’s Health Ireland at Crumlin, Dublin, Ireland; 2Department of Cardiothoracic Surgery, Children’s Health Ireland at Crumlin, Dublin, Ireland; 3Department of Paediatric Cardiology, Royal Belfast Children’s Hospital, Belfast, Northern Ireland; 4School of Medicine, University College Dublin, Dublin, Ireland and 5School of Health Professions Education, Maastricht University, Maastricht, Netherlands

Abstract

Background: Diagnosis of sinus venosus defects, not infrequently associated with complex anomalous pulmonary venous drainage, may be delayed requiring multimodality imaging. Methods: Retrospective review of all patients from February 2008 to January 2019. Results: Thirty-seven children were diagnosed at a median age of 4.2 years (range 0.5–15.5 years). In 32 of 37 (86%) patients, diagnosis was achieved on transthoracic echocardiography, but five patients (14%) had complex variants (four had high insertion of anomalous vein into the superior caval vein and three had multiple anomalous veins draining to different sites, two of whom had drainage of one vein into the high superior caval vein). In these five patients, the final diagnosis was achieved by multimodality imaging and intra-operative findings. The median age at surgery was 5.2 years (range 1.6–15.8 years). Thirty-one patients underwent double patch repair, four patients a Warden repair, and two patients a single-patch repair. Of the four Warden repairs, two patients had a high insertion of right-sided anomalous pulmonary vein into the superior caval vein, one patient had bilateral superior caval veins, and one patient had lower pulmonary vein insertion into the right atrium/superior caval vein junction. There was no post-operative mortality, re-operation, residual shunt or pulmonary venous obstruction. One patient developed superior caval vein obstruction and one patient developed atrial flutter. Conclusion: Complementary cardiac imaging modalities improve diagnosis of complex sinus venosus defects associated with a wide variation in the pattern of anomalous pulmonary venous connection. Nonetheless, surgical treatment is associated with excellent outcomes.

Introduction

Sinus venous defect is a rare cause of interatrial communication representing up to 11% of all cases. Peacock described this defect permitting the interatrial communications as distinct from the normal atrial septum; hence, it is not a true atrial septal defect.1 It has been well-established that the morphological criterion for diagnosis is the integrity of the rims of the oval fossa.2,3 Previous authors described “unroofing” of the right pulmonary veins as the explanation for such defects, on the basis that a “shared wall” normally separated these venous structures from the superior caval vein and the cavity of right atrium.4 However, this concept has been refuted as this “shared wall” is in fact an interatrial groove arising from an infolding of the atrial walls between the atrial connections of the caval and pulmonary veins, rather than a true atrial septum.5,6 This aetiology was further validated by elegant epicopic microscopy studies.7,8 In a review by Crystal et al. describing patients with inferior sinus venosus defects, the authors described the defining diagnostic feature as the anomalous connection of one or more pulmonary veins to the inferior caval vein, with the anomalous pulmonary vein or veins retaining their connection with the left atrium.2 Recent anatomical studies have provided further evidence to support these defects representing veno-venous bridges allowing the interatrial communication.7–10

The pre-operative diagnosis of sinus venosus defects can be challenging and may be missed by solely relying on conventional planes in transthoracic echocardiography. This is due to the defects’ close relationship with either the superior or inferior vena cava, outside the confines of the true interatrial septum.11–15 Several studies have demonstrated echocardiographic subcostal sagittal-oblique bicaval view with use of colour flow mapping improves the detection rates of sinus venosus defects, notwithstanding the challenges in older obese patients due to poor echocardiographic windows.2,13–18 Transoesophageal echocardiography is one of the imaging modalities of choice for this cardiac defect.19–21 Other advanced cardiac imaging modalities such as cardiac MRI,22 cardiac CT,23,24 and rarely, cardiac catheterisation14 have been used to
complement the diagnosis of sinus venousus defects and delineation of anomalous pulmonary venous drainage.

The standard treatment for this defect has, up until recently, been surgical repair, although transcatheter closure in a selected group of patients is now increasingly an option.25–32 Surgery aims to baffle the anomalously venous connection via the interatrial communication into the left atrium with or without enlarging the interatrial communication. Various surgical techniques have been well described with good results, including a single-patch baffle, double patch baffle, or Warden repair. However, there are associated low risks of sinus node dysfunction, atrial arrhythmias, and pulmonary or systemic venous occlusion after surgery.33–44

This study aimed to review the prevalence of complex sinus venousus defects defined as either the presence of multiple anomalous pulmonary venous sites or high insertion of the anomalous pulmonary vein into the superior caval vein, ascertain the imaging modalities employed in delineating the anatomical variants, and the surgical outcome in this cohort of patients.

Methods

All patients who had a diagnosis of sinus venousus defect with partial anomalous right pulmonary venous drainage who underwent surgical repair were identified retrospectively from a dedicated National Institute of Cardiology Outcomes Research database from 2008 to 2019. Each patient’s medical records, diagnostic imaging modalities, and follow-up details were documented. Ethical approval was obtained from the Hospital Research Ethics Board.

Demographic and clinical details

Demographic details including patient age, gender, and weight at the time of the diagnosis and surgical repair were recorded. We documented the clinical symptoms at the initial presentation and the imaging modality used to reach the diagnosis. The primary outcome was procedural success (defined as successful completion of intended surgical procedure without revision). In addition, we noted any significant procedure-related complications.

Results

Patient demographic details are shown in Table 1. From 2008 to 2019, 37 children (20 male and 17 female) underwent surgical repair for sinus venousus defect with partial anomalous pulmonary venous drainage. Thirty-six of the patients have a diagnosis of sinus venousus defect and one patient was diagnosed with an inferior sinus venousus defect.

The median age at diagnosis was 4.2 years (range 0.5–15.5 years of age). In 32 of 37 (86%) patients, sinus venousus defect was diagnosed and partial anomalous pulmonary venous drainage was suspected or diagnosed by two-dimensional transthoracic echocardiogram including a subcostal sagittal-oblique bivacal view scanning from the sinus venousus defect to the anomalous pulmonary venous connection (Fig 1). In 5 of the 37 patients, the sinus venousus defect could not be visualised on transthoracic echocardiogram alone. In three of these five patients, who presented with unexplained right ventricular volume overload, the final diagnosis was achieved by transoesophageal echocardiogram (Fig 2); one of these three patients underwent further diagnostic cardiac catheterisation and cardiac CT. In two of these five patients, the diagnosis of sinus venousus defect and partial anomalous pulmonary venous drainage was reached intra-operatively. One of these two patients has an additional diagnosis of complex ventricular septal defect and the other was diagnosed with an inferior sinus venousus defect.

Variations of pulmonary venous drainage

The most common type of partial anomalous pulmonary venous drainage noted in this cohort was right upper and/or right middle pulmonary veins draining into the superior caval vein. The patterns of insertion of the pulmonary veins are variable with low right superior caval vein being the commonest insertion point (19 of 37 patients). In ten cases, the anomalous pulmonary veins inserted into the right superior caval vein and right atrial junction (Fig 3). In three cases, the anomalous pulmonary veins drain directly into right atrium.

Five patients had complex pulmonary venous variants. Four patients had high insertion of anomalous vein into the superior caval vein (Fig 4) and three patients had multiple anomalous veins draining to different sites, two of whom had high drainage of one vein to the superior caval vein (Fig 5). Six of the 37 patients have bilateral superior caval veins.

Surgical management

The median age at the time of surgery was 5.2 years (range 1.6–15.8 years) and median weight was 21.7 kg (range 10.7–88 kg). Thirty-one patients underwent a double patch repair, four patients underwent a Warden repair, and two patients underwent a single-patch repair. Of the four patients who underwent a Warden repair, two of these four patients had a high insertion of right-sided anomalous pulmonary vein into the superior caval vein, one of these four patients had bilateral superior caval veins with relative hypoplastic right superior caval vein, and one patient had drainage of the right lower pulmonary vein to the right atrial and superior caval vein junction.

Follow-up

The median range of follow-up was 3.2 years (6 days–11.4 years). There was no mortality, reoperation, residual shunt, or pulmonary venous obstruction reported. One patient developed moderate degree of obstruction at the superior caval vein and right atrial junction at 8 months post-operatively; he subsequently underwent successful balloon dilatation to relieve the obstruction. One patient developed atrial flutter 2 months post-operatively and required cardioversion with restoration of sinus rhythm. No patient developed sinus node dysfunction.

Discussion

This study describes a heterogeneous group of children with sinus venousus defects, the majority of them were asymptomatic at presentation. The diagnostic sensitivity for sinus venousus defects was 86% (32 of 37) using transthoracic echocardiographic imaging including modified subcostal bivacal views. Transoesophageal echocardiography imaging was helpful in establishing the presence of sinus venousus defect in an additional three patients, increasing the total diagnostic yield of the echocardiographic examination from 86 to 94.5%. Transoesophageal echocardiographic imaging is proven to be a reliable supplementary diagnostic modality.

https://doi.org/10.1017/S1047951121003851 Published online by Cambridge University Press
Table 1. Patient demographic details, patterns of anatomical variation, and surgical outcomes

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age at surgery (year)</th>
<th>Symptoms/signs</th>
<th>TTE</th>
<th>TOE</th>
<th>CMR</th>
<th>Others imaging modality</th>
<th>Operative findings</th>
<th>Type of repair</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A: Superior SVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.9</td>
<td>Murmur</td>
<td>SVD, Rt PAPV</td>
<td>SVD, RUPV → R SCV</td>
<td>–</td>
<td>–</td>
<td>SVD, RUPV → SCV/RA</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.5</td>
<td>Intermittent tachypnoea</td>
<td>SVD, Rt PAPV, bilateral SCVs</td>
<td>–</td>
<td>SVD, RU/RMPV → SCV/RA</td>
<td>–</td>
<td>SVD, RU/RMPV → SCV/RA, Smaller R SCV below the PVs</td>
<td>Warden repair</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.8</td>
<td>Murmur</td>
<td>SVD, Rt PAPV</td>
<td>–</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>–</td>
<td>SVD, RU/RMPV → RA</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.7</td>
<td>Intermittent cyanosis</td>
<td>SVD, normal PVs → LA</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SVD, RUPV high insertion → R SCV</td>
<td>Warden repair</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>FTT, effort intolerance, suspected Rt PAPV</td>
<td>SVD, suspected Rt PAPV</td>
<td>–</td>
<td>SVD, Rt PAPV</td>
<td>–</td>
<td>SVD, RUPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12.5</td>
<td>DS, murmur, PDA</td>
<td>SVD, suspected Rt PAPV</td>
<td>–</td>
<td>–</td>
<td>Diagnostic cath showed SVD, Rt PAPV</td>
<td>SVD, RU/RMPV → SCV/RA at the level of azygous vein entry</td>
<td>Warden repair</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10.5</td>
<td>Effort intolerance</td>
<td>SVD, suspected Rt PAPV</td>
<td>–</td>
<td>SVD, RU/RMPV → SCV/RA</td>
<td>–</td>
<td>SVD, RU/RMPV → SCV/RA</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.9</td>
<td>Murmur</td>
<td>SVD, suspected Rt PAPV</td>
<td>SVD, All Rt PVs → R SCV</td>
<td>–</td>
<td>–</td>
<td>SVD, RU/RMPV → SCV/RA</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.2</td>
<td>Murmur</td>
<td>SVD, Rt PAPV</td>
<td>SVD, RLPV → RA</td>
<td>–</td>
<td>–</td>
<td>No intra-operative description</td>
<td>Warden repair</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.7</td>
<td>Murmur</td>
<td>SVD, RUPV → RA</td>
<td>SVD, RUPV → RA</td>
<td>–</td>
<td>–</td>
<td>SVD, RU/RMPV → SCV/RA</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.5</td>
<td>Murmur</td>
<td>SVD, Rt PAPV</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SVD, RU/RMPV → SCV/RA</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9.1</td>
<td>Murmur</td>
<td>SVD, Rt PAPV, bilateral SCVs</td>
<td>–</td>
<td>SVD, RU/RMPV → SCV/RA</td>
<td>–</td>
<td>SVD, RU/RMPV → SCV/RA</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.3</td>
<td>Intermittent cyanosis</td>
<td>SVD, Rt PAPV</td>
<td>SVD, RUPV → SCV/RA</td>
<td>–</td>
<td>–</td>
<td>Diagnostic cath showed SVD, RUPV → SCV/RA</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3.2</td>
<td>Murmur</td>
<td>SVD, Rt PAPV, bilateral SCVs</td>
<td>–</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>–</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15.8</td>
<td>rSR on ECG</td>
<td>SVD, suspected Rt PAPV</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>–</td>
<td>–</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>DCSA VSD</td>
<td>DCSA VSD</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>DCSA VSD, SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>14.7</td>
<td>Murmur</td>
<td>SVD, suspected Rt PAPV</td>
<td>SVD, RUPV → RA</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>–</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>10.3</td>
<td>Murmur</td>
<td>SVD, RUPV → RA</td>
<td>SVD, RUPV → R SCV</td>
<td>–</td>
<td>–</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Age (y)</td>
<td>Diagnosis</td>
<td>Procedure</td>
<td>Repair Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------------------------------------</td>
<td>--</td>
<td>------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6.2</td>
<td>2° ASD, BPA stenosis, RVVO</td>
<td>2° ASD, BPA stenosis, RVVO</td>
<td>2° ASD, SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>13.8</td>
<td>Murmur, palpitation</td>
<td>SVD, suspected Rt PAPVD</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2.3</td>
<td>Murmur, LRTI</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.7</td>
<td>Murmur</td>
<td>SVD, All Rt PVs → RA</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>11.8</td>
<td>Effort intolerance</td>
<td>SVD, suspected Rt PAPVD</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.2</td>
<td>CoA repair, progressive RVVO</td>
<td>SVD, suspected Rt PAPVD</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>One-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3.7</td>
<td>Murmur, LRTI</td>
<td>SVD, RT PAPVD</td>
<td>CTA showed SVD, RU/RMPV → SCV/RA</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>6.5</td>
<td>2° ASD, BPA stenosis, RVVO</td>
<td>2° ASD, SVD, RUPV → SCV/RA</td>
<td>2° ASD, SVD, RUPV → SCV/RA</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>15.6</td>
<td>Murmur</td>
<td>SVD, suspected Rt PAPVD</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>11.7</td>
<td>Murmur</td>
<td>Mild PH, RVVO, bilateral SVCs</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>8.7</td>
<td>Mild PS</td>
<td>Progressive RVVO</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>10.2</td>
<td>Murmur</td>
<td>SVD, RT PAPVD, bilateral SCVs</td>
<td>SVD, RU/RMPV → SCV/RA</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5.2</td>
<td>Murmur</td>
<td>SVD, RT PAPVD</td>
<td>CTA showed SVD, RU/RMPV → R SCV; 1 higher PV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>4.8</td>
<td>Screening for FHx of CHD</td>
<td>SVD, RT PAPVD, bilateral SCVs</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>7.4</td>
<td>Murmur, LRTI</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>SVD, RU/RMPV → SCV/RA</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4.9</td>
<td>Cardiomegaly on CXR</td>
<td>SVD, suspected Rt PAPVD</td>
<td>CTA showed SVD, RU/RMPV → SCV/RA</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>15.2</td>
<td>Screening for FHx of CHD</td>
<td>SVD, RUPV → SCV/RA</td>
<td>SVD, RU/RMPV → R SCV</td>
<td>Two-patch repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table 1. Continued

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age at surgery (year)</th>
<th>Symptoms/signs</th>
<th>Operative findings</th>
<th>Type of repair</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1116 L. Y. Ng et al.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>7.3</td>
<td>SVT, LRTI</td>
<td>SVD, suspected Rt SVD, RUPV → R SCV/RMPV at the level of azygous vein entry</td>
<td>Two-patch repair</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>2° ASD</td>
<td>Progressive RVVO, 2°ASD with good anterior rim, absent posteroinferior or MC rim</td>
<td>One-patch repair</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations:
- = to
- 2°ASD = secundum atrial septal defect
- BPA = branch pulmonary arteries
- CHD = congenital heart disease
- CMR = computer tomographic angiogram
- CXR = chest X-ray
- DCSA = diagnostic cardiac catheterisation
- DS = down syndrome
- FHx = family history
- FTT = failure to thrive
- ICV = inferior caval vein
- LA = left atrium
- LRTI = lower respiratory tract infection
- PDA = patent ductus arteriosus
- PH = pulmonary hypertension
- PS = pulmonary stenosis
- RA = right atrium
- RSCV = right superior caval vein
- RLPV = right lower pulmonary vein
- RM/RLPV = right middle and right lower pulmonary veins
- RMPV = right middle pulmonary vein
- RUPV = right upper pulmonary vein
- RVVO = right ventricular volume overload
- SCV/RA = right superior caval vein and right atrial junction
- SCVs = superior caval veins
- SVD = sinus venosus defect
- SVT = supraventricular tachycardia
- TOE = transoesophageal echocardiogram
- TTE = transthoracic echocardiogram.

This study highlighted a variation in preference for modality of the complementary imaging to aid confirmation of the diagnosis of sinus node defects, which is at the discretion of the attending paediatric cardiologist. With evolution in advanced cardiac imaging modalities, cardiac MRI and cardiac computer tomographic angiogram are increasingly used to aid diagnosis. Diagnostic cardiac catheterisation is rarely used nowadays to avoid radiation exposure.11,22–24

This study shows that the variation of the anomalous right pulmonary venous connections remains a diagnostic challenge. From this retrospective study and in the previous studies,22–24 MRI (Fig 6) and CT imaging appear to be superior amongst imaging modalities in accurately delineating the anomalous pulmonary venous drainage, although the individual cardiologist’s preference may vary between these modalities.

The surgical techniques used in our cohort of patients included a single-patch repair, double repair, and the Warden repair. The double patch repair was the dominant procedure performed. This is dependent on the complexity of the anatomy, anomalous pulmonary venous connections, and the surgeon’s preference. A meta-analysis published by Okonta and Tamatey45 looking at ten previous publications comparing the outcome of double- or single-patch repair reported that the adoption of double patch repair or the use of transcaval repair technique in single-patch repair was associated with a lower risk of venous obstruction. One patient (1/31 or 3%) from the double patch repair cohort from our study developed an obstruction at the superior caval vein and right atrial junction at 8 months post-operatively. He underwent successful balloon dilatation to relieve the obstruction subsequently. The incidence of superior caval vein obstruction in this study is comparable46 or lower when compared to previous studies.34,47 Post-operative sinus node dysfunction is more common in patients with single-patch or two-patch repair.34,36,41,47,48 In this study, no patient developed sinus node dysfunction. Potential mechanisms causing sinus node dysfunction may include an anatomic anomaly of the sinus node and surgical trauma to the sinus node or to its blood supply.16,49 Atrial arrhythmia is commonly reported both early and late after closure of these interatrial connections.
One patient in this cohort developed late onset atrial flutter that responded to cardioversion. Potential mechanisms for atrial arrhythmia in these patients may include sinus node dysfunction with bradycardia-dependent atrial arrhythmias, scar-dependent multiple re-entries, and increased atrial size.

Although the surgical repair of this defect remains the gold standard, in recent years transcatheter closure has become an option in a select group of patients. In 2014, Garg et al. reported a transcatheter closure of sinus venous defect in a patient with bilateral superior caval veins, using a covered stent in the superior caval vein to close the defect and redirect the right upper pulmonary vein flow around the stent into the left atrium. With meticulous pre-procedural planning using balloon interrogation, image fusion guidance, or even holographic augmented reality, these initial reports have demonstrated the feasibility and safety of transcatheter closure of sinus venous defect in these patients in short to medium term. The transcatheter approach however may not be suitable in patients with right upper pulmonary vein that connects to high right superior caval vein or a relatively hypoplastic right superior caval vein especially in the presence of bilateral superior caval veins due to the risk of pulmonary venous obstruction by the covered stent.

Conclusion
Complementary imaging modalities to transthoracic echocardiography are often required to delineate the exact pulmonary venous patterns in patients with sinus venous defect. The pattern of anomalous pulmonary venous connection may be highly variable and complex in up to 14% of patients, including high insertion points and multiple drainage sites. Despite this, surgical treatment is associated with an excellent outcome and minimal complications. With progressive evolution in congenital cardiac catheterisation, a move to transcatheter closure has been shown to be suitable in select cases.

Acknowledgements. We are grateful to Ms. Ruth Brennan for assistance in formatting the manuscript and Mr. Andrew Pendred for assistance in providing the images.

Financial support. None.

Conflict of interest. None.

Ethical approval. This work complies with the ethical standards of the relevant national guidelines and with the Helsinki Declaration of 1975, as revised in 2008 and was approved by the Ethics committee at CHI Crumlin, Dublin, Ireland.
Figure 4. (a and b) Cardiac angiography demonstrating anomalous right middle pulmonary vein (RMPV) into right superior caval vein/right atrium junction. RA=right atrium.

Figure 5. (a and b) Cardiac angiography demonstrating high insertion of right upper pulmonary vein (RUPV) into right superior caval vein.

Figure 6. (a and b) Magnetic resonance angiography highlighting drainage of the right upper (RUPV) and right middle (RMPV) pulmonary veins draining into the right superior caval vein. RA=right atrium; LA=left atrium.
dilated. conical Covered CP stent. The pulmonary vein is protected throughout by keeping the high pressure balloon inflated inside the pulmonary vein whenever the covered stent is inflated.

References

