Therefore the equations of this axis are

$$
x\left(F+f a^{\prime}\right)=y\left(G+g a^{\prime}\right)=\approx\left(H+h a^{\prime}\right)
$$

Similar equations hold for the other axes, with b^{\prime} and c^{\prime} instead of a^{\prime}.

Lawrence Crawford.

Proofs of some Inequalities and Limits.

In his article in No. 20, Professor Gibson gives proofs of the inequalities $1-n a<(1-a)^{n}<\frac{1}{1+n a}$ with certain restrictions as to the values of n and a. The mode of proof, avoiding as it does the use of the Binomial Theorem, is comparatively short and simple. The following mode of proof is, I think, still simpler, as it does not involve the use of Mathematical Induction.

If n is a positive integer and a positive, we have

$$
\begin{align*}
& \frac{(1+a)^{n}-1}{(1+a)-1}=(1+a)^{n-1}+(1+a)^{n-2}+(1+a)^{n-3}+\ldots+(1+a)+1 \\
& >n, \\
& \quad \therefore \quad(1+a)^{n}-1>n a, \\
& \tag{1}\\
& \left.\quad \therefore \quad(1+a)^{n}>1+n a . \quad \ldots \ldots \ldots \ldots \ldots \ldots\right)(1)
\end{align*}
$$

Again, n being a positive integer and a a positive proper fraction, we have

$$
\begin{align*}
& \frac{1-(1-a)^{n}}{1-(1-a)}=1+(1-a)+(1-a)^{2}+\ldots+(1-a)^{n-1} \\
&<n, \\
& \therefore \quad 1-(1-a)^{n}<n a \\
& \therefore \quad(1-a)^{n}>1-n a . \ldots \ldots \ldots \ldots \ldots \tag{2}
\end{align*}
$$

Then, since $(1-a)(1+a)=1-a^{2}$
<1,
$\therefore \quad 1-a<\frac{1}{1+a}$,

$$
\therefore \quad(1-a)^{n}<\frac{1}{(1+a)^{n}},
$$

$$
\begin{equation*}
\therefore \quad \text { by }(1),<\frac{1}{1+n a} \tag{3}
\end{equation*}
$$

(243)

With the further restriction that $n a$ should be a proper fraction, and therefore 1-na positive, we have

$$
\begin{align*}
(1+a)^{n} & <\frac{1}{(1-a)^{n}} \\
\therefore \quad \text { by }(2) & <\frac{1}{1-n a} . \tag{4}
\end{align*}
$$

Professor Gibson applies these inequalities to prove

$$
\operatorname{Lim}_{n \rightarrow \infty}\left(\cos \frac{x}{n}\right)^{n}=1 \text { and } \operatorname{Lim}_{n \rightarrow \infty}\left\{\left(\sin \frac{x}{n}\right) / \frac{x}{n}\right\}^{n}=1
$$

It is perhaps worth noting that (2), or something equivalent to it, is required to establish the formula for the "sum to infinity" of a geometrical progression of which the "common ratio" is a proper fraction.

It is, of course, easy to prove that

$$
c+c r+c r^{2}+\ldots+c r^{n-1}=\frac{c}{1-r}-\frac{c r^{n}}{1-r}
$$

but to deduce the result $\operatorname{Lim}_{n \rightarrow \infty}\left(c+c r+c r^{2}+\ldots+c r^{n-1}\right)=\frac{c}{1-r}$ we must first prove that when r is a proper fraction $\operatorname{Lim}_{n \rightarrow \infty} r^{n}=0$. In many text-books of algebra this is left unproved without any acknowledgement of the assumption made. It can, of course, be proved easily by the aid of (1) by noting that if r is a proper fraction, we can write

$$
\begin{aligned}
r=\frac{1}{1+a}, \quad \therefore r^{n} & =\frac{1}{(1+a)^{n}}, \\
& <\frac{1}{1+n a}
\end{aligned}
$$

which can obviously be made as small as we please by making n large enough. In fact, if ϵ is an arbitrarily small positive quantity, we have only to take $n>\frac{1}{\epsilon a}$, and we have $n a>\frac{1}{\epsilon}$, $\therefore \quad 1+n a>\frac{1}{\epsilon}, \therefore \frac{1}{1+n a}<\epsilon$.

It may be useful to collect here certain other fundamental " limit theorems" which are required for a school course of Algebra, with simple proofs annexed.
(i) If $|x|>1, \underset{n \rightarrow \infty}{\operatorname{Lim}} x^{n}=\infty$.

Putting $|x|=1+a$, the proof follows immediately from (1), for the case of \boldsymbol{n} a positive integer.
(ii) If $|x|<1, \operatorname{Lim}_{n \rightarrow \infty} x^{n}=0$.

The proof has been given above.
(iii) If n be a positive integer, $\operatorname{Lim}_{n \rightarrow \infty}\left(\frac{x^{n}}{n!}\right)=0$.

First take the case when n is even.
We have

$$
\begin{aligned}
& \frac{x^{n}}{n!}=\left(\frac{x}{1} \cdot \frac{x}{n}\right)\left(\frac{x}{2} \cdot \frac{x}{n-1}\right) \cdots\left(\frac{x}{r} \cdot \frac{x}{n-r+1}\right) \cdots\left(\frac{x}{\frac{n}{2}} \cdot \frac{x}{\frac{n}{2}+1}\right) . \\
& \text { Now } \begin{aligned}
r(n-r+1) & =(r-1)(n-r)+n, \\
& \not(n,
\end{aligned}
\end{aligned}
$$

the symbol \nless reducing to $>$ except when $r=1$.
$\therefore \frac{x^{n}}{n!}<\left(\frac{x^{2}}{n}\right)^{\frac{n}{2}}$.
Now if ϵ is an arbitrarily small positive proper fraction, and if n is any integer greater than $\frac{x^{2}}{\epsilon}$, we have $\frac{x^{2}}{n}<\epsilon, \therefore\left(\frac{x^{2}}{n}\right)^{\frac{n}{2}}<\epsilon$.

Thus, when n is even, $\quad \operatorname{Lim}_{n \rightarrow \infty} \frac{x^{n}}{n!}=0$,
When n is odd, let $n=m+1$, so that m is even.
Then proceeding as before, we get

$$
\begin{aligned}
& \frac{x^{n}}{n!}=\frac{x^{m}}{m!} \cdot \frac{x}{m+1} \\
&<\left(\frac{x^{2}}{m}\right)^{\frac{m}{2}} \cdot \frac{x}{m+1}<\left(\frac{x^{2}}{m}\right)^{\frac{m}{2}} \cdot \frac{x}{\sqrt{m}} \\
&<\left(\frac{x^{2}}{m}\right)^{\frac{m+1}{2}}
\end{aligned}
$$

and this, as before, has zero as its limit.

Corollary. $\quad n!>n^{\frac{n}{2}}$,
(iv) $\operatorname{Lim}_{h \rightarrow 0}\left(a^{h}-1\right)=0$, or $\operatorname{Lim}_{h \rightarrow 0} a^{h}=1$.

Put $h=\frac{1}{n}$, when n is a positive integer, so that $n \rightarrow \infty$ when $h \rightarrow 0$.

First suppose a positive and greater than 1.
Then $a^{\frac{1}{n}}-1=\frac{a-1}{a^{\frac{n-1}{n}}+a^{\frac{n-2}{n}}+\ldots+a^{\frac{1}{n}}+1}$,

$$
<\frac{a-1}{n}
$$

Hence $\operatorname{Lim}_{n \rightarrow \infty}\left(a^{\frac{1}{n}}-1\right)=0$.
Next suppose a to be a positive proper fraction.
Then

$$
\begin{aligned}
1-a^{\frac{1}{n}}=\frac{1-a}{1+a^{\frac{1}{n}}+a^{-\frac{2}{n}}+\ldots+a^{\frac{n-1}{n}}} & =\frac{a^{-1}-1}{a^{-1}+a^{-\frac{n-1}{n}}+a^{-\frac{n-2}{n}}+\cdots+a^{-\frac{1}{n}}} \\
& <\frac{a^{-1}-1}{n} .
\end{aligned}
$$

Hence $\operatorname{Lim}_{n \rightarrow \infty}\left(1-a^{\frac{1}{n}}\right)=0$.
The restriction that n should tend to infinity by integral values is, as pointed out in Professor Gibson's last paragraph, easily removed.

Thus, $\underset{h \rightarrow 0}{\operatorname{Lim} .} a^{h}=1$.
Corollary. $\quad a^{x}$ is a continuous function of x.
For $a^{x+h}-a^{x}=a^{x}\left(a^{h}-1\right)$,
$\therefore \quad \operatorname{Lim} .\left(a^{x+h}-a^{x}\right)=0$, since a^{x} is finite, $h \rightarrow 0$
$\therefore \operatorname{Lim}_{h \rightarrow 0} a^{x+h}=a^{x}$,
$\therefore \quad a^{x}$ is a continuous function of x.
R. F. Muirhead.

