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CERTAIN UNITARY REPRESENTATIONS OF
THE INFINITE SYMMETRIC GROUP, I

NOBUAKI OBATA

Introduction

Let X be the set of all natural numbers and let €, be the group of
all finite permutations of X. The group ©., equipped with the discrete
topology, is called the infinite symmetric group. It was discussed in F. J.
Murray and J. von Neumann [3] as a concrete example of an ICC-group,
which is a discrete group with infinite conjugacy classes. It is proved
that the regular representation of an ICC-group is a factor representation
of type II,. The infinite symmetric group is, therefore, a group not of
type I. This may be the reason why its unitary representations have not
been investigated satisfactorily. In fact, only few results are known. For
instance, all indecomposable central positive definite functions on S,
which are related to factor representations of type II,, were given by E.
Thoma [6]. Later on, A. M. Vershik and S. V. Kerov obtained the same
result by a different method in [7] and gave a realization of the repre-
sentations of type II, in [8]. Concerning irreducible representations, A.
Lieberman [2] and G. 1. Ol'shanskii [4] obtained a characterization of a
certain family of countably many irreducible representations by introduc-
ing a particular topology in ©.. However, irreducible representations have
been studied not so actively as factor representations.

The main purpose of the present paper is to give a family of uncount-
ably many irreducible representations of ©_ explicitly with ths hzlp of
induced representation. Let Aut (X) denote ths group of all bijections (or
automorphisms) from X onto itself. For any 6 e Aut (X) we denote by H(6)
the subgroup of all permutations in &, which commute with 4. For each
unitary character X of H(f) we form the induced representation U%* =
Indgs,, X on L¥(S../H(6)), the Hilbert space of all square summable functions
on &./H(A).

In this paper, for technical simplicity, we shall restrict ourselves to
a special kind of automorphisms as follows. For each p > 2, we denote
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by Aut,(X) the set of all automorphisms # having the next two properties:
(1) 0 = []ge1Gnolms - * imp-1) In cycle-notation;
(i) suppd = X, i.e. no point of X is fixed by 6.
As is shown in Section 2, the subgroup H(f) is a semidirect product of
an abelian group and the infinite symmetric group, and admits exactly 2p
unitary characters.
With the help of a general theory of unitary representations of discrete
groups (see Section 1), we obtain the first result:

TuEOREM 1. Let 0 be a member of Aut,(X) with p > 2.

(1) For any unitary character X of H(), U®* is irreducible.

(2) For two unitary characters X and ¥’ of H(6), U”* is equivalent to
U if and only if ¥ = X'

Next we shall discuss equivalence between two irreducible represen-
tations U%* and U’"*. For two automorphisms 6 = [[5_, (noins = * * Imp-1)
and @ = [[5-1(Juodms * * * Jup-1) in Aut, (X), we denote by N(4, ) the number
of pairs (m, n) such that {in, -, tmp-i} = {Juos = *» Jup-1}-

THEOREM 2. Let 6 and 6 be members of Aut,(X) and Aut, (X) with
p, 0 =2, and let X and X’ be unitary characters of H(0) and H(0'), respec-
tively.

(1) If p=p and if N@,?9) is finite, U** is not equivalent to U’ 7,

’

@) If pxp’, U"t is not equivalent to U ",

Finally we refer to the irreducible representations discussed in [2] and
[4]. Let p be an irreducible representation of the finite symmetric group
S, s=0,12 ---. We denote by =* the representation of & correspond-
ing to p. By a slight modification we obtain another class of irreducible
representations of ©.,, which are denoted by z°. (For details, see Section 3.)
We have thsz following

THECREM 3. Let 6 be a member of Aut,(X) with p > 2 and let X be a
unitary character of H(6). Then U is equivalent to neither n* nor z° for
any irreducible representation p of &, s =0,1,2, ---.

For an arbitrary automorphism 6 ¢ Aut (X), the unitary representation
U ig not irreducible in general. If # has a finite support, i.e. e S,
the corresponding unitary representation is decomposed into a sum of
irreducible ones z* and #°. Hence our method yields the irreducible repre-
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sentations discussed in [2] and [4]. It would be possible to discuss a
general case with our technique.

The author would like to express his thanks to Professor H. Yoshizawa
for his kind advice.

§1. Preliminary results

Let G be a discrete group, H a subgroup and 2 = G/H the quotient
space. We denote by w,e £ the point whose isotropy group is H. For
each unitary character X of H we consider the induced representation U*
= Ind$ x. It is convenient to adopt the following realization of U™.

Let L*(2) be the Hilbert space of all square summable functions on Q.
We fix a cross section o~ s[w] € G for the canonical projection g go,
€, ge G. Then the induced representation U* is given by the formula:

(UH(@)f)w) = 1(slo] 'gslg o] f(g'w) ,

where fe L*(2) and ge G. We may assume s[w,] = e (the identity).

For each we 2 we denote by 4§, the delta-function concentrated at o,
namely, J,(0) =1 if w =0’ and =0 otherwise. Then the family {j,;
o € 2} becomes a complete orthonormal basis for L*(2). For any ge G we
have

UH(g)du, = Xs[8wo]'g)du, -

Here we note that the factor X(s[gw,]'g) is a constant aad that 4,, is a
cyclic vector for the unitary representation U,

Proposrrion 1.1.  Assume that all H-orbits in 2 are infinite seis except
the orbit {w,}. Then we have

(1) U* is irreducible;

(2) U* is equivalent to U* if and only if 1=

U g)T = TUxg) for all ge G. If he H, we have
Uuxn)Ts,, = TUh),, = 1(h)T4,, .
Therefore, in view of the definition of U*(h), we sse that
|T6,(h'w)| = |Td,(w)|, heH, wel.

Since T9,,€ L*(2), it follows from the assumption that 7'9,,=,, for some
te C. Consequently, for any ge G we have
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TU(g)., = UN8)T4,, = tU*(g)d., »

which implies T=tI (I is the identity operator). By repeating the above
proof we can show (2) easily. |

If % is a unitary character of H and if « is an automorphism of G,
we define a unitary character X* of a(H) by

x*(a(h)) = x(h) , heH.
We put V* = V©* = Ind%y x*. Using the natural isomorphism between
L¥Q) = LYG/H) and L(G|a(H)), we can realize V* on L Q):
(VH{a(g)Nw) = XUsl[o] 'gs[g "o f(g 'w) ,

where fe L*(2) and g€ G. In other words, U* = Vioqa, where U* =
Ind$ X as before.

PropositioN 1.2. If |H: a(gHg )N H| = + o for all g € G, two unitary
representations U* and V' are disjoint for any unitary characters X and
1 of H.

Proof. Suppose that T is a bounded operator on L*2) satisfying
TUXg) = V¥(g)T for all ge G. If he H, we have

Ve(h)Ts,, = TUYh),, = Uh)TS,, .
Hence
| T8, (¢ '(h w)| = T8, ()], heH, wef.

On the other hand, the «~!(H)-orbit containing g, (€ £) is isomorphic to
o '(H)/gHg 'Na'(H). Therefore all «'(H)-orbits in £ are infinite sets
by assumption. Since 79, € L*(2), we conclude T3,, = 0. This implies
T = 0 immediately. B

Remarks. (1) If the assumption of Proposition 1.2 holds, the auto-
morphism « is necessarily an outer automorphism.

(2) Analoguous results are found in Godement [1] and Saito [5].
Yoshizawa [9] applied those arguments to free groups.

§2. A characterization of certain subgroups of S,

Let X be the set of all natural numbers and &, the group of all finite
permutations of X. The group €., equipped with the discrete topology,
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is called the infinite symmetric group. Each permutation ge ©_ can be
written in cycle-notation, i.e. as a product of pairwise disjoint cycles.

We denote by Aut(X) the group of all bijections (or automorphisms)
from X onto itself. Obviously &, is a normal subgroup of Aut(X). Any
6 € Aut (X) also admits a cycle-notation which may be an infinite product
of cycles or may contain cycles of infinite length.

For any 6 ¢ Aut(X) we denote by H(§) the subgroup of all permu-
tations in €, which commute with 4:

H(6) = {ge©..; g0 = 68(= HE™) .

In what follows we shall restrict ourselves to some special automor-
phisms of X. For any integer p > 2, we denote by Aut,(X) the set of all
automorphisms 6 € Aut(X) having the following two properties:

(i) 0= 1Ip-1@mom - ** Inp-1) in cycle-notation;

(i1) suppfd=2X, i.e. no point of X is fixed by 6.

Let A(f) be the abelian subgroup of ©, which is generated by all
cyclic permutations (ipgim: ** * Imp-r), m = 1,2, -+, and S(¢) the subgroup
of all permutations g € ©_ having the following property: there exists some
g€ ®, such that g@i,.) = lym: for all m=1,2, ... and k=0,1,---p — L
As is easily seen, A(6)S(0) = S(H)A(B) = S(H) X A(f) (semidirect product)
and S(O)A@) < H(#). Note that S(6)A(f) does not depend on the choice of
a sequence {i,g}n_1..,... though S(f) does. The main purpose of this section
is to show the following

ProrosiTion 2.1. We have
H(@) = S@) x A6 (semidirect product) .

We need some preliminaries. The group A{(f) is isomorphic to the
restricted direct product group (Z,); = {¢ = (a;, @y, - - ) € (Z,)"; a, = 0 except
finitely many n}. On the other hand, S(d) is isomorphic to &, by de-
finition. Through these isomorphisms we define a permutation (g, a) of
X by

(d’ a)(i‘mh) = ia(m)k+am .
The second suffix k+a, is taken as an element of Z,. Then we have
(0, a)d’, @) = (00’, 0" + '),

where o = (@, ay, Coryy ** *)-
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LemMA 2.2. (1) Leto = (mm,---m,) e, and a = (a, @, ---) € (Z,);.
If ;=0 for jxmy,---,m, and a,, + a,, + -+ + a,, = 0 (mod p), the
cycle-notation of (o, ) is given by

(0,0) = (%, - -+ 2)(0x,) -+~ O(x,)) -+ (077N (x) -+ - 0°7(x,))

where x; = 1,0, X2 = Ingaypy ***5 Xn = 1
(2 For x,- -, x,eX we put ¥y=(x%,---x,) and T, =67,077, j =
0,1, ---,p—1. If vy, 7y, - -+, T,_, are pairwise disjoint cycles, there exist

ce€@©, and ae(Z,); such that 17, -+ - T,_, = (0, @).

MpGmy+=**+Qmpy_;°

Proof. (1) Xt m+m, ---, m,, obviously we have (o, 0)(i,.;) = i,,,. On
the other hand, inductively we see

(‘7’ a)(xl) = (‘7, a)(imlo) - i"(ml)anl = imzaml = Xz,

(05 a)z(xl) = (07 a)(xz) = imaaml+a7n2 == xS 3

(0-7 a)n_l(xl) = (07 a)(xnul) - imn"'7n1+“'+amn—1 = Xy,

(0) a)n(xl) = imlam1+--~+amn = im10 =X .

Therefore the cycle (x, - -- x,) is contained in the cycle-notation of (o, a).
Since (g, @) commutes with §, we obtain the desired expression.

(2) Choose my, ---,m,>1and 0<%, ---, k, <p such that x, = i,,
ey Xy =y, and put @, =k, — Ry, Qp, =Ry — Ry -, A, =k, — Ry,
Ay, = k, — k,. Since my, ---, m, are pairwise distinct by assumption, ¢ =
(m,---m,)eS,. We define a = (a,,a, ---)€(Z,)7 by putting o, =0 for
all j 2= my, m,, --+, m,. Then it is easily seen that 7;7,---7,., = (¢, ). W

Lemma 2.3. Let q and q' be two positive integers. For x;, -+, x,€X
we put (formally)

To=(x, - x,0%,) - - 04x,) --- 09 Vx) -+ - 09U VYx,)) .

Q) If (p,g)=1and if ¢ =p, 7, belongs to S(G)A(H) whenever 7, is
a cycle, i.e. all elements in the right hand side are mutually distinct.

@) If (p,q) =r=x1and if q’ is the smallest positive integer such that
qq’ = 0 (mod p), 7,7, - -+ 7,_, belongs to S(0)A(6) whenever 7,7, -+, (,_, are
pairwise disjoint cycles, where 7; = 61077, j=0,1,---,r— 1.

Proof. We put
h = (x,0(x;) - -+ 07" (x))%(xy -+ - 2, )O(x) - - 0(x,)) - - - (0p_1(x1) cee 077(x,)
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(1) In view of Lemma 2.2 one can easily verify that A belongs to
S(6)A(H) and that h = 7,.
(2) Obviously % belongs to S(A)A() and we see h =77, ---7,... M

Proof of Proposition 2.1. We have only to show that S(6)A(®6) > H(6).
Let g be an arbitrary element of H(f) and g = g,g, - - - &,, Where g, =
(%1% -+ Xyy,), its cycle-notation. For each k= 1,2, ---, n, there exists a
unique [ = I(k) such that 0g,6°' = g,, namely, (0(x,) - - - 0(x;) = (%0 - -+ x54,)
Without loss of generality we may assume & = 1. For simplicity we write
ss=sand x, =%, j=1,2 -, s

(a) In case of I=1, that is, (6(x,) --- 0(x,)) = (x, - - - x,). As is easily
seen, there exist two integers ¢ > 1 and ¢ > 1 with (p, ¢) = 1 such that

(- x) = (- x,0%x) - - 0%x,) - 0PV x) - - OPTV(x)

which belongs to S(6)A(6) by Lemma 2.3 (1).

(b) In case of I 2 1. There exists some g with 1 < g < p such that
the cycles (x; -« - x,), (6(x) - - - 0(x,)), - -+, (077 (x;) - - - 697 Y(x,)) are pairwise
disjoint but (x, - - - x) = (B%x,) - - - 6%4x,)). Necessarily (p, q¢) = r = 1 since
Il 1. Let ¢ be the smallest positive integer such that gq’ = 0 (mod p).
By a similar argument to (a) we see that there exist two integers ¢ > 1
and u > 1 with (u, ¢’) = 1 such that

(- ) = (@ 2B - 7)o ) - B ()

Since (p, qu) = r, (%, - - - x)(@(x,) - - - () < - - (@ '(x,) - - - 67" Y(x,)) belongs to
S(6)A(F) by Lemma 2.3 (2). -]

We end this section by giving the structure of H(4) for a general
automorphism 6 € Aut (X). For any subset Y of X we denote by S(Y) the
subgroup of all permutations in &, which act identically outside Y. Let
6 € Aut (X) be an automorphism whose cycle-notation is of the form: § =
[T @molms * * * Tmp-1), Where the number of the cycles is finite or infinite,
and possibly supp 8 % X. We denote by H'(d) the subgroup of all permu-
tations in ©(supp ) which commute with 6. Then the structure of H’(6)
is known by virtue of Proposition 2.1. There is no difficulty in verifying
the next result which describes the structure of H(f) for an arbitrary auto-
morphism 6 € Aut (X).

ProrosiTiON 2.4. Any 0¢c Aut (X) admits an expression of the form:
0 =0.0,0, -, where 8, is a product of disjoint cycles of length n and the
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subsets supp f,, n = 00,2, 8, --- are mutually disjoint. Furthermore H(f) =
&S(X — supp 8)X H'(6,) X H'(6,) X - - - in the sense of restricted direct product.

§3. Construction of irreducible representations

We keep the notations introduced in the previous section. Let 6 =
[T%-1(molms - - * Imp-1) be the cycle-notation of an automorphism 6 € Aut, (X).
Since S(f) is isomorphic to &.,, it has exactly two unitary characters: 1
(the trivial character) and sgn (S(0) ¥ S.20~ sgnoe{+ 1}). For any
j=0,1,---p—1, we define a unitary character X, of A() ~ (Z,); by
2rjv/ —1 5 ) ’

» ~ ay a =(al, as, "') .

X{(a)=exp (

Then one can easily verify that H(f) = S()A(0) has exactly 2p unitary
characters: X} =1® X, and X; =sgn®1¥%;,, j=0,1,---,p — 1

For any unitary character ¥ of H(f) we put U%* = Ind%;,,%. As in
Section 1, we put 2 = S_,/H(f) and w, denotes the point of £ whose iso-
tropy group is H(A).

Lemma 3.1, All H(6)-orbits in 2 are infinite sets except {w,)}.

Proof. It is sufficient to show that S(f)gw, is an infinite set for any

g& H(9). Since g does not commute with 6, there exists some n,¢ X such
that g='0(n,) = g '(n,). Fix a sufficiently large m, e X such that {n,, 6(n,),

<, 077 ()} Usupp & C Unti{imo « = *5 Imp-1}. Since 04ng) € {iso, lagy - -+, imgo} fOr
some q = 0, g, = [[225(6**/(n,) i,;) belongs to S(F). It is sufficient to show
that o,gw, = 0., 8w, whenever k = & > m,. In fact we see

g_lol;’lo.kg(ik’p~q = g_l‘f}:’l(ik"p—q) = g’l(no)
and
g-lag'lgkg(ik’p—qn) = g—lalz’l(ik’p—qﬂ) = gnl(ﬁ(n())) .

Hence by assumption we obtain

-1 -1

0g_101:'10kg(ik'p—q) > g—lo‘;’lgkg(ik’p—q+l) =g Oy okga(ik'p-q) .

This shows that g '¢;'c,g does not commute with §. Therefore we have
08w, % 08w, as desired. |

In view of Proposition 1.1, immediately we have the following

THEOREM 1. Let 6§ be a member of Aut,(X) with p > 2.
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(1) For any unitary character X of H(6), U®* is irreducible.
(2) For two unitary characters X and X' of H(6), U”* is equivalent to
U%" if and only if x = X'.

We shall now discuss the question of equivalence between two irre-
ducible representations U”* and U’"*, where 6 € Aut, (X) and ¢ € Aut, (X).

First we assume p = p’. For two automorphisms 6 = []m_; (Gnolns * = * Lnp-1)
and ¢ =[];_1 (Juodns - - - Jup-1) in Aut, (X), we denote by N(6, ¢') the number
of pairs (m, n) such that {ine in, * s Inpo1} = {JnosJuss = * s Jup-1}-

LEmmaA 3.2, If N(6, ) is finite, |H(6): HO)NH(@)| = + oo.

Proof. Let m, be the largest number such that {i,,, -, ingp-1} =
{Jnos =+ *5 Jup-1} for some n. Put g, = (iny '+ inp_1) € A(®) C H(H). It is suf-
ficient to show that {g,.(H(6) N H(#')); m > m,} is an infinite set. Suppose
that g;lg,. e HO)NH(@) for two distinct numbers m and m’ > m, Note
that g;'g,. 1s just a cycle-notation. Since g, does not commute with &
by assumption, we have #'g;¢0'"' = g, and 0'g,0' = g;}. In particular,
& 1s uniquely determined by g, if it exists. This proves the assertion. ll

Lemma 3.3. If p’ is not a divisor of p, |H(6): HO)NH(E')| = + oo for
any 6 € Aut,(X) and ¢ € Aut,, (X).

The proof is similar to that of Lemma 3.2. In case when p’ is a
divisor of p, the above result does not hold in general.

THEOREM 2. Let 6 and 6 be members of Aut,(X) and Aut, (X) with
p, P =2, and let X and X' be unitary characters of H(6) and H(#'), respec-
tively.

D) If p=p and if N(,8) is finite, U** is not equivalent to UV,

@) If pxp, U is not equivalent to U ¥,

Proof. (1) There exists some @ € Aut (X) such that ¢ = afa~'. We
denote by & the automorphism of &. defined by &(g) = aga™, gcC..
Obviously we have &(H(6)) = H(#'). Note that N(4, g6’g") is finite for all
g€©,. by assumption. Since

&(gH(0)g™") = agH(0)g 'a™" = H(agbg 'a™') = H(aga '0'ag™'a™),

it follows from Lemma 3.2 that |H(6): &(gH(6)g ") NH(#)| = + co. Then
the desired result follows immediately from Proposition 1.2.
(2) The proof is modelled after Proposition 1.2. Here we only note
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that |H(6): HO)NH(gd'g ") = + oo for all ge &, whenever p’ > p. This
follows from Lemma 3.3. | |

Next we shall recall the irreducible representations discussed by
Lieberman [2] and Ol’shanskii [4]. For brevity we write &, =&({1, 2, - - -, s})
and &, =({s+ 1,8+ 2, ---}). For any finite dimensional unitary repre-
sentation p of &, we put n* = Ind€z.. ,0® 1. Then they proved the
following

Proposrtion 3.4. (1) If p is irreducible, so is n’.

(2) Let p and p’ be irreducible representations of €, and &,., respectively.
Then =° is equivalent to =* if and only if p is equivalent to o' (including
s = s').

In addition we can construct another class of unitary representations
f ©.. For any finite dimensional unitary representation p of &,, we put
Indése. , p ®sgn. The following result is then easily verified.

Q

ﬁ-ﬂ

ProrositioN 3.5. (1) If p is irreducible, so is #*.

(2) Let p and p’ be irreducidble representations of &, and ©,,, respec-
tively. Then 7° is equivalent to =" if and only if p is equivalent to p’.

(3) Let p and o' be the same as above. Then 7* is not equivalent to

.

By repeating the proof of Proposition 1.2 we have the following result
with no difficulty.

THEOREM 3. Let 6 be a member of Aut,(X) with p > 2 and let X be
a unitary character of H(6). Then U%* is equivalent to neither = nor 7°
for any irreducible representation p of €, s=0,1,2, ---.

Remarks. (1) In this paper we restricted ourselves to rather special
automorphisms 6 € Aut, (X) with p > 2 and discussed the corresponding
unitary representations U”*. However, with the help of Proposition 2.4,
we may discuss unitary representations corresponding to general auto-
morphisms § ¢ Aut (X). Some comments for a particular case are given in
the next paragraph.

(2) Let e Aut(X) have a finite support, i.e. 6€©S,. By a suitable
inner automorphism of ©., we may assume suppd = {1,2, ---, s}. Then
H(6) admits a direct product decomposition: H(f) = H'(0) XS.,_,, with the
notation introduced in Section 2. We now consider unitary representa-
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tions of H(#) of the form p’® 1 and p’ ® sgn, where p’ is a finite dimen-
sional unitary representation of H’(d). Note that all unitary characters
of H(9) are of the form above. Then we can prove the following result:

Indf, 0 @1 = Z® IndZ: ., 0’1 pla?

PESs

and

IndZz), 0 ® sgn = Z(B UndZ,, o' plz*,

PESDs
where €, denotes the set of all equivalence classes of irreducible repre-
sentations of S,.
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