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On Reducibility and Unitarizability
for Classical p-Adic Groups,
Some General Results

Marko Tadić

Abstract. The aim of this paper is to prove two general results on parabolic induction of classical

p-adic groups (actually, one of them holds also in the archimedean case), and to obtain from them

some consequences about irreducible unitarizable representations. One of these consequences is a

reduction of the unitarizability problem for these groups. This reduction is similar to the reduction of

the unitarizability problem to the case of real infinitesimal character for real reductive groups.

1 Introduction

Let F be a p-adic field. The normalized absolute value on F will be denoted by | |F.
Denote by ν : GL(n, F) → R

× the character ν(g) = |det(g)|F. For two smooth

representations π1 and π2 of GL(n1, F) and GL(n2, F) respectively, we can consider

π1 ⊗ π2 as a representation of the Levi factor of the maximal parabolic subgroup
which contains upper triangular matrices and whose Levi factor is isomorphic to

GL(n1, F) × GL(n2, F). Following Bernstein and Zelevinsky, we denote by π1 × π2

the representation of GL(n1 + n2, F) parabolically induced by π1 ⊗ π2 (see Section 2

for more details regarding notation). For an irreducible essentially square integrable

representation δ of GL(n, F) there exists a unique e(δ) ∈ R and a unique unitarizable
(irreducible square integrable) representation δu, such that δ = νe(δ)δu.

We shall fix a tower of symplectic or odd-orthogonal spaces over F. We shall de-

note by Sn the group with split rank n of isometries of determinant one of a space
from the tower. Since Levi factors of parabolic subgroups are direct products of gen-

eral linear groups and smaller groups Sm for a smooth representations π and σ of

GL(p, F) and Sq respectively, we can parabolically induce π ⊗ σ and get a represen-
tation of Sp+q (similarly as in the case of general linear groups). We shall denote the

parabolically induced representation by π ⋊ σ.

The aim of this paper is to prove two general results regarding parabolic induc-
tion of classical p-adic groups (actually, one of them holds also in the archimedean

case), and to obtain from them some consequences about irreducible unitarizable

representations, like a reduction of the problem of unitarizability for these groups.

The first of the two main results of the paper gives a sufficient condition that
π ⋊ σ is irreducible, for irreducible representations π and σ (see Proposition 3.2).

Received by the editors May 27, 2006; revised January 12, 2007.
The author was partly supported by Croatian Ministry of Science, Education and Sports grant 037-

0372794-2804.
AMS subject classification: Primary: 22E50; secondary: 22E35.
c©Canadian Mathematical Society 2009.

427

https://doi.org/10.4153/CJM-2009-022-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-022-7


428 M. Tadić

This result could be also obtained by the (powerful) methods of [7], after necessary
modifications. Instead of explaining this technical result here, we shall recall of the

most important consequence. An irreducible representation σ of Sq will be called
weakly real if, whenever we have an embedding

(1.1) σ →֒ ρ1 × · · · × ρl ⋊ σ ′,

where ρ1, . . . , ρl are irreducible cuspidal representations of general linear groups and
σ ′ is an irreducible cuspidal representation of some Sq ′ , then ρu

i
∼= ρ̃u

i for all i ∈
{1, . . . , l} (ρ̃ denotes the contragredient representation of ρ).

Theorem 1.1 If σ is an irreducible unitarizable representation of some Sq, then there

exist an irreducible unitarizable representation π of a general linear group and a weakly

real irreducible unitarizable representation σ ′ of some Sq ′ such that σ ∼= π ⋊ σ ′.

Since we have a classification of irreducible unitarizable representations of gen-

eral linear groups [14], the above theorem reduces the problem of classification of

irreducible unitarizable representations of classical groups to the problem of clas-
sification of weakly real irreducible unitarizable representations of classical groups.

(Such a reduction in [21] for irreducible square integrable representations of classi-
cal p-adic groups was an important initial step in the process of classifying irreducible

square integrable representations of classical p-adic groups, which ended with such a

classification modulo cuspidal data in [8, 9].)

Suppose that an irreducible representation σ of Sm is a subquotient of a principal
series representation IndSm

P∅
(χ). If σ is weakly real, then χ is real valued. In particu-

lar, if σ is a weakly real irreducible representation with Iwahori fixed vector, then its

infinitesimal character is determined by (A∅, χ), and χ is a real valued unramified
character. Therefore, the above theorem is similar to the reduction of the unitariz-

ability problem to the case of real infinitesimal character for real reductive groups.

The above theorem is also related to the reduction obtained in [3].

In this paper we also get an upper bound for the places where weakly real irre-
ducible unitarizable representations of classical p-adic groups can show up. We ex-

plain this bound now. Let ρ be an irreducible self dual cuspidal representation of a

general linear group and let σ ′ be an irreducible cuspidal representation of some Sq.
Then there exists a unique αρ,σ ′ ≥ 0 such that ναρ,σ ′ ρ ⋊ σ ′ reduces.

Proposition 1.2 Suppose that σ is a weakly real irreducible unitarizable representa-

tions of a classical group. Fix any embedding as in (1.1) and fix i0 ∈ {1, . . . , l}. Denote

by π1, . . . , πn all the representations from {ρ1, . . . , ρl} for which ρu
i
∼= ρu

i0
. Write

{ |e(πi)| ; |e(πi)| > αρu
i0

,σ ′ and 1 ≤ i ≤ n} = {α1, . . . , αℓ},

where ℓ ≥ 0 and α1 < a2 < · · · < αℓ. Then

(i) α1 − αρu
i0

,σ ′ ≤ 1 if ℓ ≥ 1, and αi − αi−1 ≤ 1 for each i = 2, 3, . . . , ℓ.

(ii) αi ≤ αρu
i0

,σ ′ + i; i = 1, . . . , ℓ.
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One of the main results of this paper is the identification of some irreducible sub-
quotients of parabolically induced representations. It is natural to expect such a result

if we consider (conjectural) local Langlands correspondences (and functoriality in its
simplest form).

Let D be the set of all equivalence classes of irreducible essentially square integrable

representation of GL(n, F)’s, n ≥ 1. Denote D+ = {δ ∈ D; e(δ) > 0}. The set of
finite multisets in D (resp. D+) will be denoted by M(D) (resp. M(D+)). We add

multisets in a natural way. The Langlands classification for general linear groups
attaches to each d ∈ M(D) an irreducible representation L(d) (see Section 5 for

details).

Denote by T(S) the set of all equivalence classes of irreducible tempered repre-
sentations of groups Sq, q ≥ 0. Then the Langlands classification for groups Sq

parametrizes irreducible representations of these groups by elements of M(D+) ×
T(S). To (d ′, τ) ∈ M(D+) × T(S) is attached L(d ′, τ) (see Section 5 for details).

For d = (δ1, . . . , δk) ∈ M(D) denote λ(d) = δ1 × · · · × δk. We shall denote by

d↑ the element of M(D+) which we get from d by removing all unitarizable δi ’s and

changing all δi ’s for which e(δi) < 0, by δ̃i . Denote by du the multiset in M(D) which

we get from d removing all δi ’s which are not unitarizable.

Proposition 1.3 Let d ∈ M(D) and t = (d ′, τ) ∈ M(D+)×T(S). Denote by Td,τ the

set of all (equivalence classes of) irreducible subrepresentations of λ(du)⋊τ . Then each of

the representations L(d↑+d ′; τ ′), τ ′ ∈ Td,τ is a subquotient of L(d)⋊L(d ′; τ). If F is

of characteristic 0, then the multiplicity of each of these representations in L(d)⋊L(d ′; τ)

is 1.

From this result we can conclude reducibility of some representations that are

interesting for the construction of irreducible unitary representations of groups Sq

(see the Section 5). Further work on understanding such reducibilities will be related

to understanding of Arthur’s R-groups (see Corollary 5.5 and [1]).

The above result is a generalization of the following result of A. V. Zelevinsky from

the case of general linear groups (which played an important role in the process of

classifying of irreducible unitary representations of these groups):

L(d1 + d2) is a subquotient of L(d1) × L(d2) with multiplicity 1.

Let us recall that the above result holds also in the archimedean case (see [15]).

Let F ⊂ F ′ be a separable quadratic extension, and let θ be a non-trivial element

of the Galois group. We can consider towers of unitary groups associated with this
extension (see [9]). When we fix one such series, all the results of this paper, after

changing contragredients π̃ to representations g 7→ π̃(θ(g)) in them, hold also for

unitary groups with the same proofs.

We expect that the results of this paper will also hold for orthogonal groups O(2n),

with basically the same proofs.

The results of this paper may be considered as initial steps of the work on the

unitarizability problem for classical p-adic groups in general case. Some of the initial

ideas in that direction are presented in the last section of [22]. We are finishing the
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sequel of this paper, in which we give evidence for the approach to the unitarizability
which we are starting here (and in [22]).

We now give more information about the content of this paper, section by sec-
tion. Section 2 introduces notation. Section 3 presents the sufficient condition for

irreducibility of parabolically induced representations. In Section 4 we list some con-

sequences of this result mainly related to the problem of unitarizability. The descrip-
tion of Langlands parameters of some distinguished subquotients of parabolically

induced representations L(d) ⋊ L(d ′, τ) is proved in Section 5. There we present

some applications of this result to the unitarizability problem. In Section 6 we col-
lect some simple previously known results on the reducibility of parabolic induction,

which are useful in studying unitarizability.

2 Notation

First we shall introduce the basic notation for the representation theory of general

linear groups over a p-adic field F. We shall use mainly the notation of Bernstein

and Zelevinsky from [23]. The normalized absolute value on F will be denoted by
| |F . The character g 7→ |det|F , GL(n, F) → R

× is denoted by ν. For each irreducible

essentially square integrable representation δ of GL(n, F) there exists a unique, up
to an equivalence, unitarizable irreducible square integrable representation δu, and

e(δ) ∈ R, such that δ = νe(δ)δu.

There is a natural map from the category of smooth representations of a reductive
p-adic group G of finite length, to the Grothendieck group of this category. It will be

denoted by ss (and is called a semi-simplification). An irreducible representation π of

G can be considered in a natural way as an element of the Grothendieck group.
Let πi be a smooth representation of GL(ni, F) for i = 1, 2. Then π1 × π2 will

denote the smooth representation of GL(n1 + n2, F) parabolically induced by π1 ⊗ π2

from an appropriate maximal parabolic subgroup, which is standard with respect

to the subgroup of the upper triangular matrices (the parabolic induction that we

consider is normalized). The sum of Grothendieck groups Rn of the category of
smooth representations of GL(n, F) of finite length is dented by R. Then × lifts in

a natural way to a mapping R × R → R which will again be denoted by ×. This

mapping naturally factors through a mapping R ⊗ R → R, which will be denoted by
m. For an admissible representation π of GL(n, F), the sum of semi simplifications

of the Jacquet modules for standard parabolic subgroups which have Levi subgroups
GL(k, F)×GL(n−k, F), 0 ≤ k ≤ n, defines an element of R⊗R in a natural way. (See

[23] for a precise definition. The Jacquet modules that we consider in this paper will

be always normalized.) This can be additively extended to a mapping m∗ : R → R⊗R.
In this way R becomes a Hopf algebra.

Let π be an irreducible representation of GL(n, F). Then there exist irreducible

cuspidal representations ρ1, . . . , ρk of general linear groups such that π is isomorphic
to a subquotient of ρ1 × · · · × ρk. The multiset of equivalence classes (ρ1, . . . , ρk) is

called the cuspidal support of π (it depends only on the the equivalence class of π).
It is denoted by supp(π),

Now we shall introduce basic notation for the representation theory of the classical

p-adic groups. We shall follow the notation of [17] and [9]. Fix a Witt tower V ∈ V

https://doi.org/10.4153/CJM-2009-022-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-022-7


On Reducibility and Unitarizability for Classical p-Adic Groups, Some General Results 431

of symplectic vector spaces over F, or of orthogonal vector spaces which starts with an
unisotropic space of odd dimension. We shall denote by S(V ) the group of isometries

of V ∈ V of determinant 1 (this is automatically satisfied in the symplectic case).
The group of split rank n will be denoted by Sn. Now the sum of Grothendieck

groups Rn(S) of categories of smooth representations of Sn of finite length, is dented

by R(S). Similarly as in the case of general linear groups, using parabolic induction,
one defines π ⋊ σ for a smooth representation π of a general linear group over F

and a smooth representation σ of Sm. Now ⋊ lifts in a natural way to a mapping

R×R(S) → R which is again denoted by ⋊ (factorization through R⊗R(S) is dented
by µ). In this way R(S) becomes R-module. Recall that π⋊σ = π̃⋊σ in R (π̃ denotes

the contragredient of π).

The Jacquet module of a representation π of Sn for the standard maximal parabolic
subgroup whose Levi factor is a direct product of GL(k, F) and a classical group, is

denoted by s(k)(π). Suppose that π has finite length. The sum of semi simplifications

of s(k)(π), 0 ≤ k ≤ n, is denoted by µ∗(π). We can consider µ∗(π) ∈ R ⊗ R(S).
Extending additively to µ∗ : R(S) → R ⊗ R(S), one gets the structure of R-comodule

on R(S).

Observe that R ⊗ R(S) is in a natural way R ⊗ R-module (the multiplication is
denoted again by ⋊). Further, denote by ∼ : R → R the contragredient map and by

κ : R ⊗ R → R ⊗ R,
∑

xi ⊗ yi 7→ yi ⊗ xi . Let

M∗
= (m ⊗ idR) ◦ (∼ ⊗m∗) ◦ κ ◦ m∗.

Then µ∗(π⋊σ) = M∗(π)⋊µ∗(σ) for admissible representations π and σ of GL(n, F)

and Sm respectively (or, for elements of R and R(S) respectively). In other words, if
m∗(π) =

∑
i xi ⊗ yi , then

M∗(π) =

∑

i

(m ⊗ idR)(ỹi × m∗(xi)).

The term of M∗(π) in R ⊗ R0 will be denoted by M∗
GL(π). Then

M∗
GL(π) = [m ◦ (idR ⊗ ∼) ◦ m∗(π)] ⊗ 1

(since R is commutative). Thus if m∗(π) =
∑

i xi ⊗ yi , then

M∗
GL(π) =

∑

i

xi × ỹi .

The term M∗(π) in R0 ⊗ R is simply 1 ⊗ π.

Let τ be an irreducible representation of some classical group Sℓ. Then it is a sub-
quotient of ρ1 ×· · ·×ρk ⋊σ for some irreducible cuspidal representations ρ1, . . . , ρk

of general linear groups and an irreducible cuspidal representation σ of some Sm. The
representation σ is called the partial cuspidal support of τ and is denoted by τcusp. If

ρ1 × · · · × ρk is a representation of GL(p, F), then the Jacquet module s(p)(τ) will be

denoted by sGL(τ). An irreducible cuspidal representation ρ of a general linear group
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is called a factor of τ if there exists an irreducible subquotient π⊗τcusp of sGL(τ) such
that ρ is in the cuspidal support of π. Then the set of all factors of τ is contained in

{ρ1, ρ̃1, ρ2, ρ̃2, . . . , ρk, ρ̃k}

(recall that our τ is a subquotient of ρ1 × · · · × ρk ⋊ σ). Further, for each 1 ≤ i ≤ k,

at least one representation from {ρi, ρ̃i} is a factor of τ .

We have a natural ordering ≤ on the Grothendieck group of the category of

smooth representations of a reductive p-adic group G, of finite length. Therefore,

there are natural orderings on R, R(S), R ⊗ R and R ⊗ R(S). If we write π1 ≤ π2

for two admissible representations, we shall actually mean inequality between their

images in the Grothendieck group (i.e., between their semi simplifications). We shall
quite often use two forms of Frobenius reciprocity. Let P = MN be a parabolic

subgroup of G. Suppose that π and σ are smooth representations of G and M respec-

tively. The Jacquet module of π with respect to P = MN will be denoted by rG
P (π).

Then Frobenius reciprocity says that we have a canonical isomorphism

HomG(π, IndG
P (σ)) ∼= HomM(rG

P (π), σ)

Let A∅ be a maximal split torus in a connected reductive group G over F. Suppose

that P contains A∅. Then we can find Levi subgroup M which contains A∅ (such

M is unique). Let P̄ be the opposite parabolic subgroup (this is the unique parabolic
subgroup which contains A∅, whose Levi subgroup is M and which satisfies P ∩
P̄ = M). Then the second form of Frobenius reciprocity is

HomG(IndG
P (σ), π) ∼= HomM(σ, rG

P̄ (π)).

While the Frobenius reciprocity is an elementary fact, the second form of it is not.
If π and σ are admissible (the case which we shall use), this follows from [4]. For

general smooth π and σ, this is proved by J. Bernstein.

The following case of Frobenius reciprocity is of interest here. Let τ and ω be
irreducible representations of GL(p, F) and Sq respectively. Let π be an admissible

representation of Sp+q. Now Frobenius reciprocity implies

Hom
Sp+q

(π, τ ⋊ ω) ∼= Hom
GL(p,F)×Sq

(s(p)(π), τ ⊗ ω).

From the second form of Frobenius reciprocity we get the isomorphism

Hom
Sp+q

(τ ⋊ ω, π) ∼= Hom
GL(p,F)×Sq

(τ ⊗ ω, r
Sp+q

P̄
(π)),

where P̄ denotes the parabolic subgroup opposite to the standard parabolic subgroup

which has GL(p, F) × Sq for the Levi subgroup. After conjugation by a suitable ele-

ment of the Weyl group (which carries P̄ to P), we get

Hom
Sp+q

(τ ⋊ ω, π) ∼= Hom
GL(p,F)×Sq

(τ̃ ⊗ ω, s(p)(π)).
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Recall that in the above formula τ must be irreducible. We could write the above
formulas in a more general setting, not necessarily for maximal parabolic subgroups.

Let ρ and σ be unitarizable irreducible cuspidal representations of a general linear
group and of Sn respectively. Then if ναρ ⋊ σ reduces for some α ∈ R, then ρ ∼= ρ̃.

Further, if ρ ∼= ρ̃, then we always have a reduction for unique α ≥ 0. This reducibility

point will be denoted by αρ,σ . In all known examples the following holds:

(2.1) αρ,σ ∈ (1/2)Z.

F. Shahidi has proved this to be the case if σ is generic (see [12] and [13]). This is

expected to hold in general.

3 A Criterion for Irreducibility

Lemma 3.1 Let π be an irreducible representation of a classical group Sq and let ρ be

an irreducible cuspidal representation of a general linear group GL(p, F). Suppose

(1) ρ 6∼= ρ̃.

(2) ρ ⋊ πcusp is irreducible.

(3) ρ × ρ ′ and ρ̃ × ρ ′ are irreducible for any factor ρ ′ of π.

(4) Neither ρ nor ρ̃ is a factor of π.

Then ρ ⋊ π is irreducible.

Proof Observe that if ρ ′ is an irreducible cuspidal representation of a general linear

group such that ρ ′ ⊗ π ′ ≤ µ∗(π) for some non-zero π, then ρ ′ is a factor of π.
Recall that

µ∗(ρ ⋊ π) =
(

1 ⊗ ρ + ρ ⊗ 1 + ρ̃ ⊗ 1) ⋊ µ∗(π).

Suppose that an irreducible representation ρ ⊗ τ (resp. ρ̃ ⊗ τ) is a subquotient of

µ∗(ρ⋊π). Since ρ (resp. ρ̃) is not a factor of π, and ρ 6∼= ρ̃, the above formula implies
that we can get ρ⊗ τ (resp. ρ̃⊗ τ) only from (ρ⊗1) ⋊µ∗(π) (resp. (ρ̃⊗1) ⋊µ∗(π)).

Considering the grading, we get that ρ⊗τ (resp. ρ̃⊗τ) can come only from (ρ⊗1)⋊

(R0 ⊗ R(S)) (resp. (ρ̃⊗ 1) ⋊ (R0 ⊗ R(S))). The only term of µ∗(ρ ⋊ π) in R0 ⊗ R(S)
is 1 ⊗ π. Thus ρ ⊗ τ ≤ (ρ ⊗ 1) ⋊ (1 ⊗ π) = ρ ⊗ π (resp. ρ̃ ⊗ τ ≤ ρ̃ ⊗ π).

The above discussion implies that the multiplicities of ρ⊗π and ρ̃⊗π in µ∗(ρ⋊π)
are both one. Moreover, we have shown that if ρ ⊗ τ (resp. ρ̃ ⊗ τ) is an irreducible

subquotient of µ∗(ρ ⋊ π), then it must be ρ ⊗ π (resp. ρ̃ ⊗ π).

By Frobenius reciprocity, any irreducible subrepresentation of ρ ⋊ π has ρ ⊗ π
for a quotient of its Jacquet module. Therefore, ρ ⋊ π has a unique irreducible sub-

representation. Denote it by πs. Obviously πs can be characterized as an irreducible

subquotient of ρ ⋊ π which has ρ ⊗ π for a subquotient of its Jacquet module.
Take any irreducible quotient of ρ ⋊ π. Denote it by πq. Now the second form of

Frobenius reciprocity implies that ρ̃⊗π is a subrepresentation of the Jacquet module
of πq. Therefore, ρ ⋊ π has a unique irreducible quotient (and it has ρ̃ ⊗ π for a

subquotient of its Jacquet module). Further, πq can be characterized as a subquotient

of ρ ⋊ π which has ρ̃ ⊗ π for a subquotient of its Jacquet module).

https://doi.org/10.4153/CJM-2009-022-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-022-7


434 M. Tadić

We know π →֒ τ1 × · · · × τℓ ⋊ πcusp for some irreducible cuspidal representations
τi ’s of general linear groups. Then

πs →֒ ρ ⋊ π →֒ ρ × τ1 × · · · × τℓ ⋊ σ.

The conditions of the lemma imply, after a series of isomorphisms, ρ×τ1×· · ·×τℓ ⋊

σ ∼= ρ̃× τ1 × · · ·× τℓ ⋊ σ. Thus, ρ̃⊗ τ1 ⊗ · · ·⊗ τℓ ⊗σ is in the Jacquet module of πs.
By transitivity of Jacquet modules, it must come from some subquotient in s(p)(πs),

which must be of the form ρ̃ ⊗ α. But a comment at the beginning of proof implies
that α = π, which implies πs = πq. Therefore πs = πq = ρ ⋊ π. Thus, we have

proved irreducibility in this case.

The above lemma (and the proposition bellow) could be proved by the methods

of [7]. (We expect that the more sophisticated methods of [7] will enable the proof
of the lemma without assuming (1).)

For a set X of smooth representations, we denote X̃ = {π̃; π ∈ X}.

Proposition 3.2 Let π be an irreducible representation of a classical group Sq.

(i) Let X be a set of irreducible cuspidal representations of general linear groups which

satisfy the following.

(a) ν±1ρ 6∈ X̃, for any ρ ∈ X.

(b) X ∩ X̃ = ∅.

(c) There is no element in X ∪ X̃ which is a factor of π.

(d) ρ ⋊ πcusp is irreducible for any ρ ∈ X.

(e) ρ × ρ ′ and ρ̃ × ρ ′ are irreducible for any ρ ∈ X and any factor ρ ′ of π.

Suppose that θ is an irreducible representation of a general linear group whose cuspidal

support is contained in X. Then θ ⋊ π is irreducible.

(ii) Suppose that we can find sets X and Y of (equivalence classes of) irreducible

cuspidal representations of general linear groups such that X ∪ X̃ ∪ Y ∪ Ỹ contains all

the factors of π, X ∩ (Y ∪ Ỹ ) = ∅, and that hold conditions (a), (b), and (d) from (i).

Further suppose that ρ × ρ ′ and ρ̃ × ρ ′ are irreducible for all ρ ∈ X ∪ X̃ and ρ ′ ∈ Y

(i.e., that holds condition (e) from (i) for all ρ ∈ X ∪ X̃ and ρ ′ in Y ).

Then there exists an irreducible representation θ of a general linear whose cuspidal

support is contained in X (i.e., each representation of the support), and there exists an

irreducible representation π ′ of a classical group whose factors are all contained in Y ∪Ỹ ,

such that π ∼= θ ⋊ π ′. The partial cuspidal support of π ′ is πcusp. Further, π determines

θ and π ′ as above up to equivalence.

If X is a subset of the set of all the factors of π, then each representation from X shows

up in the cuspidal support of θ.

Proof (i) Let π, X, and θ satisfy the conditions of (i). Note that Lemma 3.1 implies
that ϕ ⋊ π is irreducible for any ϕ ∈ X.

Recall that

µ∗(θ ⋊ π) = M∗(θ) ⋊ µ∗(π).

Suppose that an irreducible representation θ ⊗ τ (resp. θ̃ ⊗ τ) is a subquotient of

µ∗(θ ⋊ π). Since there does not exist a factor ρ of π such that ρ or ρ̃ is in the cuspidal
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support of θ (recall that no element of X ∪ X̃ is a factor of π by (c) and θ is supported

by X), the above formula implies that we can get θ ⊗ τ (resp. θ̃ ⊗ τ) only from

M∗(θ) ⋊ (1 ⊗ π). Considering the grading, we get that θ ⊗ τ (resp. θ̃ ⊗ τ) can come

only from M∗
GL(θ) ⋊ (1⊗π). Now the formula for M∗

GL(θ) from the previous section,

the condition that θ is supported by X, and X ∩ X̃ = ∅ imply that θ⊗ τ (resp. θ̃⊗ τ)

can come only from (θ ⊗ 1) ⋊ (1 ⊗ π) = θ ⊗ π (resp. (θ̃ ⊗ 1) ⋊ (1 ⊗ π) = θ̃ ⊗ π).

Thus if θ⊗τ (resp. θ̃⊗τ) is a subquotient of µ∗(θ⋊π), then it must be θ⊗π (resp.

θ̃⊗π). Further, the multiplicity of θ⊗π (resp. θ̃⊗π) in µ∗(π) is 1. This implies that

θ ⋊ π has a unique irreducible subrepresentation, which we shall denote by πs. We

can characterize πs as a unique irreducible subquotient of θ ⋊ π which has θ ⊗ π for
a subquotient of appropriate Jacquet module. Further, θ ⋊ π has unique irreducible

quotient, which we denote by πq. Similarly as before, πq can be characterized as

a unique irreducible subquotient of θ ⋊ π which has θ̃ ⊗ π for a subquotient of a

Jacquet module.

Actually, by the argument from the beginning of the proof, we can get more than

we stated above. We can conclude the following: suppose θ is a representation of

GL(p, F) and ϕ⊗ τ is an irreducible subquotient of s(p)(θ ⋊π) such that the cuspidal

support of ϕ is contained in X (resp. X̃), then ϕ⊗ τ = θ ⊗ π (resp. ϕ⊗ τ = θ̃ ⊗ π).

Let ϕ ⊗ τ be an irreducible subquotient of s(p)(πs), such that ϕ is supported in

X ∪ X̃, with maximal possible number of representations in supp(ϕ) (counted with

multiplicities), which are in X̃ (note that there is at least one element that satisfies
this: θ ⊗ π). If there are no elements of supp(ϕ) which are in X, then they are all in

X̃, and thus ϕ ⊗ τ = θ̃ ⊗ π by the remark in the above paragraph. Thus πs = πq by
the above characterization of πq, which implies that θ ⋊ π is irreducible.

Therefore it remains to consider the case where at least one element of supp(ϕ)

is in X. Then we can find an irreducible quotient ϕ1 ⊗ τ ′ of s(p)(πs), such that the

cuspidal support of ϕ1 is the same as of ϕ (this follows easily using decomposition de-
termined by infinitesimal characters). By Frobenius reciprocity, πs →֒ ϕ1 ⋊ τ ′. Write

ϕ1 = ϕ− × ϕ+, where the cuspidal support of ϕ+ (resp. ϕ−) is contained in X (resp.

X̃). We can do this, according to assumptions of the lemma (use assumption (a)).

We know that ϕ+ →֒ τ1 × · · · × τl−1 × τℓ, for some τi ∈ X and ℓ ≥ 1. This
implies that we have an embedding πs →֒ ϕ− × τ1 × · · · × τℓ ⋊ τ ′. Note that τℓ ⋊ τ ′

is irreducible by Lemma 3.1 (observe that τℓ and τ ′ satisfy the conditions of Lemma

3.1). Therefore τ1 × · · · × τℓ−1 × τℓ ⋊ τ ′ ∼= τ1 × · · · × τℓ−1 × τ̃ℓ ⋊ τ ′.

Thus πs →֒ ϕ− × τ1 × · · · × τℓ−1 × τ̃ℓ ⋊ τ ′, which implies (using Frobenius

reciprocity) that ϕ− ⊗ τ1 ⊗ . . . ⊗ τℓ−1 ⊗ τ̃ℓ ⊗ τ ′ is a quotient of the appropriate
Jacquet module of πs. By the transitivity of Jacquet modules, we must be able to get it

from an irreducible subquotient of s(p)(πs), say from ϕ2 ⊗ τ ′ ′. Note that the support

of ϕ2 is again contained in X ∪ X̃, and further, that the cuspidal support of ϕ2 has
one representation more in X̃ than the cuspidal support of ϕ1, and therefore than the

cuspidal support of ϕ. This is a contradiction, which completes the proof of (i).

(ii) Suppose that π, X, and Y satisfy the conditions of (ii). The representation

sGL(π) has some irreducible quotient. Denote such a quotient by π1 ⊗πcusp. Now the

cuspidal support of π1 is contained in X ∪ X̃ ∪ Y ∪ Ỹ . Conditions on X and Y imply
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that there exist irreducible representations πX and πY such that π = πX ×πY and the
cuspidal support of πX is contained in X ∪ X̃ and of πY in Y ∪ Ỹ . Now Frobenius

reciprocity implies that π is a subrepresentation of πX × πY ⋊ πcusp. Therefore, there
exists an irreducible subquotient σY of πY × πcusp such that π is subquotient of πX ⋊

σY . Clearly, all the factors of σY are contained in Y ∪ Ỹ .

We can write πX = π+
X × π−

X in a such way that cuspidal supports of π+
X and π−

X

are contained in X and X̃ respectively (use conditions (a) and (b)). Since π−
X ⋊ σY

and (π−
X )̃ ⋊σY have the same composition series, π is a subquotient of π+

X × (π−
X )̃ ⋊

σY . Now there exists an irreducible subquotient π ′
X of π+

X × (π−
X )̃ such that π is a

subquotient of π ′
X ⋊ σY . Clearly, the support of π ′

X is contained in X. Now from (i)
we get that π ′

X ⋊ σY is irreducible. Thus π ∼= π ′
X ⋊ σY . This proves the existence of

decomposition in (ii).

Suppose that θ ′
⋊π ′ and θ ′ ′

⋊π ′ ′ are two decompositions of π considered in (ii).

Recall that if π is parabolically induced by two irreducible cuspidal representations,
then they must be conjugated by the Weyl group. The action of the Weyl group and

conditions on X and Y imply that θ ′ and θ ′ ′ are representations of the same general
linear group. Denote it by GL(l, F). Moreover, the representations θ and θ ′ must

have the same cuspidal support. Frobenius reciprocity implies that θ ′ ′ ⊗ π ′ ′ is a

subquotient s(l)(π) = s(l)(θ
′
⋊ π ′). Now the first part of the proof of (i) implies that

θ ′ ⊗ π ′ ∼= θ ′ ′ ⊗ π ′ ′, which implies θ ′ ∼= θ ′ ′ and π ′ ∼= π ′ ′.

4 Some Consequences

Bernstein defined rigid representations of general linear groups in [2]. We shall recall

his definition, and extend it to the classical groups.

Definitions 4.1 (i) Let τ be an irreducible representation of a general lin-
ear group. Then τ is called rigid if each ρ in the cuspidal support of τ satisfies

e(ρ) ∈ (1/2)Z. Further, τ is called strongly rigid, if it is rigid, and if it satisfies the
following condition: if ρ, ρ ′ are in the cuspidal support of τ and ρu ∼= (ρ ′)u, then

e(ρ) − e(ρ ′) ∈ Z.
(ii) An irreducible representation π of Sn will be called weakly real if ρ̃u ∼= ρu

for any factor ρ of π. It will be called rigid if it is weakly real and if e(ρ) ∈ (1/2)Z

for any factor ρ of π. Further, it will be called strongly rigid if it is weakly real and

e(ρ) + αρu ,πcusp
and e(ρ) − αρu,πcusp

∈ Z for any factor ρ of π.

Note that if π is strongly rigid, it is rigid. Further, ρu and πcusp satisfy (2.1) for any
factor ρ of a strongly rigid representation π.

The Hermitian contragredient of a representation π will be denoted by π+ (i.e.,

π+ is the complex conjugate of π̃). Representation π is called Hermitian if π ∼= π+.
Each admissible unitarizable representation is Hermitian.

From the Langlands classification (see the following section) and the formula for

the contragredient in it (see [18]) it follows that each weakly real representation is
Hermitian.

Denote by C the set of all the equivalence classes of irreducible cuspidal represen-

tations of general linear groups GL(n, F), n ≥ 1. The subset of the unitarizable classes
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is denoted by Cu.

Theorem 4.2 Let π be an irreducible representation of Sn.

(i) Suppose that π is unitarizable. Then there exists an irreducible unitarizable rep-

resentation θ of a general linear group and a weakly real irreducible unitarizable

representation π ′ of some Sn ′ , such that π ∼= θ ⋊ π ′.

(ii) Let C ′
u be a subset of Cu satisfying C ′

u ∩ C̃ ′
u = ∅ such that C ′

u ∪ C̃ ′
u contains all

ρ ∈ Cu which are not self dual. Denote

C
′
= {ναρ; α ∈ R, ρ ∈ C

′
u}.

Then there exists an irreducible representation θ of a general linear group with support

contained in C
′, and a weakly real irreducible representation π ′ of some Sn ′ such that

π ∼= θ ⋊ π ′.

Moreover, π determines such θ and π ′ up to an equivalence. Further, π is unitarizable

(resp. Hermitian) if and only both θ and π ′ are unitarizable (resp. Hermitian).

Proof Clearly, one can find a set C ′
u which satisfies the conditions in (ii). Obviously,

(ii) implies (i). Therefore, it is enough to prove (ii).

Denote by X the set C ′ from (ii) and let Yu be the set of all self dual represen-
tations in C. Let Y = {ναρ; α ∈ R, ρ ∈ Yu}. Obviously, X and Y satisfy (ii) of

Proposition 3.2. Applying this proposition, we get the decomposition of π and the

unicity of the decomposition.
Obviously, if θ and π ′ are unitarizable (resp. Hermitian), then π is unitarizable

(resp. Hermitian).
Suppose that π = θ⋊π ′ is Hermitian. Then θ⋊π ′ ∼= θ+

⋊ (π ′)+. Now Frobenius

reciprocity implies that θ+⊗(π ′)+ is a subquotient of a Jacquet module of π = θ⋊π ′.

Note that θ+ is supported again in X. Similarly as in the proof of unicity in (ii) it
follows that cuspidal supports of θ and θ+ must be the same. Now the first part of

the proof of (i) of Proposition3.2 implies θ+ ⊗ (π ′)+ ∼= θ⊗π ′, which implies θ+ ∼= θ
and (π ′)+ ∼= π ′, i.e., θ and π ′ are Hermitian.

Suppose now that π is unitarizable. Then it is Hermitian. The above part of the

proof implies that θ⊗ π ′ is Hermitian. Now we know that θ ⊗ π ′ is unitarizable (see
for example construction (d) in the third section of [19]). This implies that θ and π ′

are unitarizable. The proof of (ii) is now complete.

Since we have a classification of irreducible unitarizable representations of general

linear groups, the above theorem reduces the classification of irreducible unitarizable

representations of groups Sn to the classification of weakly real irreducible unitariz-
able representations of groups Sn.

Let Z ⊆ Cu. Denote by IrrR

Z the set of all equivalence classes of irreducible rep-

resentations of general linear groups supported in {ναρ; α ∈ R}. For Z ⊆ Cu and
an irreducible cuspidal representation σ of Sm, let I(Z; σ) denote the set of all equiv-

alence classes of irreducible representations π of groups Sn’s for which we can find
α1, . . . , αk ∈ R and ρ1, . . . , ρk ∈ Z such that π is isomorphic to a subquotient of

να1ρ1 × · · · × ναkρk ⋊ σ. We shall point out two interesting consequences of the

above theorem.
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Corollary 4.3 Let σ be an irreducible cuspidal representation of Sm.

(i) Let C ′
u be as in Theorem 4.2(ii). Then θ 7→ θ⋊σ defines a bijection of IrrR

C ′
u

onto

I(C ′
u; σ), and θ is unitarizable if and only if θ ⋊ σ is unitarizable.

(ii) Let ρ ∈ Cu, ρ 6∼= ρ̃. Then θ 7→ θ ⋊ σ defines a bijection of IrrR

ρ onto I(ρ; σ).

Moreover, θ is unitarizable if and only if θ ⋊ σ is unitarizable.

In particular, in this way we get reduction of unitarizability in I(ρ; σ) to the well

known case of general linear groups.

Proof (i) Mapping θ 7→ θ ⋊ σ carries IrrR

C ′
u

to I(C ′
u; σ) since θ ⋊ σ is irreducible by

(i) of Proposition 3.2. From (ii) of the same proposition follows that it is surjective.
To see injectivety, suppose θ⋊σ ∼= θ ′

⋊σ. Then θ⊗σ is a subquotient of the Jacquet

module of θ ′
⋊ σ. Now the first part of the proof of (i) of Proposition 3.2 implies

θ ∼= θ ′. The unitarizability claim follows in the same way as in the proof of the above

theorem (first one proves that θ is Hermitian if and only if θ ⋊ σ is Hermitian; note

that cuspidal σ is always unitarizable and Hermitian).

One proves (ii) in the same way.

Remarks 4.4 Take ρ1, . . . , ρk ∈ Cu such that sets {ρi , ρ̃i}, 1 ≤ i ≤ k, have two
elements each, and that these sets are different.

(i) Using arguments from the proof of Theorem 4.2 (and basic properties of the
representation theory of general linear groups), one easily gets that (θ1, . . . , θk) 7→
θ1 × · · · × θk ⋊ σ defines a bijection of IrrR

ρ1
× · · · × IrrR

ρ1
onto I(ρ1, · · · , ρk; σ), and

that this bijection preserves the unitarizability in both directions.

(ii) By Corollary 4.3(ii), (θ1, . . . , θk) 7→ (θ1 ⋊ σ, . . . , θk ⋊ σ) defines a bijection of

IrrR

ρ1
× · · · × IrrR

ρ1
onto I(ρ1; σ) × · · · × I(ρk; σ), which preserves the unitarizability

(in both directions). Combining this bijection with the bijection from (i), we get a

bijection

(π1, . . . , πk) 7→ π,

I(ρ1; σ) × · · · × I(ρk; σ) → I(ρ1, . . . , ρk; σ).

This bijection satisfies π is unitarizable if and only if πi are unitarizable for all 1 ≤
i ≤ k.

(iii) One sees easily that the bijection in (i) depends on the fact that ρi ’s are not

self dual. It is hard to expect that such a bijection can be established in the self dual
case, in particular, in a way that the unitarizability is preserved in both directions

(because if ρ is self dual, we have much more unitarizable representations in I(ρ; σ)
than in IrrR

ρ ). From the other side, the bijection in (ii) can be extended to the general

case. Jantzen has defined such a bijection in the general case in [7] (without assum-

ing that ρi are not self dual). We expect that this bijection in general preserves the
unitarizability. This would reduce the problem of unitarizability to the same prob-

lem in “lines” I(ρ; σ). Recall that (ii) of the above corollary solves the problem of

unitarizability in the (easy) case of a line I(ρ; σ), when ρ 6∼= ρ̃.
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The following proposition is useful for constructing complementary series.

Lemma 4.5 Let τ and π be irreducible representations of a general linear group and Sm

respectively. Suppose that τ is strongly rigid and that (2.1) holds. Let ρu ∼= ρ̃u for each ρ
in the cuspidal support of τ . If π is rigid, then representations νατ ⋊π, α ∈ R \ (1/2)Z,
are irreducible.

Under the assumptions of the above lemma, using [9] we can improve the above
result if τ ⋊π contains a strongly rigid subquotient (but we need to assume that (BA)

from [9] holds).

Proof Denote by X0 the set of all representations which are in the support of τ . Fix α
in R \ (1/2)Z. Let X = {ναρ; ρ ∈ X0}. Now one directly checks that the conditions

(a)–(e) of Proposition 3.2(i) are satisfied (use that π is rigid, τ strongly rigid and that
we assume (2.1)). Proposition 3.2 implies the irreducibility.

Theorem 4.2 reduces the unitarizability problem to the weakly real case. The fol-
lowing proposition provides an upper bound for unitarizability in the weakly real

case.

Proposition 4.6 Let π be an irreducible unitarizable representation of a classical group

Sq. Let ρ be a factor of π such that ρu ∼= ρ̃u. Suppose that ρ1, . . . , ρn are all the factors τ
of π such that τu ∼= ρu. Write

{|e(ρi)|; |e(ρi)| > αρu,πcusp
} = {α1, . . . , αℓ},

where ℓ ≥ 0 and α1 < a2 < · · · < αℓ. Then

(i) α1 − αρu,πcusp
≤ 1 if ℓ ≥ 1, and αi − αi−1 ≤ 1 for each i = 2, 3, . . . , ℓ.

(ii) αi ≤ αρu,πcusp
+ i; i = 1, . . . , ℓ.

Proof Obviously, it is enough to prove (i). After modifying enumeration, we can

assume |e(ρ1)| ≤ · · · ≤ |e(ρn)|. Suppose that we have a gap greater than 1. It must

be before some |e(ρi)|. Fix one such i and take minimal i0 such that |e(ρi0
)| = |e(ρi)|.

By Proposition 3.2, we can write π = τ ⋊ π ′, where the cuspidal support of τ is

contained in {ρ↑i0
, . . . , ρ↑n} ∪ {(ρ↑i0

)̃ , . . . , (ρ↑n )̃ } = {ρi0
, . . . , ρn} ∪ {ρ̃i0

, . . . , ρ̃n} and
none of these representations or their contragredients is a factor of π ′. Moreover, if

ναρu is a factor of π ′, then |α| < |e(ρi)| − 1 (this follows from the existence of the

gap).

Note that by the same proposition, νατ ⋊ π ′ is irreducible for α ≥ 0.

From the unitarizability of π it follows that π ′ is Hermitian (use the formula for

the contragredient in the Langlands classification from [18]). Now representations

νατ ⋊ π ′ form a continuous family of Hermitian representations, with one unita-
rizable representation in it (see [19] for the definition of such a family). Then all

the representations in the family are unitarizable (see construction (b) from the third

section of [19]). This is impossible since this family is not bounded (see [16]).
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5 Langlands Parameter of a Subquotient

Denote by D the set of all classes of essentially square integrable representations of

all GL(n, F)’s, n ≥ 1. The set of all finite multisets in D is denoted by M(D). Let
d = (δ1, . . . , δl) ∈ M(D). Take a permutation p of {1, . . . , l} such that

e(δp(1)) ≥ · · · ≥ e(δp(l)).

If p = id satisfies this condition, then we say that d = (δ1, . . . , δl) is written in

standard order. The representation λ(d) = δp(1) × · · · × δp(l) has a unique irre-

ducible quotient, which will be denoted by L(d). This is the Langlands classification
of irreducible representations of general linear groups. The multiplicity of L(d) in

δp(1) × · · · × δp(l) (and in δ1 × · · · × δl) is 1.

Let δ1, δ2 ∈ D. Suppose that δ1 × δ2 reduces. Then it is a multiplicity 1 represen-
tation of length 2. One subquotient is L(δ1, δ2) while the other is of the form

δ∪1,2 × δ∩1,2

for unique representations δ∪1,2, δ
∩
1,2 ∈ D of GL(n1) and GL(n2, F) respectively, such

that n1 > n2 (see [23] for details). In the case of reducibility we have

(5.1) min{e(δ1), e(δ2)} < e(δ∪1,2), e(δ∩1,2) < max{e(δ1), e(δ2)}.

We shall recall a well-known property of the Langlands classification (which fol-

lows from the factorization of so called long intertwining operator in the Langlands
classification). If π is an irreducible subquotient of δp(1) ×· · ·×δp(l) (or δ1 ×· · ·×δl)

different from L(d), then there exists 1 ≤ i < j ≤ l such that δi × δ j reduces and π
is a subquotient of

(5.2) δ1 × δ2 × · · · × δi−1 × δ∪i, j × δi+1 × · · · × δ j−1 × δ∩i, j × δ j+1 × · · · × δl−1 × δl.

We can write

L(δ1, . . . , δl) = δ1 × · · · × δl +
∑

c∈Xd

md,cL(c)

in the Grothendieck group, where Xd is a finite subset of M(D) such that md,c 6= 0
for all c ∈ Xd (these conditions uniquely determine Xd ; note that md,c are negative).

Clearly d 6∈ Xd. From the above property it follows that if c ∈ Xd, then L(c) is a

subquotient of (5.2) for some i and j as above.
Now we shall recall the Langlands classification for groups Sk. Let

D+ = {δ ∈ D; e(δ) > 0}.

Denote by T(S) the set of all classes of irreducible tempered representations of groups

Sk, k ≥ 0. We shall write an element t = ((γ1, . . . , γm), τ) ∈ M(D+) × T(S) simply

as (γ1, . . . , γm; τ). Take a permutation p of {1, . . . , m} such that e(γp(1)) ≥ · · · ≥
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e(γp(m)) (if p = id satisfies this condition, then we say that t = (γ1, . . . , γm; τ) is
written in standard order). Then the representation

(5.3) γp(1) × γp(2) × · · · × γp(m) ⋊ τ

has a unique irreducible quotient, which is denoted by L(t). This is the Langlands
classification for groups Sk’s. The multiplicity of L(t) in (5.3) is 1.

Now we shall recall a property of irreducible subquotients of (5.3), similar to the
property that we have described in the case of general linear groups. We can write

L(γ1, . . . , γm; τ) = γ1 × · · · × γm ⋊ τ +
∑

s∈Yt

nt,sL(s)

in the Grothendieck group, where nt,s 6= 0 for all s from a finite subset Yt ⊆ M(D+)×
T(S) (actually, nt,s are negative). Again t /∈ Yt . Further, for each L(s), s ∈ Yt at least

one of the following two claims hold:

Claim 5.1 (i) There exist 1 ≤ i < j ≤ m and εi ∈ {±1} such that (γi)
εi × γ j

reduces and that L(s) is subquotient of

γ1 × · · · × γi−1 × (γi, j,εi
)∩ × γi+1 × · · · × γ j−1 × (γi, j,εi

)∪ × γ j+1 × · · · × γm ⋊ τ,

where (γi)
εi denotes γi if ε1 = 1 and (γi)

εi denotes γ̃i if εi = −1, and (γi, j,εi
)∩ ×

(γi, j,εi
)∪ is an irreducible subquotient of (γi)

εi × γ j different from L((γi)
εi , γ j).

(ii) There exists 1 ≤ i ≤ m such that γi ⋊ τ reduces and if we write γi ⋊ τ =

L(γi ; τ) + K(γi; τ) in the Grothendieck group, then L(s) is subquotient of

γ1 × · · · × γi−1 × γi+1 × · · · × γm ⋊ K(γi ; τ).

We could describe subquotients in Claim 5.1(i) by two εi and ε j from {±1}, but
the subquotients that we would get in the remaining cases are already covered by

Claim 5.1.

We shall now recall an inequality which must satisfy π = L(s) if it is an irreducible
subquotient of (5.3) (s ∈ M(D+) × T(S)). Suppose that (5.3) is a representation of

Sk. First we introduce a partial order on R
k defined by

(x1, . . . , xk) ≤ (y1, . . . , yk) ⇔ x1 ≤ y1,

x1 + x2 ≤ y1 + y2,

...

x1 + · · · + xk ≤ y1 + · · · + yk.

Now we shall define e(t) (analogously one defines e(s)). Suppose that γp(i) are repre-

sentations of GL(ki, F), and τ is a representation of Sl. For p is as in (5.3), set

e(t) = (e(γp(1)), . . . , e(γp(1))︸ ︷︷ ︸
k1 times

, . . . , e(γp(m)), . . . , e(γp(m))︸ ︷︷ ︸
km times

, 0, 0, . . . , 0︸ ︷︷ ︸
l times

).
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If L(s) is a subquotient of γ1 ×· · ·×γm ⋊ τ (t is (γ1, . . . , γm; τ)) such that s 6= t , then

(5.4) e(s) < e(t).

An irreducible representation π of Sk is equivalent to L(s), for some s ∈ M(D+) ×
T(S). We define e(π) to be e(s).

Remark 5.2 If π is a subquotient of some of the representations in Claim 5.1, then
e(π) < e(t).

More details and explanation regarding the above properties can be found in [18].

For δ ∈ D which is not unitarizable, denote

δ↑ =

{
δ if e(δ) > 0,

δ̃ if e(δ) < 0.

Let d ∈ M(D). By d↑ we shall denote the element of M(D+) which we get from

d by removing all the unitarizable δi ’s, and changing all δi ’s for which e(δi) < 0, by

δ̃i = δ↑i . Denote by du the multiset in M(D) which we get from d removing all δi ’s

which are not unitarizable.
We add multisets in an obvious way:

(x1, . . . , xn) + (y1, . . . , ym) = (x1, . . . , xn, y1, . . . , ym).

Proposition 5.3 Let d ∈ M(D) and t = (d ′, τ) ∈ M(D+) × T(S). Denote by Td,τ

the set of all (equivalence classes of) irreducible subrepresentations of λ(du) ⋊ τ . Then:

(i) Each of the representations L(d↑ + d ′; τ ′) with τ ′ ∈ Td,τ is a subquotient of

L(d) ⋊ L(d ′; τ).

(ii) Suppose that F is a field of characteristic 0. Then the multiplicity of each of L(d↑ +

d ′; τ ′), τ ′ ∈ Td,τ , in L(d) ⋊ L(d ′; τ) is 1.

Proof Take δ1, . . . , δl ∈ D, γ1, . . . , γm ∈ D+ and τ ∈ T(S) such that d = (δ1, . . . , δl)

and δ ′
= (γ1, . . . , γm). After modifying enumeration we can assume that e(δi) 6= 0

for 1 ≤ i ≤ n and e(δi) = 0 for n + 1 ≤ i ≤ l, for some 0 ≤ n ≤ l. Write

δn+1 × · · · × δl ⋊ τ =
⊕

τ ′∈Td,τ

kτ ′τ ′

where kτ ′ are positive integers.

For the proof of the first claim of the proposition, we need to prove that each
representation from the set

(5.5) {L(δ↑1 , . . . , δ↑n , γ1, . . . , γm; τ ′); τ ′ ∈ Td,τ}

is a subquotient of

(5.6) L(δ1, . . . , δl) ⋊ L(γ ′
1, . . . , γ

′
m; τ).
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For the second claim of the proposition we need to prove that the multiplicity of each
of the subquotients in (5.6) is 1.

First observe that we have in the Grothendieck group

L(d) ⋊ L(t) = L(d) ⋊ L(d ′; τ) = L(δ1, . . . , δl) ⋊ L(γ1, . . . , γm; τ)

=

(
δ1 × · · · × δl +

∑

c∈Xd

md,cL(c)
)

⋊

(
γ1 × · · · × γm ⋊ τ +

∑

s∈Yt

nt,sL(s)
)

= δ1 × · · · × δl × γ1 × · · · × γm ⋊ τ +
∑

s∈Yt

nt,s δ1 × · · · × δl ⋊ L(s)

+
∑

c∈Xd

md,c L(c) × γ1 × · · · × γm ⋊ τ +
∑

c∈Xd

∑

s∈Yt

md,c nt,s L(c) ⋊ L(s)

=

∑

τ ′∈Td,τ

kτ ′ δ↑1 × · · · × δ↑n × γ1 × · · · × γm ⋊ τ ′(5.7)

+
∑

s∈Yt

nt,s δ1 × · · · × δl ⋊ L(s)(5.8)

+
∑

c∈Xd

md,c L(c) × γ1 × · · · × γm ⋊ τ(5.9)

+
∑

c∈Xd

∑

s∈Yt

md,c nt,s L(c) ⋊ L(s).(5.10)

Now the representations in (5.5) show up as subquotients of representations in (5.7).

If F is of characteristic 0, then all kτ ′ are one (see [5] for split groups, the case of

non-split groups goes as in [6]). Now the properties of the Langlands classification

imply that the representations in (5.5) show up as subquotients of representations in
(5.7) with multiplicity one.

Therefore, for the proof of the proposition, it is enough to show that representa-

tions from (5.5) do not show up as subquotients of representations in the lines (5.8),
(5.9), and (5.10). It is obvious that each irreducible subquotient of each represen-

tation in the line (5.10) is already a subquotient of some representation in the line

(5.8) or (5.10) (actually, of both). Therefore, for the proof of the proposition it is
enough to show that representations from (5.5) do not show up as subquotients of

the representations in the lines (5.8) and (5.9).

Observe that for each irreducible representation π from (5.5), e(π) does not de-

pend on τ ′ ∈ Td,τ . We shall show below that for each irreducible subquotient σ of
(5.8) or (5.9), e(σ) is strictly smaller than e(π), where π is from (5.5). This will prove

the proposition. Observe that we know e(σ) ≤ e(π) by (5.4).

Suppose that some irreducible representation π is a subquotient of some term in
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(5.9). Then it is a subquotient of some

(δ1 × · · · × δ∩i, j × · · · × δ∪i, j × · · · × δl) × γ1 × · · · × γm ⋊ τ

(see (5.2)). Observe i ≤ n since the tempered parabolic induction for general linear
groups is irreducible.

Consider first the case j ≤ n. Then the relation (5.1) and the definition of e(π)

and e(σ) imply that e(π) < e(σ) for σ from (5.5).

Consider now n < j. Then π is a subquotient of

(δ1 × · · · × δ∩i, j × · · · × δn × · · · × δ∪i, j × · · · × δl) × γ1 × · · · × γm ⋊ τ.

Write

(5.11) (δ↑1 , . . . , δ↑n , γ1, . . . , γm; τ ′) = (β1, . . . , βn+m; τ ′)

such that the right hand side is in standard order (here τ ′ is any element from Td,τ ).

Then δ↑i = βk for some k.

Let τ ′ ′ be an irreducible subrepresentation of

δn+1 × · · · × δ j−1 × δ j+1 × · · · × δl ⋊ τ.

If e(βk) > e(βk+1) or k = n + m, writing

(δ↑1 , . . . , (δ∩i, j)
↑, . . . , δ↑n , (δ∪i, j)

↑, γ1, . . . , γm; τ ′ ′)

in standard order, relation (5.1) will imply directly

(5.12) e(π) ≤ e(δ↑1 , . . . , (δ∩i, j)
↑, . . . , δ↑n , (δ∪i, j)

↑, γ1, . . . , γm; τ ′ ′)

< e(δ↑1 , . . . , δ↑n , γ1, . . . , γm; τ ′) = e(β1, . . . , βn+m; τ ′) = e(σ)

for any σ from (5.5).

If e(bk) = e(bk+1), then look at all ℓ ≥ k such that e(βℓ) = e(βk). Let ℓ0 be a

maximal such index.

Write (δ↑1 , . . . , (δ∩i, j)
↑, . . . , δ↑n , (δ∪i, j)

↑, γ1, . . . , γm; τ ′ ′) in standard order, where τ ′ ′

is an irreducible subrepresentation of δn+1 ×· · ·×δ j−1 ×δ j+1 ×· · ·×δl ⋊τ as before.

We shall consider how from e(β1, . . . , βn+m; τ ′) one gets

e(δ↑1 , . . . , (δ∩i, j)
↑, . . . , δ↑n , (δ∪i, j)

↑, γ1, . . . , γm; τ ′ ′).

Note that e(δ↑1 , . . . , (δ∩i, j)
↑, . . . , δ↑n , (δ∪i, j)

↑, γ1, . . . , γm; τ ′ ′) will have the same βh’s for
h < k. Further, one needs to remove from e(β1, . . . , βn+m; τ ′) elements e(βk) corre-

sponding to βk and shift elements e(βℓ) corresponding to βℓ, k + 1 ≤ ℓ ≤ ℓ0, to the

left.
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After e(βℓ0
) will come either e(βℓ0+1) or e((δ∪i, j)

↑) or e((δ∩i, j)
↑). Now e(βℓ0+1) <

e(βℓ0
) and (5.1) imply again (5.12), what we needed to prove.

To complete the proof, it remains to consider π which is an irreducible subquo-
tient of (5.8). Then it is a subquotient of some δ1 × · · · × δl ⋊ L(s), where L(s) is a

subquotient of a representation which can have following two types.

The first type is is a representation for which there exist 1 ≤ i < j ≤ m and
εi ∈ {±1} such that (γ ′

i )εi × γ ′
j reduces and that L(s) is subquotient of

γ1 × · · · × (γi, j,εi
)∩ × · · · × (γi, j,εi

)∪ × · · · × γl ⋊ τ.

Again write (δ↑1 , . . . , δ↑n , γ1, . . . , γm; τ ′) = (β1, . . . , βn+m; τ ′) in standard order (sim-

ilarly as in (5.11)). Observe

|e((γi, j,εi
)∩)|, |e((γi, j,εi

)∪)| < max{e(γi), e(γ j)}.

Now from (5.1) and the above relation we prove (5.12) in the same way as in the

previous case.

The remaining type of the representation is one for which there exists i such that
δ ′

i ⋊ τ reduces, and after writing γi ⋊ τ = L(γi ; τ) + K(γi ; τ) in the Grothendieck

group, then L(s) is subquotient of

γ1 × · · · × γi−1 × γi+1 × · · · × γm ⋊ K(γi ; τ).

Therefore, there exists a subquotient π ′ of K(γi ; τ) such that L(s) is a subquotient

of γ1 × · · · × γi−1 × γi+1 × · · · × γm ⋊ π ′. We know that π ′
= L(r) for some

r ∈ M(D+) × T(S). Write r = (µ1, . . . , µa; τ ′ ′) in standard order. Further,

e(π ′) = e(µ1, . . . , µa; τ ′ ′) = (x1, . . . , xb) < e(γi, τ) = (e(γi), . . . , e(γi)︸ ︷︷ ︸
u times

, 0, . . . , 0),

where γi is a representation of GL(u, F). This implies

x1 ≥ · · · ≥ xb ≥ 0; x1 ≤ e(γi);

x1 + · · · + xu < u e(γi); x1 + · · · + xb ≤ u e(γi).

The third relation implies that the number v of indices j such that x j = e(γi) satisfies

(5.13) v < u.

We can now write the following in standard order

(δ1, . . . , δn, γ1, . . . , γi−1, γi+1, . . . , γm, µ1, . . . , µa, τ
′ ′ ′),

where τ ′ ′ ′ is an irreducible subrepresentation of δn+1 × · · · × δl ⋊ τ ′ ′. From (5.13)

one sees similarly as above that e(π) < e(σ) for σ from (5.5). The proof is now

complete
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Remarks 5.4 (i) Proposition 5.3 holds also in the archimedean case, in unchanged
form. The proof there goes the same way as in the non-archimedean case, except that

we need to make small modifications regarding composition series of representations
δ1 × δ2, δi ∈ D.

(ii) Proposition 5.3 also holds for hermitian quaternionic groups in the case of

characteristic 0.

(iii) The second claim of Proposition 5.3 also holds in positive characteristic. This

follows from the work of J.-L. Waldspurger and V. Heiermann, but for this we do not
have a written reference (the result that one needs is that standard intertwining op-

erators span the intertwining algebra of the representation induced by an irreducible

square integrable one).

The easiest way of constructing irreducible unitarizable representations of reduc-

tive groups is parabolic induction starting with irreducible unitarizable representa-
tions of proper Levi subgroups. For this, we need to know when such representations

reduce, and what are irreducible constituents. A natural place to start construction

for classical groups Sm’s are representations π ⋊ τ where π is an irreducible unitariz-
able representation of a general linear group (such representations are classified) and

τ is an irreducible tempered representation of a classical group Sm. (We would like to

start with more general unitarizable representations τ ’s, but we do not know many
more general irreducible unitarizable representations of classical groups.)

For a unitarizable δ ∈ D and a positive integer n denote

u(δ, n) = L(ν(n−1)/2δ × ν(n−1)/2−1δ × · · · × ν−(n−1)/2δ).

Then u(δ, n) is a unitarizable representation of a general linear group. These repre-
sentations play a crucial role in the description of the unitary duals of general linear

groups (see [14]). Each irreducible unitarizable representation of a general group
is induced from a tensor product of such representations or complementary series

starting with such representations.

Let us return to the classical groups and representations π ⋊ τ where π is an irre-
ducible unitarizable representation of a general linear group and τ is an irreducible

tempered representation of a classical groups Sm. We can handle reducibility ques-
tions of representations π ⋊ τ when π’s are complementary series pretty well using

Lemma 4.5 and Proposition 3.2. Therefore, we shall concentrate now to the problem

of reducibility of representations u(δ, n) ⋊ τ .

The above proposition enables us easily to get a partial information in that direc-

tion. Let us note that we have a description of reducibility points of representations
δ ′

⋊ τ for δ ∈ D and τ irreducible square integrable representation, and also if τ is

an irreducible tempered representation (see [10, 11]).

Corollary 5.5 Suppose that τ is an irreducible representation of a classical group Sm,

δ ∈ D is unitarizable and n is non-negative integer.

(i) Let δ1, . . . , δk ∈ D be unitarizable and not self dual (i.e., δi 6∼= δ̃i, i = 1, . . . , k).

If n1, . . . , nk are positive integers and τ is weakly real or tempered, then u(δ1, n1)×
· · · × u(δk, nk) ⋊ τ is irreducible.
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(ii) Suppose that τ is tempered and that δ ⋊ τ reduces. Then u(δ, 2n + 1) ⋊ τ reduces.

(iii) Suppose that τ is tempered. Then u(δ, 2) ⋊ τ reduces if and only if ν1/2δ ⋊ τ
reduces.

(iv) Suppose that τ is tempered and that δ ⋊ τ and νδ ⋊ τ are irreducible. Then

u(δ, 3) ⋊ τ is irreducible.

Proof (i) If τ is weakly real, we easily get (i) from Proposition 3.2 (see the proof
of Theorem 4.2). If τ is tempered, then τ ∼= δ ′

1 × · · · × δ ′
k ′ ⋊ τ ′, where δ ′

i ∈ D are

unitary and not self dual, and τ ′ is weakly real. Now the first part of the proof implies

irreducibility.

(ii) Proposition 5.3 implies (ii) directly.

(iii) Note that L(ν1/2δ, ν1/2δ; τ) is always a subquotient of u(δ, 2)⋊τ by the above
proposition. Suppose that ν1/2δ ⋊ τ reduces. Then there exists t ∈ M(D+) × T(S),

t 6= (ν1/2δ, τ) such that L(t) is a subquotient of ν1/2δ ⋊ τ . Now L((ν1/2δ) + t) is a

subquotient of ν1/2δ × ν1/2δ ⋊ τ by the above proposition. This is a non-tempered
representation. From the representation theory of general linear groups we know that

ν1/2δ×ν1/2δ⋊τ consists of u(δ, 2)⋊τ and a tempered part. Therefore, L((ν1/2δ)+t)
is a subquotient of u(δ, 2) ⋊ τ . Since (ν1/2δ) + t is different from (ν1/2δ, τν1/2δ; τ),

we get that u(δ, 2) ⋊ τ is reducible.

Suppose that ν1/2δ ⋊ τ is irreducible. Now we have the surjective intertwining

ν1/2δ × ν1/2δ ⋊ τ ∼= ν1/2δ × ν−1/2δ ⋊ τ → u(δ, 2) ⋊ τ.

Since the first representation has a unique irreducible quotient, u(δ, 2) ⋊ τ must also

have a unique irreducible quotient. Since the last representation is unitarizable, it

must be irreducible.

(iv) Using Zelevinsky involution, the fact that it carries irreducible representations

to the irreducible ones, we get easily that L(νδ, δ) × δ is irreducible. Now we have

surjective intertwinings

νδ × νδ × δ ⋊ τ → νδ × L(νδ, δ) ⋊ τ ∼= L(νδ, δ) × νδ ⋊ τ

∼= L(νδ, δ) × ν−1δ ⋊ τ → u(δ, 3) ⋊ σ.

This implies irreducibility (use the same argument as in the proof of (iii)).

Remarks 5.6 (i) After the above corollary, it is natural to ask: is u(δ, n) ⋊ π irre-

ducible if δ ′
⋊π are irreducible for all δ ′ ∈ {ν(n−1)/2δ, ν(n−1)/2−1δ, . . . , ν−(n−1)/2δ}.

(ii) After understanding reducibilities u(δ, n) ⋊ τ , the next question would be to

understand representations u(δ1, n1) × · · · × u(δk, nk) ⋊ τ . Note that the theory of

R groups takes care of the case n1 = · · · = nk = 1. In this case we get a represen-
tation of length 2l for some l (which we can describe in terms of relative rank one

reducibilities). The general situation will be different. We shall give an example.

For a connected reductive group G, 1G (resp. StG) will denote the trivial one di-

mensional (resp. Steinberg) representation of G. Now we shall consider split odd-

orthogonal groups. It is not hard to see that the representation StGL(2,F) ⋊ StSO(3,F) is
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irreducible, and that 1GL(2,F) ⋊ StSO(3,F) reduces into two irreducible pieces (clearly,
1GL(2,F) × StGL(2,F) is irreducible). Ban and Jantzen proved in [1] that

1GL(2,F) × StGL(2,F) ⋊ StSO(3,F) = u(1GL(1,F), 2) × u(StGL(2,F), 1) ⋊ StSO(3,F)

reduce into three irreducible pieces.
(iii) If we fix a self dual δ, we shall often have u(δ, n) ⋊ τ reducible. For example,

at least one of the representations u(δ, 2n + 1) ⋊ 1SO(1,F) or u(δ, 2n + 1) ⋊ 1Sp(0,F) is

always reducible (this follows from the duality established by Shahidi in [13]).

6 A Simple Case of the Reducibility Problem

Let us first recall a classification of irreducible essentially square integrable represen-

tations of general linear groups (see [23]). For ρ ∈ C and a positive integer n, the
set ∆ = [ρ, νnρ] = {ρ, νρ, . . . , νnρ} is called a segment in C. The representation

νnρ× νn−1ρ× · · · × ρ contains the unique irreducible subrepresentation, which will

be denoted by δ(∆). It is essentially square integrable. Segments in C parameterize
D (∆ 7→ δ(∆) is a bijection).

We have seen that for understanding the unitarizability it is very useful to under-
stand the reducibility of parabolic induction. One of the first steps in understanding

reducibility for classical p-adic groups, is to understand the reducibility of

(6.1) δ ⋊ π

where δ and π are irreducible essentially square integrable representations (δ of a
general linear group and π of a classical group). This question is in general hard and

complicated (see [10, 11]). If π is cuspidal, the problem of reducibility of (6.1) has
a simple answer (reduction). If (2.1) holds (and π is cuspidal), then δ(∆) ⋊ π is

reducible if and only if ρ ⋊ π reduces for some ρ ∈ ∆.

The opposite case to π cuspidal is the case of δ cuspidal. We shall briefly describe
the reducibility in this case.

Let ρ be an irreducible unitarizable cuspidal representation of GL(p, F) and let π
be an irreducible square integrable representation of Sq. If ρ is not self dual, then
ναρ ⋊ π is irreducible for all α ∈ R. Therefore, we shall assume in the sequel that ρ
is self dual.

In the sequel we shall assume that assumption (BA) from [9] holds.

For a positive integer a denote δ(ρ, a) = δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]). Parity of ρ
with respect to π is defined in [8] (see [9] also). Parity can be characterized in the
following way: it is even (resp. odd) if δ(ρ, a) ⋊ π is irreducible for all odd (resp.

even) positive integers a. Further, Jord(π) is defined as the set of all pairs (ρ, a) where

a is a positive integer of the same parity as the parity of ρ with respect to π, such that
δ(ρ, a) ⋊ π is irreducible (see [8], and also [9]). Further, C. Mœglin has introduced a

partially defined function επ. Then (admissible) triples (Jord(π), επ, πcusp) parame-
terize irreducible square integrable representations of groups Sn’s (see [9] for details).

In the following proposition we collect the facts about reducibility of representations

(6.1) when δ is cuspidal.
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Proposition 6.1 Let ρ ∈ C be self dual, and let π be an irreducible square integrable

representation of a group Sq. Suppose that (BA) from [9] holds. Denote Jordρ(π) =

{k; (ρ, k) ∈ Jordρ(π)}. Let a be a positive integer. Then:

(i) For α ∈ R, ναρ ⋊ π reduces if and only if ν−αρ ⋊ π reduces.

(ii) If α ∈ R\(1/2)Z, then ναρ ⋊ π is irreducible.

(iii) ρ ⋊ π reduces if and only if ρ has odd parity with respect to π and 1 6∈ Jordρ(π).

(iv) If a 6∈ Jordρ(π), then ν(a+1)/2ρ ⋊ π is irreducible.

(v) If a ∈ Jordρ(π) and a + 2 6∈ Jordρ(π), then ν(a+1)/2ρ ⋊ π is reducible.

(vi) Suppose that a and a + 2 are in Jordρ(π). Then ν(a+1)/2ρ ⋊ π is reducible if and

only if ερ(a) = ερ(a + 2).

(vii) ν1/2ρ ⋊ π is reducible if and only if 2 6∈ Jordρ(π) or 2 ∈ Jordρ(π) and ερ(2) = 1.

In other words, ν1/2ρ ⋊ π is irreducible if and only if 2 ∈ Jordρ(π) and ερ(2) =

−1.

The first claim is a consequence of the structure of R module R(S) (see Section 2).
The second claim is well known (it follows also from Lemma 4.5). The third claim

is is just a definition of Jord(π). The fourth claim is [8, Lemma 5.4.1(iv)], while the

fifth claim is [9, Lemma 5.3]. A sketch of proof of sixth claim is in the remark after
the proof of the [9, Lemma 5.3]. That proof is based on intertwining operators. We

have also a proof based on the Jacquet module techniques of [20]. The seventh claim

also follows applying these techniques.
Muić has described reducibility points of representations (6.1) completely in [10].

(In [11] he settles the case of more general case of standard modules.) The above
proposition is a very special (starting) case of his results. The above proposition

is elementary in comparison with his results. The same comment is valid for the

following simple lemma, which is sometimes useful. It can be proved in a rather
simple way.

Lemma 6.2 Assume that (BA) holds. Let ∆ be a segment in irreducible cuspidal

representations of general linear groups and let π be an irreducible square integrable

representation of a group Sq. Suppose that ρ ⋊ π is irreducible for all ρ ∈ ∆. Then

δ(∆) ⋊ π is irreducible.
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