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1. Introduction

It is well known that triple systems are intimately related to Lie algebras and Jordan
algebras, for example, by

[x,y, z] := [[x,y],z] and (xyz) = x(yz) - y(xz) + (xy)z,

respectively, for Lie product [x,y] and Jordan product xy. These systems are actually
special cases of more general S-L'ie triple systems and Preudenthal—Kantor triple systems
denned by certain identities among triple products (cf. [8,12,13,21]).

Conversely, simple Freudenthal-Kantor triple systems have been used to construct
all simple Lie algebras together with the concept of root systems and Cartan matrix
(cf. [8,11,12,14]). Also, some classes of Jordan algebra can be similarly obtained fr6m
another type of triple system called Jordan—Lie triple systems [21].

Furthermore, these triple-product systems have been successfully applied, in many
branches of mathematical physics, to solutions of the Yang-Baxter equation, para-stat-
istics and nonlinear Schrodinger equations (cf. [18-20,24]).

In this note, we discuss super-generalization of these triple systems in some detail.
Especially, we will show in Theorem 4.2 and Proposition 4.5 a <S-Lie supertriple system can
always be constructed from any (e, 5)-Freudenthal-Kantor supertriple system (e, S = 1
or —1). Further, the construction in Proposition 4.5 is intimately related to the existence
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of a Nijenhuis tensor in an algebraic context (see works of Leites and Rothstein and
co-workers [1,22]).

We recall the fact that each bounded symmetric domain in a differential manifold can
be obtained from a certain Jordan triple system and vice versa. Moreover, it is also well
known that the tangent space of a symmetric homogeneous manifold corresponds to a Lie
triple system in algebraic notation [6]. Since the Nijenhuis tensor is related to complex
structure in differential geometry, these facts suggest that supertriple systems may play
some role in differentiable super manifolds, although the possible connection has yet to
be studied in detail.

We organize the present note as follows.
Let U(e,6) be a (e, £)-Freudenthal-Kantor supertriple system and T(S) be the 6-Lie

supertriple system associated with U(s, S). Then the contents in this article are described
as follows.

(i) Several examples of (e, <5)-Freudenthal-Kantor supertriple systems,

(ii) The correspondence of U(e,S) and T(5).

(iii) Nijenhuis tensor condition for complex superstructure of T(5).

(iv) Examples of simple Lie superalgebras associated with our triple systems.

We shall mainly employ the notation and terminology in [8,19,21].

2. Examples of (e, (J)-Freudenthal—Kantor supertriple systems

To make this article as self-contained as possible, we shall first introduce a notion of
(e, <5)-Preudenthal-Kantor supertriple systems [8-12] that generalizes many earlier works
[2,3,5,14,25] on the subject. Hereafter, we are concerned with algebras and triple systems
that are finite dimensional over a field <$> of characteristic ^ 2.

We shall denote the degree (or grade or signature) for Z2-graded vector space V =
Vo © V, by

Prom now on, we often write, for simplicity,

(_i)*<*i = ( - i )« , if Xi e Vi, XJ G Vj.

Definition 2.1. For e = ±1, 5 = ±1, a vector space U(e, 8) = Si®Ui(e, 5) over a field
^ with a triple product (—, —, —) is said to be a (e, <5)-Freudenthal-Kantor supertriple
system if

(UO)

bjOidi)), (Ul)

if ((oibjCfe), d,) + {-l)(i+j)kK{ck, (aibjdt)) + 5(-l)Hk+»K(ai, K(ck,di)bj) = 0, (Kl)
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where L(a,i,bj)ck = (a,ibjCk) and

K(ai,bj)ck = (-ly^OiCkbj) - Si-iy

for Oi e Ufa 5), bj e Uj(e,6), ck e Uk(e,5), \E,F] := EF - (_
That is, a (e, <5)-Freudenthal-Kantor supertriple system is a Z2-graded vector space

together with bilinear maps L{ai,bj) and K(a,i,bj) : U(e,6) x U(e,S) —> EndC/(e,5),
such that (UO), (Ul) and (Kl) are satisfied.

Remark 2.2 (see [10]). We note that the following identities are equivalent:

(Ul) and (Kl) «=> (Ul) and

fabj^dt) - (-l)a+(i+Mk+l)L(d,,ck)K{ai,bj)+eK(ai,bj)L(ck,dl) = 0.

Definition 2.3 (see [8,10]). If an endomorphism D of the supertriple system U sat-
isfies the identity

then it is said to be a superderivation of U.
For degree 0, this identity is equivalent to

D(abc) = {(Da)bc) + {a(Db)c) + (ab(Dc)).

Remark 2.4. When U be a (e, <5)-Freudenthal-Kantor supertriple system, then the
endomorphism

is a superderivation of U(e,S), and we denote by InnDerC/(e,<5) the set of these super-
derivations [8,10].

If we have K(x, y) = 0 identically, U(e, S) is called a (e, (J)-Jordan supertriple system.
Alternately, suppose that there exists a bilinear form (-, - ) such that

(al,bj) = -e(-l)ii6ij(bj,ai), (2.1)

where ai e U%, bj E Uj and Sij is the Kronecker delta. Then, if K(x, y) satisfies

Kia^bj) = (aub^U, (2.2)

we call U(e, S) balanced. Here Id stands for the identity map. Assuming (x, y) to be not
identically zero, the balanced {e, J)-Freudenthal-Kantor supertriple system implies the
validity of the following relations in addition to (Ul):

(i) e = 6;

(ii) (aibjCk) - 5{-l)W+ki(ckbjai) = (

(iii) {aibjCk) -e(-l)ij(bjdiCk) = -e{a,i,bj)ck;
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(iv) ((oibjCk),*) + ( - l )^) f e (c f e , (aibjdt)) = -^.hj-Xck.dj); and

(v) (Dai, bj) + (-l)des<n d e s ° ( a i , Dbj) = 0, where £> is a superderivation of J7(e, <5).

However, since its derivation is standard, we need not go into detail.
Also, for the case of degree 0 with e = — 1, 5 = 1 and K(a,b) = 0 (identically zero),

(UO), (Ul) and (Kl) reproduce the definition of the well-known Jordan triple system as
follows:

(abc) = (cba),

(ab(cde)) = ((abc)de) - (c(bad)e) + (cd(abe)).

We will now present the following examples.

Example 2.5. Let W be a vector space over <P equipped with a symmetric bilinear
form (x,y). Then W is a Jordan triple system with respect to the product

(xyz) := (x, y)z + (y, z)x - (z, x)y.

Example 2.6. Let W be as above. Then (W, [xyz]) is a Lie triple system with respect
to the new product

[xyz] := (xyz) - (yxz)

(for the definition of a Lie triple system, see § 3 below or [7,9,13]).

Remark 2.7. We note that the connection between totally geodesic submanifolds of
a Riemannian globally symmetric space and Lie triple systems is presented in Helgason's
book [6].

Proposition 2.8. Let U(e, 6) = U(e, <5)o © U(s, 6)i be a Z2-graded vector space with
a bilinear form ( — , —) satisfying equation (2.1). Then, we find that

(i) Both

and
(aibjCk) = a(ai,bj)ck

satisfy the condition (Ul) for any constants a and f3 £ $.

= (bj,ck)ai

is a (E, 5)-Freudenthal-Kantor supertriple system, i.e. it satisfies (Ul) and (Kl).

(iii) Both
(aib^k) = (at, bj)ck - eS(bj,ck)ai,

and

with e = — 5 (only for the second equation), are (e, 5)-Jordan supertriple systems.
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(iv)
{ai,bj,ck) = \{-e(ai,bj)ck + e{bj,ck)ai + (-iyk{ai,ck)bj}

gives a balanced (e, 8)-Freudenthal-Kantor supertriple system.

Proof. Since the calculations are somewhat lengthy, we will give the detailed proof
only for statement (ii) here. From the definition of the triple product, it follows that

= (bj,ck)(di,em)ai,

On the other hand, (a^d;) = -(—I)tle{di,ai)5i,i by straightforward calculation, and
we obtain

By the same method, we have

= (-l)lm(bj,ck){em,dl)ai-5(-l)^+k^m+l\bj,ck)(em,ai)dh

Adding these identities, we get

K((oibjCk), di) + (-l)(i+j)kK(ck, (aibjdi)) + 6(-iyV°+l)K{ai, K(ck, dt)bj) = 0.

This completes the proof for (ii). D

For the case of degree 0 (Vb refers to bosonic space), it follows that U(e,8) is a (e,6)-
Freudenthal-Kantor triple system with respect to the product

(abc) := (b, c)a.

For the case of degree 1 (V\ refers to fermionic space) or degree 0, we have the following
proposition.
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Proposition 2.9. Let U(e,6) be a (e, 6)-Freudenthal-Kantor supertriple system of
degree 1 (that is, U(e, 6) = V\) equipped with the triple product (abc), a, b, c, € V\. Then
U(e,6) is a (-e, — 6)-Freudenthal-Kantor triple system (that is, U(e,6) = VQ may be
regarded now as degree 0) equipped with the new triple product (abc), a,b,c S VQ.

3. Examples of (e, <5)-Jordan supertriple systems and balanced systems

In this section, we shall first consider the special case K(a,b) = 0 for all a,b 6 U{e,5),
which defines a (e, <5)-Jordan supertriple system. We can redefine this alternatively by

{azbjCk) = 5(-l)k«+»+ii(ckbjai), (Jl)

(oibjicdtem)) = ((Oibjcjdiem) + e(- l ) f c ( l + ^(c , (& j a i d / ) e r a )

+ (-l)(fc+')('+J)(Cfedz(ai6J-em», (J2)

which is often more convenient.

Remark 3.1. We note that

(Jl) <s=^ K(a, b) = 0, for all a, b € U(e, 6),

and
(J2) ^ ^ (Ul).

For the case of degree 0, and if (e, 6} = (—1,1), then this notion reduces to a Jordan
triple system (cf. §1), but if (e,S) = (1,-1), then this defines an anti-Jordan triple
system (cf. [9]).

We have already given examples of (e, £)-Jordan triple systems in Proposition 2.8. For
example, we have the following example.

Example 3.2. Let W = Si © Wi be a vector space equipped with a super symmetric
bilinear form (xi,yj) = ( — l)lj(yj,Xi)5ij for Xi 6 Wi,yj £ Wj. Then

defines a (—1,1)-Jordan supertriple system on W, while

gives a (—1, —1)-Jordan supertriple system.

Example 3.3. Let W = Si © Wi be a vector space equipped with a super antisym-
metric bilinear form (xi,yj) = —{ — l)%^(yj,Xi)5ij. Then

(xi,yj,zk) = {xi,yj)zk + (yj,zk)xi - (-^^^^(zfe.a;,)^

defines a (1, —1)-Jordan supertriple system on W, while

(xi,yj,zk) = (xi,yj)zk - {yj,zk)xi

gives a (1,1)-Jordan supertriple system on W.
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We also have other types of Jordan supertriple systems as follows.

Example 3.4. Let xy be an associative algebra, i.e.

(xy)z = x{yz) := xyz.

Then

(aibjCk) = aibjCk + 6(-l)ij+jk+kickbjai

defines a (—6,5)-Jordan supertriple system (the case of e = —S).

Example 3.5. Let x • y = (-l)xyy • x be a Jordan superalgebra (cf. [21]). Then

{aibjCk) = a,i • (bj • ck) + (a» • bj) • ck - {-l)jk(ai • ck) • bj

defines a (—1,1)-Jordan supertriple system.

Next let us consider examples of balanced Freudenthal-Kantor supertriple systems
other than that discussed in Proposition 2.8. Suppose that we have e = 6, and introduce
the second triple product by

a,i • bj • cfc := (ai,bj,ck) + \e(a.i,bj)ck.

Then, equations (Kl) and (Ul) can be rewritten as

(i) a.i • bj • Cfc - e(-iyjbj • at • ck = 0;

(ii) aj • bj • Cfc - e(-iykoi • ^ • bj = \e{2{bj,ck)ai - (a*, bj)ck - ( - l ) ( i +^ f c (c f c ,a i )6 j};

(iii) ^ • bj • (xk • yt • zm) = (ai • bj • xk) • yi • zm + (-l)^+j)kxk • ( ^ • bj • yi) • zm

(iv) (at • bj • cfe, di) + (-l)(i+j)k(ck, ai • bj • di) = 0.

If we define the left multiplication operation L(ai,bj) by

L(ai,bj)ck :— ai • bj • ck,

then (iii) implies that L(ai,bj) is a superderivation of the supertriple system.
Such a system has been called symplectic (e = 1) and orthogonal (e = — 1) and has been

used to construct solutions of the Yang-Baxter equation [18]. Especially, the octonionic
triple system [19] offers an example of the case of degree 0 (e = — 1). For other examples,
see also [11,12].

4. 5-Lie supertriple systems T(6) associated •with U(e, S)

In order to make this paper as self-contained as possible, we shall briefly recall the basic
concept for S-Lie supertriple systems from the previous papers [20,21].

https://doi.org/10.1017/S0013091500020903 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020903


250 N. Kamiya and S. Okubo

For S = ±1, a vector space T(S) = ZJi®Ti over <£ with a triple product [—,—,—] is
called a 5-Lie supertriple system if

[xiyjzk] € Ti+j+k, (TO)

^jXiZk], (Tl)

(-l)kj[zkxiyj] = 0, (T2)

] + (-l)(fc+')(i+J)[zfcu;[a;iyjt;m]],
(T3)

for all Xi e Tu y, € Tj, zk £ Tk, ut e Tu vm € Tm.
In the case of S = 1 (respectively, 5 = —1), T(<J) is said to be a Lie supertriple system

(respectively, anti-Lie supertriple system).
Furthermore, for the case of degree 0 and S = 1 it is said to be a Lie triple system,

while for the case of degree 0 and S = —1 it is called an anti-Lie triple system (cf. [9,13]).

Remark 4.1. The above identity (T3) implies that the mapping L(xi,Xj) : xk —>
[xiXjXk] is a superderivation of the supertriple system T(S). We denote it by L(T(S),T(6))
and it is said to be an inner superderivation of T(5).

We can now give an example as follows.
Let (xj,yk) = 6( — iyh(yk,Xj). Then, the triple product

[xiyjZk] = (yj,zk)xi - 6(-lY3(xu zk)yj

defines a 6-Lie supertriple system.
Next we shall investigate the correspondence of (e, <5)-Freudenthal-Kantor supertriple

systems and <5-Lie supertriple systems.

Theorem 4.2. Let U(e, 6) be a (e, 5)-Fxeudenthal-Kantor supertriple system. IfP is a
grade-preserving linear transformation ofU(e,S) such that P(xiyjZk) = (Pxi,Pyj,Pzk)
and P2 = —eSId, then (U(e,6), [—,—,—]) is a Lie supertriple system (the case of 6 = 1)
or an anti-Lie supertriple system (the case ofS = -l) with respect to the triple product

[xiyjzk] := (xi
(4.1)

For the proof of Theorem 4.2, we need the following lemma.

Lemma 4.3. Let (U(e,5),{xyz)) be a (e,6)-Freudenthal-Kantor supertriple system
equipped with L(x,y) and K(x,y) given by

L(ai,bj)ck:= (aibjCk) (4.2a)

K{oibj)ck := {-^{aiCkbj) - 5{-iyU+kHbjCkai). (4.26)

Setting

M(aubj) := L(auPbj) - ^ - l ^ L ^ P a O , (4.3a)

Q{aubj) := 5K(ai,bj)P, (4.3 6)
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they satisfy a Lie super equation

(i) [M(ai,bj),M{ck,de)] = M(M(oi,bj)ck,de) + (-l^+^Mfcfc.Mte.^HO; (4-4a)

(ii) [Mfab&Q^de)] = QiMiaubjY^de) + ( - ^ ^ Q ^ M ^ R ) ; (4.4 6)

(iii) [Qiaub^^ick,^)} = MiQim^Ck,^) + (-l)(i+»kM(ck,Q{aubj)de); (4.4c)

where [X, Y] stands for the super commutator

[X, Y]=XY- (-1)XYYX. (4.5)

Moreover, Q(x, y) obeys constraint equations

Q(ai,bj)Q(ck,de) = L(Q{ai,bj)ckiPde) - 5(-l)keHQfab^Pck)

= -(-l)^fc+e)L(ai,PQ(cfc,de)6J) + 5(-l)^+fc+e)L(6j>PQ(cfc,de)ai).
(4.6)

Proof. Equation (4.4 a) can be shown straightforwardly, while equation (4.4 b) follows
readily from the validity of

Pbjfa^) + ( - l ^

In order to prove equation (4.6), we omit unnecessary complications due to the presence
of sign factors (—l)1^, etc., by omitting them in the following proof. We can easily supply
them if necessary. Changing notations with this understanding, we calculate

Q(u, v)Q(x, y)z = K{u, v)P{(x, Pz, y) - 5(y, Pz, x)}

= -e6K(u, v){{Px, z, Py) - 5(Py, z, Px)}

= -e6(u,(Px,z,Py),v)+e(v,(Px,z,Py)>u)

+ e{u, (Py, z, Px), v) - eS(v, (Py, z, Px),u).

We note next the validity of

- e6(u, (Px, z, Py),v) = -5(z, Px, (u, Py,v))

+ 6((z,Px,u),Py,v) + S(u,Py,(z,Px,v)),

and similarly for other expressions from (Ul). We then find

Q(u, v)Q(x, y)z = -6K(z, K(u, v)Py)Px - (K(u, v)Py, Px, z)

+ SK(u, (z, Px, v))Py - K(v, (z, Px, u))Py + K(z, K{u, v)Px)Py

+ 6(K(u, v)Px, Py, z) - K(u, (z, Py, v))Px + 5K(v, (z, Py, u))Px.

Using now the relation (Kl), which gives

5K(z, K(u,v)Py) + K((z,Py,u),v) + K(u, (z, Py,v)) = 0,
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we then obtain

Q(u, v)Q(x, y)z = -(K(u, v)Py, Px, z) + 6(K(u, v)Px, Py, z),

which is equivalent to the first relation in equation (4.6). Next, we note the identity

L{(u,v,x),y) +eL{x,{v,u,y)) = -L((x,y,u),v) - eL(u, (y,x,v)),

which can be derived from (Ul) by letting â  f* ck bj <-> de. Letting x <-> u, this leads to

L(K(u, x)v, y) + L(K(x, u)y, u) + eL{u, K(y, v),x) + eL(x, K(v, y)u) = 0,

which leads to the second relation in equation (4.6). Finally, equation (4.4 c) then follows
from equation (4.6). This completes the proof of Lemma 3.2. D

The proof of Theorem 4.2 is now simple. If we introduce the left multiplication operator
L0(ai,bj) by

Lo(a.i,bj)ck = [ai,bj,ck},

we then find
Lo(a.i,bj) = M{a,i,bj) + Q(a,i,bj),

so that Lemma 4.3 gives the desired result

after some calculation. This proves (T3). the validity of both (Tl) and (T2) follows
directly from equation (4.1).

In particular, if e = —1, 6=1, K{x,y) = 0 for all x,y € U(e,S), P = Id and the
case of degree 0 (that is, U(e, 6) is a Jordan triple system), then the resulting Lie triple
product becomes

[xyz] := (xyz) - (yxz), (4.7)

as in Example 2.6.
This special construction implies the construction of Lie algebra or Lie triple systems

from Jordan algebras or Jordan triple systems, respectively (see, for example, [9]).

Corollary 4.4 (see [9]). Let (U, (—,—,—)) be an anti-Jordan triple system. Then
(U, [—,—,—]) is an anti-Lie triple system with respect to the product

[xyz] := (xyz) + (yxz)

(that is, the case of P = Id, e = 1, 5 = —1, K(x,y) = 0 for all x, y E U(e, 6)).

Proposition 4.5. If we let U(e, 6) be a (e, 5)-Freudenthal-Kantor supertriple system,
then vector space U(e,S) © U(s, 6) becomes a Lie supertriple system (the case of 5 = 1)

https://doi.org/10.1017/S0013091500020903 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020903


On 5-Lie supertriple systems 253

or an anti-Lie supertriple system (the case ofd = —l) with respect to the triple product
defined by

6K{oi,Cj)
e((-irL(dj,al)-6L(bi,cj))

Proof. Let V(e,8) := U(e,S) © U(e,6), which is also a (e,5)-Freudenthal-Kantor
supertriple system with triple product given by

/fai\ fcj\ fek\\ ._ ((oiCjekf
\\bij' \dj)' \

Identifying

P =

in Theorem 4.2, we obtain

which implies the identity (4.4). This completes the proof. •

From this Proposition, we can obtain the 6-Lie supertriple system U(e, 6) ® U(e, 8)
associated with U(e,6) and denote it by T(5) (for special cases of degree 0 and 6 = 1,
see [8] or [11]).

In ending this section, we may note the following for the case of degree 0 (cf. [8,9]).
It is well known that if (W, [xyz]) is a Lie triple system over $, then L := L(W, W) @ W
is a Lie algebra with respect to the product

[D + x,D' + y} = [D, D'} + L(x, y) + Dy - D'x,

where D, D', L(x,y) are elements of inner derivations L(W, W) of W, x,y € W. This
method is the canonical construction of a Lie algebra from a Lie triple system. We can
readily generalize it for the case of super-Lie triple system (6 = 1). For anti-Lie supertriple
systems (8 = —1), we can similarly construct a doubly graded Lie super algebra as in [21].
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5. Almost-complex superstructure of T(S)

We recall that a (e, <5)-Freudenthal-Kantor supertriple system over a field <£ is said to be
balanced if there exists a bilinear supersymmetric form (•,•), such that

K{xi,Xj) := {xux^ld, (5.1)

(xi,xj) = (-l)i*5ij(xj,xi). (5.2)

For a balanced (e, <5)-Freudenthal-Kantor supertriple system U(e, 6) and the associated
6-Lie supertriple system T(5) as in Proposition 4.5, there exist two endomorphisms E
and F of T{6) as follows:

„ A) Id\ fo ()\
E:=[o o) and F : =^id oj-

Then we have

H := [E, F]=EF-FE= (™ _°w j , [H, E] = 2E and [H, F] = -2F.

Thus, we can obtain a three-dimensional simple Lie algebra

For the remainder of this section, we assume the case of eS = 1. We set

E(X, Y) := E[EX, Y] + E[X, EY],

where we have introduced [X, Y] for X, Y € U(e, 6) © U(e, 6) by

lj) — 5{—\)l^L{cj,bi) SK(a,i,Cj)

V -eK{bi,dj)

or, equivalently,

[(::)• CO] •(;:)-[(;:)• G)-
We then have the following.

Theorem 5.1. Let U(e,6) be a (e,5)-Freudenthal-Kantor supertriple system and
T(5) be a S-Lie supertriple system associated with U(E,5), as in Proposition 4.5. Then
the following are equivalent.

(2) 5(-l^L{xj,Xi) - L(Xi,Xj) = 0, forxt € Ui(e,5), Xj 6 Uj(e,8).
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Proof. For

X=(Xi] and
\ViJ Wi

we have

: ? ) o o) ( : : > ( : : ) ] • ( ! ? ) [(;:)• ( x ? ) (:;)]

Id\ /L(y i l % ) 6K(yi,Xj)
0J ^ 0 e{-lij

(0 ld\(-S(-l)^L(yj,yi) 8K{xuyj)\
\Q Q)\ 0 -e6L(yi>yj)J

(O e(-iyiL(yj,yi) -s8L(yi,yj)\

v ° ° • ;•
Thus we obtain

E(X,Y) = 0 ̂ => 8(-iyiL(yj,yi) - L(yuyj) = 0.

This completes the proof. •

Theorem 5.2. Let U{e,8) and T(S) be as in Theorem 5.1. Then the following are
equivalent.

(1) (-l)^L{xj,Xi) - 6L(xi,Xj) = K(xi,Xj), for xt 6 Ui(e,5), Xj € Uj(e,6).

(2) F = ( T , | is a derivation ofT(8).

VId °J
Proof. (1) <$=> (2): by straightforward calculations, we have

= ^ ( O i , d,) * ( l ) L ( C j ) 6*) 6K(oi, CJ) \ fek

j
f

-eK(bi,dj) ea-iyiLidj.Oi) - 5L{buCj))j \fk

° ° )M
facj)) \fkj'
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= L W \dj) \fj\
0 (ek\

a* \ „ / c

j) 0 \ (ek

-EK{buCj) el-iySLfaai) \fkj'

CUF

biJKdjJ \fk

ai\fCj\f0
<i) \dj

Thus we find that F is a derivation of T(5)

0
{audj) - 5{-\)iiL{cj,bi))ek+ SKia^c^h

-eK(bi,Cj)ek

and

^cn) - 6L(bi,Cj))ek

j,ai) + L(aitCj) + 6K(auCj) = 0,

)ijL(Cj,bi))ek + SK(ai,Cj)fk

eK(a,i, dj)ek + e(-S)L(ai, Cj)fk - eK(bi, Cj)ek

On the other hand, from e6 = 1, e = ±1 and 5 = ±1, we have e = 8. Hence, we get

This completes the proof. •
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We next consider an operator J of T(6) such that J := SE — eF. Then we have
J2 = — eS Id. We call it a (e, 6) almost-complex superstructure.

We put
N(X, Y) := [JX, JY] - J[JX, Y] - J[X, JY] + J2[X, Y].

We then obtain the following.

Theorem 5.3. Let U{e,S), T(6) and N(X,Y) be as above. Then the following two
relations are equivalent to each other.

(2) K(Xi,Xj) = {-lyiLixj.xJ-SHx^Xj), forxi e Ut{e,5), Xj e U,(e,6).

Proof. We can verify by the same arguments as have been used for Theorem 5.1 and
Theorem 5.2, and so we omit them. •

Remark 5.4. For the case of degree 0 and eS = 1, the above condition N(X, Y) = 0
is an analogue of the Nijenhuis tensor condition for integrability in differential geometry
(cf. [4,6,15]). It is well known that this condition, N(X, Y) = 0, is equivalent to the con-
dition of complex structure. The same condition also appears in some class of integrable
dynamical system [17].

Remark 5.5. From Theorems 5.3 and 5.2, it follows that for the endomorphism F of
T{5), F is a derivation <s=̂> N(X, Y) = 0.

6. Example of complex structure of degree 0

In this section, although we can generalize our result to the case of superspace, we will
restrict ourselves to the case of degree 0 for simplicity.

Let U(e, 5) be a (e, <5)-balanced Freudenthal-Kantor triple system with degree 0 for
the rest of the paper. For the case of 5 = 1, from K(x, y)z = {xyz) — {yzx), it holds that
K(x,y) := {x,y) = —(y,x). For the case of 6 = —1, from K(x,y)z = (xzy) + (yzx), it
holds that K(x,y) := (x,y) = (y,x). Furthermore, we recover the fact that the case of
e6 = —1 does not occur in (e,(5)-balanced Freudenthal-Kantor triple systems, because
K{x, y) = (x, y) = -S(y, x) = L(y, x) - eL(x, y).

Theorem 6.1. Let {e,5) be a (e, 6)-balanced Freudenthal-Kantor triple system and
T(S) be the 5-Lie triple system associated with U(e, S). Then this triple system T(6) has
a complex structure.

Proof. From the results of § 4, it follows that

T(8) has a complex structure, (6.1)

<̂ => N(X, Y) = 0 (Nijenhuis operator = 0), (6.2)

<=>K(a,b)=L(b,a)-EL(a,b), (6.3)

where K(a, b)c = (acb) — S(bca).
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On the other hand, from the property of our balanced triple system, we obtain the
relations:

(i) (a, b)c = K(a, b)c = L{a, c)b - L(b, c)a = L{b, a)c - L(a, b)c (if S = 1, e = 1).

(ii) (a, b)c = K(a, b)c = L(a, c)b + L{b, c)a = L(b, a)c + L{a, b)c (if 8 = - 1 , e = -1).

These relations satisfy the identity (6.3).
This completes the proof. •

For e = 1 and 6 = 1, we have studied all simple Lie algebras associated with simple
balanced Freudenthal-Kantor triple systems in [11,12].

For e = — 1 and <5 = — 1, we give an example of ( -1 , —1) balanced Freudenthal-Kantor
triple and the simple Lie superalgebra associated with it as follows.

Example 6.2. Let U be a vector space over ^ equipped with a symmetric bilinear
form (-, •) 6 0*. Then (U, (—,—,—)) is a ( — 1 — 1) balanced Freudenthal-Kantor triple
system over <P with respect to the product

(xyz) := |((x, y)z + (z, x)y - (y, z)x). (6.4)

Thus, from the anti-Lie triple product, we have

x\(Q\(z{\-\=(L{x,y) 0 \(zi

0/WwJ )
where L(x,y)z = (xyz).

Therefore, by the concept of the standard embedding Lie superalgebra L(T) associated
with T := U®U (cf. [9,12]), we obtain the simple Lie superalgebra C(n), where dim$ U =
N = 2 ( n - l ) .

In fact, let

aij:=L(

then we obtain ay = a,ji by (6.4). From straightforward calculations,

dim* L{T) = ±N(N + 1) - 1 + 27V + 2 = 2u2 + n - 2.

Next we give an example of a (—1, —1)-Jordan triple system and the simple Lie superal-
gebra associated with it.

Example 6.3. Let W be a. set of matrices Mat(m, n; #). Then (xyz) = xTyz — z ryx
defines onWa, (—1, —1)-Jordan triple system, where Tx denotes the transpose matrix of
x, and x,y,z e W. Thus, from an application of Proposition 4.5, we obtain an anti-Lie
triple system T as follows

= i y © H / = i [ X l ) : a ; i eMat(m,n. :<£)},
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with respect to the product

= X2) 0

X2) \ W V-Z2/J y 0 -L{y2,x1)-L(x2,y\)j\z2)'

where L(x,y)z = (xyz).

From the standard embedding Lie superalgebra, we have the Lie superalgebra L(T) of
type A(n — 1, m — 1) characterized by

L(T, T) = An-i © ;4m_i © Id = the inner derivations of T,

L(T) = spl{m,n),

dim L(T) = (n + m)2 - 1, dim L(T, T) = n2 + m2 - 1,

where i4n denote the classical simple Lie algebra of type An. This triple system does
not become a triple system equipped with the complex structure, because 0 = K(x, y) ^
L(y,x) + L(x,y).
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