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bubbles by rectified diffusion
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Rectified diffusion is a bubble growth phenomenon that occurs in acoustic fields. Despite
the existence of a well-established spherically symmetric mathematical model, theoretical
results have been unsuccessful in reproducing the bubble growth even in the case of a
single spherical bubble in the bulk. In the latter case, the influence of surfactants and
acoustic microstreaming have been speculated as the explanation for this disagreement.
In this article, an exact solution for the leading-order concentration of gas in the liquid is
determined. Using this exact solution, the well-established mathematical model is reduced
to a system of two ordinary differential equations for the spherical bubble radius and the
mass of gas in the bubble. This simplified model predicts the rapid bubble growth observed
in experiments of a single spherical bubble in the bulk. The new results show that the
bubble growth is asymptotically larger than at later times when the mass flux is limited
by the slow diffusion of gas in a much larger region of the liquid surrounding the bubble.
The new results also show that this bubble growth is relatively insensitive to a reduction
in surface tension.

Key words: cavitation

1. Introduction

The pressure in a non-oscillatory bubble must exceed the pressure in the liquid due to the
effect of surface tension, thus there is a flow of gas from the bubble into the liquid and the
bubble slowly dissolves. However, when a bubble undergoes large-amplitude oscillations
in a sound field and the acoustic pressure amplitude exceeds a threshold value, the mass
flow may be reversed (Blake 1949), this phenomenon being known as rectified diffusion.
Rectified diffusion is associated with important applications in sonochemistry (Mason
2003), ultrasonic cleaning (Reuter et al. 2017) and biomedical ultrasound (Coussios
& Roy 2008). The well-established spherically symmetric mathematical model for
rectified diffusion in the bulk has been known for five decades (Eller & Flynn 1965).
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Unfortunately, this mathematical model has proved to be intractable over many cycles of
bubble oscillation, the key challenge being the evaluation of the gas flux at the bubble
interface. An additional theoretical difficulty is to develop a rigorous means by which to
deduce the influence of convection associated with the bubble volume oscillations.

Evidence for the challenges in solving the well-established mathematical model may
be found in the inconsistency with experimental results. Eller (1969) noted that his
experimental rates of bubble growth exceed his theoretical values by a factor of more than
20. Acoustic microstreaming was suggested as being partly responsible for this disparity
due to the increased availability of gas in the liquid for diffusion into the bubble. Crum
(1980) further speculated that, at reduced surface tension, his experimental and theoretical
growth rates diverge. Church (1988) found agreement with the experimental results of Eller
(1969) at initial bubble radii below 35 μm, but his theoretical values were considerably less
than experimental values for larger bubbles. Church (1988) attributed this discrepancy to
acoustic microstreaming and surfactants on the bubble surface. The theoretical work of
Fyrillas & Szeri (1994), which is still considered to be the state-of-the-art in this field
(Lauterborn & Kurz 2010), quite seriously underpredicts the growth rate for larger bubbles
in the experimental results of Eller (1969). Fyrillas & Szeri (1994) explained this slow
growth rate in terms of the importance of surfactants even in relatively clean laboratory
situations.

In the range close to a bubble’s resonant radius, mass transfer due to rectified diffusion
is assumed to increase. Furthermore, if acoustic microstreaming or non-spherical surface
oscillations occurs during resonance, then the mass transfer increases by an order of
magnitude (Gould 1974). Leong et al. (2010, 2011) showed an increase in microstreaming
whenever surfactants are employed, the greatest increase in microstreaming being
observed for the bulkiest surfactant headgroup. Furthermore, surface mode oscillations
were shown to cause a dramatic increase in microstreaming. Soto et al. (2020) have
experimentally proved that acoustic microstreaming is the leading-order contributor to the
growth rate during resonance. In this case, the proximity of the wall triggers non-spherical
bubble oscillations, thereby producing microstreaming during resonance that results in a
convection-dominated growth. However, for air–water systems in figure 2 of Lee, Kentish
& Ashokkumar (2005), it is possible to discern that the mass transfer slightly decreases
during resonance at approximately 40 μm.

Peñas-López et al. (2016, 2017) and Soto et al. (2020) analysed the history effect in
bubble growth and dissolution. By neglecting the convection of gas in the liquid, an
exact solution for the gas flux at the bubble interface was obtained. Using this analytical
solution, they studied the contribution of past mass transfer events between a gas bubble
and its liquid surroundings towards the current diffusion-dominated growth or dissolution.
In these articles, Peñas-López et al. (2016, 2017) and Soto et al. (2020) have shifted the
focus of the literature towards the use of analytical solution methods rather than numerical
approaches (Hilgenfeldt, Lohse & Brenner 1996). In this article, our approach is to obtain
an analytical solution for the gas flux at the bubble interface without neglecting the
influence of convection associated with the bubble volume oscillations.

The remainder of the paper is organized as follows. The well-established mathematical
model for the rectified diffusion is described in § 2. In § 3, the framework of matched
asymptotic expansions is employed and a Lagrangian change of variables is employed to
transform the convection–diffusion equation into a diffusion equation. The leading-order
problem for the concentration of gas in the inner liquid region is solved analytically
using the Fourier sine transform and Fubini’s theorem. Using this exact solution, the
well-established mathematical model is reduced to a system of two ordinary differential
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Rectified mass diffusion

equations for the bubble radius and the mass of gas in the bubble. In § 4, the numerical
solutions are firstly compared with experimental observations. A parametric analysis is
then undertaken with the above theory for the surface tension and the initial uniform
concentration of the gas in the liquid. Finally, in § 5, this study is summarized and the
key outcomes are identified.

2. Mathematical model

We now summarize the well-established mathematical model. This model assumes
that bubbles are spherical, since their sizes are typically small compared with other
physical scales including the distances between a bubble and its neighbouring bubbles
or boundaries, and the wavelength of acoustic waves. Furthermore, the flow of liquid
surrounding the bubble is assumed to be spherically symmetric. The gas is assumed to
be adiabatic and we adopt the polytropic relation with the polytropic index taken to be
the ratio of specific heats. The viscous heating of the liquid is assumed to take place on a
longer time scale than those considered herein. Phase change at the bubble interface is also
neglected. The Rayleigh–Plesset equation for a spherical gas bubble in an incompressible
liquid under adiabatic conditions is given by

R̄
d2R̄
dt̄2

+ 3
2

(
dR̄
dt̄

)2

= p̄l

ρ
, (2.1)

where the pressure of the liquid at the bubble surface, p̄l, is given as follows:

p̄l = p̄g0

(
m̄
m̄i

)κ
(

R̄eqi

R̄

)3κ

− 2σ

R̄
− (p̄∞ − p̄v) − 4μ

R̄
dR̄
dt̄

− p̄a sin(2πν̄at̄), (2.2)

in which R̄(t̄) is the spherical bubble radius at time t̄; m̄(t̄) is the mass of gas in the bubble,
R̄eqi the initial equilibrium bubble radius; m̄i the initial mass of gas in the bubble; ρ the
liquid density; p̄∞ the hydrostatic pressure of the liquid; p̄v the vapour pressure of the
liquid; p̄g0 the initial pressure of the bubble gas at the mass of gas in the bubble m̄i

and bubble radius R̄eqi; κ > 1 the polytropic index; σ the surface tension; μ the liquid
viscosity; and p̄a (ν̄a) is the amplitude (frequency) of the applied pressure.

The concentration of gas in the liquid, c̄(r̄, t̄), satisfies a spherically symmetric
convection–diffusion equation of the form

∂ c̄
∂ t̄

+ dR̄
dt̄

(
R̄
r̄

)2
∂ c̄
∂ r̄

= D
r̄2

∂

∂ r̄

(
r̄2 ∂ c̄

∂ r̄

)
for r̄ > R̄(t̄), (2.3)

in which r̄ is the radial distance from the centre of the bubble and D is the mass diffusivity
(Eller & Flynn 1965). The far-field boundary condition is

c̄ → C̄i as r̄ → ∞ (2.4)

and the boundary condition at the bubble surface is

c̄(R̄(t̄), t̄) = 1
kH

p̄g0

(
m̄
m̄i

)κ
(

R̄eqi

R̄

)3κ

, (2.5)

in which C̄i is the initial uniform concentration of the gas in the liquid and kH is Henry’s
law constant (Eller & Flynn 1965; Fyrillas & Szeri 1994). The mass of gas in the bubble
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is governed by the conservation law

dm̄
dt̄

= 4πR̄2D
∂ c̄
∂ r̄

(R̄(t̄), t̄). (2.6)

The initial conditions are given by

R̄(0) = R̄eqi,
dR̄
dt̄

(0) = 0, c̄(r̄, 0) = C̄i, m̄(0) = m̄i, (2.7a–d)

for r̄ > R̄eqi. The only significant difference between this mathematical model and the
model solved by Fyrillas & Szeri (1994) is that the partial pressure of gas in the bubble
above depends on the mass of gas in the bubble.

Rectified diffusion requires the oscillation amplitudes to be large (Blake 1949).
Experimental results in figure 6 of Leong et al. (2010) show the radial oscillation width
to be between 10 % and 20 % of the bubble radius. Following Fyrillas & Szeri (1994), we
scale the bubble radius by the initial equilibrium bubble radius because the amplitude of
the radial oscillation and bubble radius itself are of the same order in the nonlinear model.
We scale (2.1)–(2.7a–d) using R̄ = R̄eqiR̂, c̄ = C̄i + C̄iĉ, m̄ = m̄im̂,

t̄ = R̄eqi

U
τ, r̄ = R̄eqir, (2.8a,b)

in which Δ = p̄∞ − p̄v and U = √
Δ/ρ, where Δ is the characteristic pressure of the

liquid and U is a reference velocity. The overbars denote dimensional dependent variables
and the hats their dimensionless counterparts. The dimensionless Rayleigh–Plesset
equation becomes

R̂
d2R̂
dτ 2 + 3

2

(
dR̂
dτ

)2

= pg0m̂κ

R̂3κ
− 2

WeR̂
− 1 − 4

ReR̂

dR̂
dτ

− pa sin(2πνaτ), (2.9)

where Re = ρUR̄eqi/μ is the Reynolds number, We = R̄eqiΔ/σ is the Weber number,
pg0 = p̄g0/Δ is the dimensionless initial pressure of the bubble gases and pa = p̄a/Δ

(νa = ν̄aR̄eqi/U) is the dimensionless amplitude (frequency) of the external pressure. The
convection–diffusion equation for the gas concentration in the liquid takes the form

∂ ĉ
∂τ

+ dR̂
dτ

(
R̂
r

)2
∂ ĉ
∂r

= 1
Pe

1
r2

∂

∂r

(
r2 ∂ ĉ

∂r

)
for r > R̂(τ ), (2.10)

in which Pe = UR̄eqi/D is the large Péclet number for mass transfer. The far-field boundary
condition is

ĉ → 0 as r → ∞ (2.11)

and the boundary condition at the bubble surface is

ĉ(R̂(τ ), τ ) = −1 + dpg0
m̂κ

R̂3κ
, (2.12)

where d = Δ/kHC̄i. Conservation of the mass of gas in the bubble becomes

dm̂
dτ

= 4πM
Pe

R̂2 ∂ ĉ
∂r

(R̂(τ ), τ ), (2.13)
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in which

M =
R̄3

eqiC̄i

m̄i
. (2.14)

The initial conditions are given by

R̂(0) = 1,
dR̂
dτ

(0) = 0, ĉ(r, 0) = 0, m̂(0) = 1, (2.15a–d)

for r > 1. Equations (2.9)–(2.15a–d) are the dimensionless mathematical model to be
studied.

3. Analysis

The typical value of the Péclet number for mass transfer, Pe, is greater than 100 000;
therefore, this problem is susceptible to perturbation theory. In the following, we use the
framework of matched asymptotic expansions. Our approach is to find an exact solution
to the convection–diffusion equation for the leading-order concentration of gas in the
inner liquid region. Using this exact solution, the flux of gas at the bubble surface may
be evaluated. The mathematical model is then simplified to a system of two nonlinear
ordinary differential equations. Two ordinary differential equations may be accurately
numerically integrated even over many bubble oscillation cycles.

3.1. Lagrangian change of variables
We introduce the following change of independent variables which was first introduced by
Plesset & Zwick (1952):

x = Pe1/2

3
[r3 − R̂(τ )3], t = τ, (3.1a,b)

in which the new dependent variables are R(t) = R̂(τ ), c(x, t) = ĉ(r, τ ) and m(t) = m̂(τ ).
The dependent variables without bars or hats correspond to dimensionless variables in the
Lagrangian frame of reference. Equation (2.10) may be rewritten as

∂c
∂t

= ∂

∂x

[(
R3 + 3x

Pe1/2

)4/3
∂c
∂x

]
for x > 0. (3.2)

The Rayleigh–Plesset equation (2.9) becomes

R
d2R
dt2

+ 3
2

(
dR
dt

)2

= pg0mκ

R3κ
− 2

WeR
− 1 − 4

ReR
dR
dt

− pa sin(2πνat) (3.3)

and the conservation of the mass of gas in the bubble (2.13) becomes

dm
dt

= 4πM
Pe1/2 R4 ∂c

∂x
(0, t). (3.4)

Equations (3.2)–(3.4) are singularly perturbed in 1/Pe1/2 having both an inner expansion
when x � Pe1/2 (r = R̂(τ ) + O(Pe−1/2)) and an outer expansion when x ∼ Pe1/2

(r = R̂(τ ) + O(1)). There are also multiple time scales. However, we will consider
matched asymptotic expansions when t � Pe1/2.
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3.2. Inner region
We introduce asymptotic expansions taking the first two orders for the mass of gas in the
bubble

c ∼ c0, R ∼ R0, m ∼ m0 + m1

Pe1/2 , (3.5a–c)

as Pe → ∞. Therefore, the leading-order problem for the concentration of gas in the liquid
on this length scale and time scale becomes

∂c0

∂t
= R4

0
∂2c0

∂x2 for x > 0 (3.6)

subject to the boundary condition at the bubble surface

c0(0, t) = f (t) ≡ −1 + dpg0
mκ

0

R3κ
0

, (3.7)

the initial condition
c0(x, 0) = 0 for x > 0 (3.8)

and a far-field condition which will follow from matching with the outer region.
At leading order, (3.4) becomes

dm0

dt
= 0, (3.9)

with m0(0) = 1. We deduce that the mass of gas in the bubble does not change on this
time scale at leading order, so m0 = 1. At next order, we have

dm1

dt
= 4πMR4

0
∂c0

∂x
(0, t), (3.10)

with the initial condition m1(0) = 0.

3.3. Outer region
We introduce the following change of variables (y = O(1)):

y = x
Pe1/2 = 1

3
[r3 − R̂(τ )3], τ = τ. (3.11a,b)

The concentration of gas in the outer liquid region is denoted C. The equation for mass
transport (2.10) for C( y, t) = ĉ(r, τ ) becomes

∂C
∂t

= 1
Pe

∂

∂y

[(
R3 + 3y

)4/3 ∂C
∂y

]
for y > 0, (3.12)

with far-field boundary condition

C → 0 as y → ∞ (3.13)

and the initial condition
C = 0 on t = 0. (3.14)

We introduce an expansion of the following form:

C ∼ C0 + C1

Pe
, R ∼ R0, (3.15a,b)
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as Pe → ∞. At leading order in (3.12), we obtain

∂C0

∂t
= 0, (3.16)

with the initial condition C0(0) = 0 which is readily integrated to yield C0 = 0.

3.4. Matching
We use limit matching technique in the form

lim
x→∞ c0 = lim

y→0
C0 (3.17)

to obtain the matching condition on the inner region

c0 → 0 as x → ∞. (3.18)

3.5. Leading-order inner solution
After the application of a Fourier sine transform to (3.6)–(3.8) and (3.18), the following
initial value problem is obtained:

∂ c̃
∂t

+ s2R4
0c̃ = sR4

0f with c̃(s, 0) = 0, (3.19)

where f (t) was defined in (3.7) and

c̃(s, t) =
∫ ∞

x=0
c0(x, t) sin(sx) dx. (3.20)

We solve this initial value problem to obtain

c̃(s, t) =
∫ t

ξ=0
f (ξ)R0(ξ)4s exp

(
−s2

∫ t

ξ

R0(η)4 dη

)
dξ. (3.21)

We then apply the inverse Fourier sine transform to find a solution for the concentration
of gas in the liquid in the form

c0(x, t) = 2
π

∫ ∞

s=0

∫ t

ξ=0
f (ξ)R0(ξ)4 exp

(
−s2

∫ t

ξ

R0(η)4 dη

)
dξs sin(sx) ds. (3.22)

It is desirable to change the order of the integration in (3.22), but it is unclear whether
the integral of the absolute value exists which is a requirement to apply Fubini’s theorem.
Therefore, integration by parts is applied to the inner integral which yields

c0(x, t) = 2
π

∫ ∞

s=0

{
f (t) − f (0) exp

(
−s2

∫ t

0
R0(η)4 dη

)

−
∫ t

ξ=0
f ′(ξ) exp

(
−s2

∫ t

ξ

R0(η)4 dη

)
dξ

}
sin(sx)

s
ds. (3.23)

Fubini’s theorem may now be applied to change the order of the integration. Using tables
of integral transforms (Erdélyi et al. 1954), or otherwise, we determine the integrals in s
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to yield

c0(x, t) = f (t) − f (0) erf

(
x
2

{∫ t

0
R0(η)4 dη

}−1/2
)

−
∫ t

ξ=0
f ′(ξ) erf

(
x
2

{∫ t

ξ

R0(η)4 dη

}−1/2
)

dξ, (3.24)

where

erf(ξ) = 2√
π

∫ ξ

y=0
exp(−y2) dy. (3.25)

The solution (3.24) may be seen to be an exact solution of the leading-order inner
approximation by substituting this formula back into (3.6)–(3.8) and (3.18).

Fyrillas & Szeri (1994) adopted the idea of linear superposition when they split their
model into an oscillatory problem and a smooth problem. Their solution was a linear
sum of the solutions to the oscillatory and smooth problems. Linear sums of solutions
are inappropriate for nonlinear problems, they are an engineering approximation at best.
Fyrillas & Szeri (1994) then solved (3.6) with Fourier series, but this problem has
a continuous spectrum due to the semi-infinite spatial domain, and Fourier series are
more appropriate for problems with a discrete spectrum on a finite spatial domain. They
concluded that the mass transport associated with the transient of the oscillatory problem is
negligible, but this is clearly incorrect as we describe in the mass flux below. Furthermore,
we note that their solution to the smooth problem makes sense only near the threshold
when the bubble gas in the liquid averaged over a cycle of oscillation must neither increase
nor decrease.

The concentration gradient at the bubble interface located at x = 0 is determined by
taking the partial derivative of this analytical solution with respect to x, as follows:

∂c0

∂x
(0, t) = − f (0)√

π

{∫ t

0
R0(η)4 dη

}−1/2

− 1√
π

∫ t

ξ=0
f ′(ξ)

{∫ t

ξ

R0(η)4 dη

}−1/2

dξ.

(3.26)

The first term on the right-hand side of (3.26) corresponds to a slowly fading memory of
the initial condition. The second term is the history term as described by Peñas-López
et al. (2016). It represents a memory of the entire preceding time history of the first
time derivative of the concentration at the bubble surface. The distinction between this
expression for the mass flux and the corresponding one in Peñas-López et al. (2016) is that
the influence of convection associated with the bubble volume oscillations is accounted
for here. Each contribution of the first derivative of the concentration of gas at the bubble
surface is weighted by the integral of the fourth power of the bubble radius. Therefore,
the flux of dissolved gas has been determined as an exact solution of the leading-order
inner problem. The key theoretical difficulty in this topic has been overcome (Fyrillas &
Szeri 1994). The expression for the concentration gradient at the bubble interface (3.26)
allows us to reduce the system of (2.9)–(2.15a–d) to a system of two ordinary differential
equations for the growth and dissolution.
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3.6. Simplified mathematical model
The simplified mathematical model is the dimensionless Rayleigh–Plesset equation

R
d2R
dt2

+ 3
2

(
dR
dt

)2

= pg0mκ

R3κ
− 2

WeR
− 1 − 4

ReR
dR
dt

− pa sin(2πνat) (3.27)

and conservation of the mass of gas in the bubble

dm
dt

= −4π1/2M
Pe1/2 R4

[
f (0)

{∫ t

0
R(η)4 dη

}−1/2

+
∫ t

ξ=0
f ′(ξ)

{∫ t

ξ

R(η)4 dη

}−1/2

dξ

]
,

(3.28)

with the initial conditions

R(0) = 1,
dR
dt

(0) = 0, m(0) = 1, (3.29a–c)

in which

f (0) = −1 + dpg0, f ′(ξ) = −3κ dpg0
mκ

R3κ+1
dR
dξ

. (3.30a,b)

We remain consistent by neglecting terms of the order of 1/Pe1/2 in the expression
for f ′(ξ). Equation (3.28) has reverted to the form (3.4) as it is equivalent to (3.9) and
(3.10). The fourth power of R on the right-hand side of (3.28) encapsulates both the area
and shell effects responsible for the growth of the bubble. In the remainder of this article,
we study this simplified initial value problem (3.27)–(3.29a–c) using numerical methods.

4. Numerical results

4.1. Algorithm
The system of ordinary differential equations (3.27)–(3.29a–c) is integrated numerically
with the Numerical Algorithms Group (NAG) routine D02EJF. The time integrals on the
right-hand side of (3.28) are evaluated with the trapezoidal composite rule and Bode’s
composite rule. Bode’s rule is exploited to integrate over longer time intervals, which
reduces the computer memory requirements and speeds up the evaluation of history effects
whilst retaining the accuracy of the trapezoidal rule on shorter time intervals.

4.2. Validation
Experimental results do not exist in the published literature on the time scale of a few
hundred bubble oscillations on which the simplified model (3.27)–(3.29a–c) is valid. In
order to compare with the experiments of Eller (1969), we note the following. The main
change in the physical balances occurs when time is of the order of the Péclet number
for mass transfer, the outer expansion in the above matched asymptotic expansions does
not become active until this time. The introduction of multiple scales when time is of the
order of the square root of the Péclet number for mass transfer is to maintain the same
physics. The mass of gas in the bubble is being forced to retain a short memory of the
concentration gradient on the order one time scale and not being allowed to develop a long
memory. There is no new physical balance on this time scale of the order of the square
root of the Péclet number for mass transfer. Therefore, the underlying physics on the time
scale less than the Péclet number for mass transfer will be unchanged. If we are able to
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determine the underlying physics during the times when our simplified model is valid,
then this same physics will be valid for all time less than the order of the Péclet number
for mass transfer.

We consider the case of air-saturated water in a vertical pipe (Eller 1969). A piston
at the bottom of the pipe was used to excite a standing acoustic wave at 26.6 kHz
and a hypodermic needle was used to inject air bubbles into the pipe with a range
of initial equilibrium radii. The following values for gas bubbles in water are adopted
following the experimental conditions: Δ = 105 kg m−1 s−2; σ = 0.073 Nm−1; κ = 1.4,
μ = 0.001 Pas; ρ = 103 kg m−3; ν̄a = 26.6 × 103 Hz; p̄a = 2 × 104 kg m−1 s−2; D =
2 × 10−9 m2 s−1; and kH = 2.5 × 106 m2 s−2. The initial pressure of the bubble gas is
given by p̄g0 = Δ + 2σ/R̄eqi and the initial mass of gas in the bubble is given by

m̄i = φairρair
4
3
πR̄3

eqi, (4.1)

in which ρair is the density and φair is the initial volume fraction of air in the bubble. As
the solubility of oxygen in water is higher than the solubility of nitrogen, the air in water
is assumed to be 36 % oxygen giving ρair = 1.3 kg m−3. We adopt a reasonable estimate
of the initial volume fraction of air in the bubble φair = 0.9. The saturation concentration
of the gas in the liquid, C̄sat = 4.15 × 10−2 kg m−3, has been chosen to fit the threshold
bubble radius of approximately 27 μm. We choose the initial uniform concentration of the
gas in the liquid C̄i = C̄sat (Eller 1969). The Péclet number for mass transfer takes values
in the range 8 × 104 to 3 × 105. In order to validate the simplified model (3.27)–(3.29a–c),
numerical solutions were obtained for these parameter values.

Based on the bubble buoyancy, Eller (1969) measured the equilibrium bubble radius
rather than the bubble radius itself. The dimensional equilibrium bubble radius, R̄eq, is
evaluated as the solution to the following algebraic equation:

p̄g0

(
m̄
m̄i

)κ
(

R̄eqi

R̄eq

)3κ

− 2σ

R̄eq
− (p̄∞ − p̄v) = 0. (4.2)

We firstly consider two typical situations where the equilibrium bubble radius is larger
and smaller than the threshold bubble radius, respectively. An example of the bubble
growth is shown in figure 1(a) for an initial equilibrium bubble radius of R̄eqi = 30 μm.
The equilibrium bubble radius oscillates around a rapidly increasing mean value. The
oscillations initially exhibit beating but eventually the frequency of the oscillations settles
down to the applied pressure frequency. An example of the bubble dissolution is shown
in figure 1(b) for an initial equilibrium bubble radius of R̄eqi = 20 μm. In this case,
the equilibrium bubble radius oscillates around a rapidly decreasing mean value and the
frequency of the oscillations almost immediately follows the applied pressure frequency.
The mean values of the equilibrium bubble radius, ā, are well approximated by a square
root dependence in time. The square root dependence indicates the relative significance of
the diffusion of air in the water for the bubble growth and dissolution as it corresponds to
the scaling in the Boltzmann variable (x/t1/2). The approximation by a square root holds
except for values of the initial equilibrium bubble radius of R̄eqi between 55 μm and 70 μm
which will be discussed below.

Figure 2 shows the oscillations of the bubble radius corresponding to figure 1(a).
The periods of oscillation in figure 2 agree with the period of the applied external
pressure of approximately 3.8 × 10−5 s. We note that the maxima are farther above the

939 A28-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.218


Rectified mass diffusion

29.9985

29.9990

29.9995

30.0000

30.0005

30.0010

30.0015

30.0020

0 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

19.9970

19.9975

19.9980

19.9985

19.9990

19.9995

20.0000

20.0005

20.0010

0 0.0005 0.0010 0.0015 0.0020

Numerical solution
Power law fit

t̄ /s

R̄ eq
/
µ

m
R̄ eq

/
µ

m

(b)

(a)

Figure 1. The equilibrium bubble radius, R̄eq, using a numerical solution of the simplified mathematical model
(3.27)–(3.29a–c) and an initial equilibrium bubble radius of (a) R̄eqi = 30 μm and (b) R̄eqi = 20 μm. Power
law fits for the mean value of the equilibrium bubble radius of (a) ā = R̄eqi + 7 × 10−7(t̄UR̄eqi)

1/2 and (b) ā =
R̄eqi − 2.4 × 10−6(t̄UR̄eqi)

1/2 are compared with the numerical solution.

equilibrium bubble radius than the minima are below. This feature supports the area and
shell mechanisms of rectified diffusion (Young 1989).

In order to compare with the time-averaged growth rates in the experiments of Eller
(1969), we require to average the growth rate of the mean value of the equilibrium
bubble radius. As the mean values of the equilibrium bubble radius follow a square
root dependence in time, the time-averaged growth rate varies with the reciprocal of the
square root of the time period. The time period over which the growth rate is averaged
has been chosen to be 0.05 s to fit with the experiments. The change in the mean value
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Figure 2. The bubble radius, R̄, and the equilibrium bubble radius, R̄eq, using a numerical solution of the
simplified mathematical model (3.27)–(3.29a–c) and an initial equilibrium bubble radius of R̄eqi = 30 μm
corresponding to figure 1(a).

of the equilibrium bubble radius over this time period is of the order of a tenth of a
micron, which is small in comparison with the equilibrium bubble radius itself. Numerical
simulations are undertaken for a range of initial equilibrium radii R̄eqi. Figure 3 compares
the time-averaged rate of growth of the mean value of the equilibrium bubble radius with
the experimental results, the agreement being excellent up to an initial equilibrium bubble
radius of R̄eqi = 55 μm.

The bubble radius has a resonance at approximately R̄eqi = 60 μm in our results,
which has also been observed in the theoretical results of Fyrillas & Szeri (1994).
Bubble resonance corresponds to the appearance of a high frequency mode in the bubble
oscillations. Due to the inaccuracy of the polytropic bubble models near resonance as
discussed in Appendix C of Fyrillas & Szeri (1994) and the absence of the square root
dependence in time, results are omitted for the initial equilibrium bubble radius R̄eqi
between 55 μm and 70 μm. In comparison with the predictions of Fyrillas & Szeri (1994),
which are also shown in figure 3, our resonance affects a larger range of the initial
equilibrium bubble radius. Between 55 μm and 70 μm, it is possible that microstreaming
governs the bubble growth rate in the experimental results of Eller (1969). For values of
the initial equilibrium bubble radius greater than 70 μm, the square root dependence in
time returns and the bubble growth rate is again dominated by the diffusion of air in the
water. The bubble growth rate for values above the resonance are also shown in figure 3.
The present theory displays a much better agreement with the experimental data.

Despite the comparison in figure 3, we are not saying that Fyrillas & Szeri (1994) is
without its applications. For example, stable single bubble sonoluminescence requires
that the bubble is diffusively stable (Brenner, Hilgenfeldt & Lohse 2002). The bubble gas
averaged over a cycle of oscillation must neither increase nor decrease which corresponds
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Figure 3. Comparison of the time-averaged rate of growth of the mean value of the equilibrium bubble radius,
dā/dt̄, using a numerical solution of the simplified mathematical model (3.27)–(3.29a–c), the experimental
results of Eller (1969) and the theoretical results of Fyrillas & Szeri (1994). In the experiment, a bubble in
air-saturated water is subject to a sound field of 26.6 kHz.

to operating exactly on the threshold. Fyrillas & Szeri (1994) accurately predicts the
threshold as shown in figure 3.

4.3. Parametric analysis
As discussed in the introduction, many authors have explained the underprediction of their
theoretical growth rates in terms of the importance of surfactants. We now investigate how
the time-averaged growth rates at R̄eqi = 40 μm in figure 3 would vary in response to a
reduction in surface tension. Figure 4(a) shows that the growth rate increases linearly in
response to a reduction in surface tension. It is unclear how small quantities of surfactant
could significantly increase the growth rate in terms of a small reduction in surface tension.
Figure 5 of Lee et al. (2005) has also reported an approximately linear decrease of the
bubble growth rate with surface tension for the addition of the surfactant sodium dodecyl
sulphate.

Figure 4(b) shows that the bubble growth rate increases linearly with the initial uniform
concentration of the gas in the liquid. The bubble growth rate is significantly more sensitive
to changes in the initial concentration of the gas than it is to the surface tension.

5. Summary and conclusions

A theoretical study has been carried out to investigate the growth and dissolution of
spherical bubbles subject to acoustic forcing. An exact leading-order solution is obtained
for the gas flux at the bubble interface without neglecting the influence of convection
associated with the bubble volume oscillations. The well-established mathematical model
has been reduced to a system of two ordinary differential equations. Provided the
Péclet number for mass transfer is sufficiently large, any errors in approximating the
well-established mathematical model are negligibly small. Predictions of our simplified
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Figure 4. The time-averaged rate of growth of the mean value of the equilibrium bubble radius, dā/dt̄, using
a numerical solution of the simplified mathematical model (3.27)–(3.29a–c) with R̄eqi = 40 μm for (a) a range
of values for the surface tension and (b) a range of values of the initial uniform concentration of the gas in the
liquid.

model have excellent agreement with experimental results. This new system of equations
is important for the following reasons.

(1) These ordinary differential equations are straightforward to integrate numerically,
whereas the well-established mathematical model has proved to be intractable.

(2) The spatial extent of the diffusion boundary layer in the liquid adjacent to the bubble
interface is sufficiently small (R̄eqi/Pe1/2), that the model applies to bubbles even in
a dense cloud.

(3) This model, together with our recent research on strongly nonlinear analysis (Smith
& Wang 2017, 2018, 2021), is the basis of our objective to simulate bubble growth
over many millions of cycles of oscillation.
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The rapid growth and dissolution has been shown to be dominated by the diffusion of
gas in the liquid. The mass flux in this period is asymptotically larger than at later times
when the flux is limited by the slow diffusion of gas in a much larger region of the liquid
surrounding the bubble.

The time-averaged rate of growth of the mean value of the equilibrium bubble radius
has been shown to have a slow linear decrease with the surface tension and a rapid linear
increase with the initial uniform concentration of the gas in the liquid.
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