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AN ISOPERIMETRIC INEQUALITY FOR TETRAHEDRA 

Z.A. Melzak 

1. Let T be a te t rahedron and let V(T) and L(T) denote 
its volume and the sum of its edge-lengths. In this note we prove 

THEOREM 1. 

3 - 4 - 1 / 2 
V(T)/L (T) < 6 2 ' 

with equality if and only if the te t rahedron T is regular . 

An equivalent statement i s : of all t e t rahedra , the sum of 
whose edge-lengths is kept fixed, the regular one has the 
greates t volume. The proof is completely elementary and it 
seems to provide a good e se rc i se in vector algebra. 

2. Our object is to find the te t rahedra T which maximize 

the i soper imet r ic rat io V(T)/L (T). The existence of such 
maximal te t rahedra is easily proved by the standard continuity-
and-compactness argument. Let the ver t ices of T be 
v , v . v . v , and define the ver tex vector s v 

1 2 3 4 ij 
(i, j = l , 2 , 3 , 4 ; i ^ j ) to be v v / j v v I . In this way one obtains 

twelve unit vec tors lying along the edges of T and originating 
at the ver t i ces . 

LEMMA 1. The sum of ver tex vectors originating at any 
ver tex is orthogonal to the plane containing the face opposite that 
ver tex. 
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This is proved by a perturbat ion argument: a ve r t ex is 
displaced so that the volume stays fixed and it is examined under 
what conditions the sum of the lengths of the three edges meeting 
at that ve r t ex is minimized. ' Consider the ve r tex v , say, and 

let P be the plane through v , para l le l to the face v v v . 
1 à» 5 4 

Let x be a vector in P , originating at v ; as v gets d i s 

placed through the vector x the volume of the te t rahedron 

remains unchanged while the sum of the lengths of the th ree 

edges meeting in P changes by 

( V 1 2 + V 1 3 + V14} ' X + ° ( , X , 2 ) ' 

Since the direction of x in P is a r b i t r a r y , it follows from the 
maximali ty of T that the vector v + v + v , which is 

12 13 14 
c lear ly £ 0, must be orthogonal to P. The same argument 
applies at the other th ree ve r t i ces and so the lemma is proved. 

3. Let the four outward-bound unit no rmal vec to r s to the 
faces of T be n . n . n and n . The twelve ve r t ex vec to rs 

1 2 3 4 
a r e then the c ros s -p roduc t s n. X n. (i, j = 1, 2, 3, 4; i / j) . 

Applying Lemma 1 at each ver tex , and paying some attention to 
the signs, we obtain four vector equations 

n X n + n X n + n X n = a. n 
1 2 2 3 3 1 4 4 

(1) 

n i X l V n 4 X n 2 + n 2 X n i = a 3 n 3 

n X n + n X n + n X n = a^ n 
4 1 1 3 3 4 2 2 

n^ X n + n X n + n X n = a n 
2 4 4 3 3 2 1 1 

where the a. a r e some four negative sca l a r s . Denote the vec tors 

appearing in the left-hand sides of (1) by N , N , N , N . 
4 3 2 1 

Making use of the standard proper t ies of sca lar , vector , and 
t r ip le products , we find that 
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N • n„ - N • n , = N • n - N • n 
4 3 3 4 4 4 3 3 

so tha t 

(n3 ' V ( a4 " a 3 ) = a4 " a3 • 

Since n • n / 1 it fol lows tha t a = a . S y m m e t r i c a r g u m e n t s 

show then tha t 

(2) ai = a 2 = a 3 = a^ = a , 

s ay . We nex t ve r i fy tha t 

N + N + N + N = 0 
1 2 3 4 

which t o g e t h e r wi th (2) i m p l i e s 

(3) D l + n 2 + n 3 + n 4 = 0 . 

Now, we have 

N * n^ - N • n = a(n • n - n • n ) 
1 2 3 1 1 2 1 y 

and the l e f t -hand s ide is [n + n , n , n ] which v a n i s h e s by (3). 
i O ù TC 

T h e r e f o r e n i • n = n • n . S i m i l a r a r g u m e n t s p r o v e tha t a l l 
1 2 1 3 

the s c a l a r p r o d u c t s n. • n. (i ^ j) a r e equa l . T h i s , t o g e t h e r 

wi th (3), l e a d s i m m e d i a t e l y to n. • n. = - l / 3 (i 4 j)- T h e r e f o r e 

a l l the d i h e d r a l a n g l e s of T a r e t hose of a r e g u l a r t e t r a h e d r o n , 
and so T i t se l f is r e g u l a r . Th i s c o m p l e t e s the proof of 
T h e o r e m 1. 
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