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From the proof of Theorem 2 of [5] it follows that for every positive integer k there exist
infinitely many primes/? in the arithmetical progression ax+b (x = 0, 1,2,...), where a and b
are relatively prime positive integers, such that the number 2P~1 — 1 has at least k composite
factors of the form (p — \)x +1. The following question arises:

For any given natural number k, do there exist infinitely many primesp such that the number
2""1 —1 has k prime factors ofthe form (p—l)x+ 1 andp = b (mod a), where a and b are coprime
positive integers?

For k = 2 the answer to this question is in the affirmative because in the paper [5] we
proved that for every prime number p # 2, 3, 5, 7, 13 there exists a prime q > p such that q=\

\
Here we prove the following

THEOREM 1. In every arithmetical progression ax+b, where a and b are relatively prime
positive integers (excluding the case u = 0 (mod 16), b =9 (mod 16)), there exist infinitely many
primes p such that the number 2p~1 — \ has at least three distinct prime factors of the form
(p-\)x+\.

LEMMA. For every natural number c there exist infinitely many primes p in every arith-
metical progression ax+b (x = 0, 1,2,...), where a and be are relatively prime positive integers
such that

Proof. Let Q denote the field of rational numbers and Cn be a primitive wth root of unity.
Let

K = Q(Q, L= <Mc), M = QV).

If c = 0 (mod 2), then a & 0 (mod 2) and the discriminants of the fields K and LM are
coprime. Hence we have

KnLM = Q, (1)

where LM denotes the union of L and M, and KnLM the intersection of K and LM.
If c ^ 0 (mod 2), then by Nagell's theorem [4] for every prime divisor q > 1 of the number

c the number 2llq does not belong to the field 2(CC) = KL- Thus by a theorem of Capelli [1]
the polynomial x°—2 is irreducible in KL. Hence

\KLM\ = \KL\\M\,
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where | F\ denotes the degree of the field F. On the other hand, in view of (a, c) = 1, we have
| KL | = | K11L | . Thus

\KLM\ = \K\\L\\M\.

Hence we again get formula (1).
It now follows from a theorem of Hasse [3, p. 144] that for every class S of conjugate

elements of the Galois group of the field K there exist infinitely many primes/? such that

:E (2)

and
p is divisible by a prime ideal of the first degree in LM. (3)

Since (b, c) = 1 we may assume Z = {T}, where Cir) = C- From (2) it follows that
Co = Co" (mod p) where p is a prime ideal in Kwhich divides/7. Hence Ca = Co and/? = b (mod a).

On the other hand, from (3) and a theorem of Dedekind [2, Satz I, pp. 15-16], it follows
that the congruence xc — 1 = 0 (modp) has c solutions, and then by Euler's criterion we have

Proof of Theorem 1. Let a and b be relatively prime positive integers. We exclude the
case a = 0 (mod 16), b = 9 (mod 16). Let q be a prime number such that q)( 2a. If 21 a, and
b # 9 (mod 16), then there exists a positive integer x0 such that axo + b # 9 (mod 16). If 1)(a
then there exists a positive integer x0 such that axo + b = 1 (mod 16).

In both cases I6ax+axo + b ^ 9 (mod 16), and (I6a,axo + b) = 1 for every x. By the
Lemma, there exist infinitely many primes p such that p ^ 9 (mod 16), p = a (mod b) and

p|2(p-i)/«_l. (4)

Let p > 20 be a prime number possessing the above properties. We first consider the case
when/? = 3 (mod4). Since/? > 20 we have \{p— 1) ^ 10 and, by a theorem of Zsigmondy [9],
the number 2 i ( p " 1 } - 1 has a primitive prime factor q of the form |(/? - 1 ) / + 1 . (A prime p is
called a primitive prime factor of the number 2"-1 if p \ 2"-1 and p\2x— 1 for 0 < x <n.)

Since/? = 3 (mod4) we have 2Jf^(p-1). Thus 2 | / andg = 1 (mod/?-l). The primitive
prime factor of the number 2P~1 -1 is the second prime factor of the form (/? - l)x +1. The
primep which divided 2(p~1)lq— 1 is the third prime factor of the form(/?—l)x+ 1.

Now suppose that/? = 5 (mod 8). In view of a theorem of A. Schinzel [8], there exist two
primitive prime factors q and r of the number 2P~1 —1 such that q = 1 (mod/?—1), r = 1
(mod/?— 1). The prime /? is the third prime factor of the form (/?— l)x+ 1.

Finally we consider the case 16 \p- 1. From a theorem of Zsigmondy [9], there exists a
primitive prime factor q of the number 2*(p~1} - 1 . We prove that this prime factor q is of the
form (/?- l)x+1. Indeed, since q is a primitive prime factor of the number 2 * ( p - 1 ) - 1 , we
have q = \ (mod %(p — 1)).

Since 16 \p—1 we have # = 1 (mod 8), and the number 2 is a quadratic residue modulo q.
Thus <7|2*(*~1) — 1. Since q is a primitive prime factor of the number 2*(p~1)— 1, we have

| 1 ) ; hence?= l (mod /? - l ) .
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The primitive prime factor of the number 2P~1 — 1 is the second prime factor of the form
(p— l)x+1. The prime p is the third prime factor of the form (p— l)x+1. This completes the
proof of Theorem 1.

A number m is called a pseudoprime if it is composite andm\ 2m—2. K. Szymiczek proved
in [7] that for infinitely many primes p of the form 8fc+1 there exist primes q and r (distinct
from each other and from p) such that all the numbers pq, pr and qr are pseudoprimes.

From the Lemma we obtain

THEOREM 2. For infinitely many primes p of the form ax+b, where (a, b) = 1 there exist
primes q and r {distinct from each other and from p) such that all the numbers pq, qr andpr are
pseudoprimes.

Proof. Let (a, b) = 1 and let q be a prime number such that qX 2a. By the Lemma, there
exist infinitely many primes p such that

p |2 ( p ~ 1 ) / 9 - l , p = b (mod a).

The rest of the proof runs completely parallel to the proof of Theorem 2 given in [7].

A number each of whose divisors d satisfies the relation d [ 2d—2 is called a super-pseudo-
prime number.

THEOREM 3. For infinitely many primes p of the form ax+b, where (a, b) = 1, (excluding
the case a = 0 (mod 16), 6 = 9 (mod 16)) there exist primes q and r such that the number pqr is
a super-pseudoprime number.

Proof. Let a ^ 0 (mod 16) or b ^ 9 (mod 16). It follows from Theorem 1 that there exist
distinct prime numbers p, q and r such that q, r = 1 (mod/) — 1) and

pqr\2'-l-l. (6)

Let d be any divisor of the number pqr. From (6) it follows that d \ 2P~x - 1 . We have also
d= I (modp—l). Hence

c / | 2 p - 1 - l | 2 d - 1 - l | 2 < ' - 2 .

Theorem 3 is thus proved.

REFERENCES
1. A. Capelli, Sulla reduttibilita della funzione x"-A in un campo qualunque di razionalita,

Math. Ann. 54 (1901), 602-603.
2. R. Dedekind, Ueber den Zusammenhang zwischen der Theorie der Ideale und der Theorie der

hoheren Congruenzen (Gottingen, 1878).
3. H. Hasse, Bericht iiber neuere Untersuchungen and Probleme aus der Theorie der algebraischen

Zahlen, Teil II, Reziprozitatsgesetze (Berlin, 1930).
4. T. Nagell, Contributions a la theorie des corps et des polynomes cyclotomiques, Ark. Mat. 5

(1965), 153-192.
5. A. Rotkiewicz, Sur les nombres naturels n et k tels que les nombres n et nk sont a la fois

pseudoprimes, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Nat. (8) 36 (1964), 816-818.
6. A. Rotkiewicz, Sur les nombres premiers p et q tels quepq \ 2M - 2 , Rend. Ore. Mat. Palermo

11 (1962), 280-282.

https://doi.org/10.1017/S0017089500000331 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500000331


86 A. ROTKIEWICZ

7. K. Szymiczek, On prime numbers p, q and r such that pq, pr and qr are pseudoprimes, Colloq.
Math. 13 (1965), 259-263.

8. A. Schinzel. On primitive factors of a" - b", Proc. Cambridge Philos. Soc. (4), 58 (1962), 555-
562.

9. K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 265-284.

DEPARTMENT OF PURE MATHEMATICS

CAMBRIDGE UNIVERSITY

Permanent address: Institute of Mathematics, ul. Sniadeckich 8, Warsaw, Poland.

https://doi.org/10.1017/S0017089500000331 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500000331

