LETTERS TO THE EDITOR

ON THE ATTAINED WAITING TIME

J. W. COHEN*, Centre for Mathematics and Computer Science

Abstract

By using properties of up- and downcrossings of the sample functions of
the workload process and of the attained waiting-time process for a $G/G/1$
queueing model, a direct proof of a theorem proved by Sakasegawa and
Wolff is given.

WORKLOAD PROCESS; SAMPLE FUNCTIONS; STATIONARY DISTRIBUTIONS

Sakasegawa and Wolff (1990) show by using sample function arguments that for the FIFO
$G/G/1$ queueing model the workload process v_t and the attained waiting-time process η_t
possess the same stationary distribution, if such distributions exist. However their proof is
somewhat artificial (see their use of preemptive LIFO).

A direct proof of their Theorem 1 proceeds as follows. Consider a busy cycle c with n the
number of customers served; r_1, \ldots, r_n are the service times of these customers, w_1, \ldots, w_n
their successive actual waiting times, i the idle time, so

\begin{equation}
 c = r_1 + \cdots + r_n + i.
\end{equation}

The attained service time η_t at epoch t is by definition the time between t and the arrival
epoch of the customer being served at epoch t. In Figure 1 the sample function of the
workload process v_t and the corresponding η_t-process during the busy cycle c are shown, with
$n = 4$.

Define for $v \geq 0$,

\begin{align}
 d(v) &:= \text{# downcrossings of } v_t, \ 0 \leq t \leq c \text{ with level } v, (\ast) \\
 u(v) &:= \text{# upcrossings of } v_t, \ 0 \leq t \leq c \text{ with level } v, (\circ) \\
 \delta(v) &:= \text{# upcrossings of } \eta_t, \ 0 \leq t \leq c \text{ with level } v, (\ast) \\
 \omega(v) &:= \text{# downcrossings of } \eta_t, \ 0 \leq t \leq c \text{ with level } v, (\circ).
\end{align}

Note that in the figure $d(v) = 3$; the upcrossings are there indicated by \circ, the downcrossings
by \ast. It is immediately evident from the geometry of the sample functions (see Cohen (1977),
(1982)) that with probability 1, for $v \geq 0$,

\begin{align}
 d(v) &= u(v), \quad \delta(v) = \omega(v), \\
 u(v) &= \delta(v); \quad \omega(v) = \delta(v),
\end{align}

and

\begin{align}
 d(v) &= \frac{d}{dv} \int_0^c (v_t < v) dt, \quad \delta(v) = \frac{d}{dv} \int_0^c (\eta_t < v) dt,
\end{align}

Received 31 July 1990; revision received 28 April 1991.

* Postal address: Stichting Mathematisch Centrum, Centre for Mathematics and Computer Science,
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.
where we use the notation

\[v < v = 1_{v < v} \quad \text{and} \quad \int_0^c (v < v) \, dt = \int_0^c (v < v, c \equiv t) \, dt, \]

for the indicator function and the integral. Since

\[i = \left\{ \int_0^c (v < v) \, dt \right\}_{v=0^+} = \left\{ \int_0^c (\eta < v) \, dt \right\}_{v=0^+}, \]

integration of (6), using the boundary conditions (8) yields, via (4) and (5), that with probability 1

\[\int_0^c (v < v) \, dt = \int_0^c (\eta < v) \, dt, \quad v \equiv 0. \]

Because

\[(v < v) = 1 - (v \geq v), \]

we have from (9)

\[\int_0^c (v \leq v) \, dt = \int_0^c (\eta \leq v) \, dt, \]

which is Theorem 1 of Sakasegawa and Wolff (1990).

References