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We report on localised patches of cellular hexagons observed on the surface of a
magnetic fluid in a vertical magnetic field. These patches are spontaneously generated
by jumping into the neighbourhood of the unstable branch of the domain-covering
hexagons of the Rosensweig instability upon which the patches equilibrate and
stabilise. They are found to coexist in intervals of the applied magnetic field strength
parameter around this branch. We formulate a general energy functional for the system
and a corresponding Hamiltonian that provide a pattern selection principle allowing
us to compute Maxwell points (where the energy of a single hexagon cell lies in
the same Hamiltonian level set as the flat state) for general magnetic permeabilities.
Using numerical continuation techniques, we investigate the existence of localised
hexagons in the Young–Laplace equation coupled to the Maxwell equations. We find
that cellular hexagons possess a Maxwell point, providing an energetic explanation
for the multitude of measured hexagon patches. Furthermore, it is found that planar
hexagon fronts and hexagon patches undergo homoclinic snaking, corroborating the
experimentally detected intervals. Besides making a contribution to the specific area
of ferrofluids, our work paves the ground for a deeper understanding of homoclinic
snaking of two-dimensional localised patches of cellular patterns in many physical
systems.
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1. Introduction

Spatial localisation is proving to be key to understanding various coherent features
seen in fluids comprising Taylor–Couette flow (Abshagen et al. 2010), plane Couette
flow (Schneider, Gibson & Burke 2010; Chantry & Kerswell 2014), binary fluid
convection (Moses, Fineberg & Steinberg 1987; Batiste et al. 2006; Mercader
et al. 2013) and transition to turbulence (Pringle, Willis & Kerswell 2015) – see
also Knobloch (2008, 2015), Dawes (2010) and Descalzi et al. (2011) for broader
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(a) (b)

FIGURE 1. (Colour online) A patch of seven ferrofluidic spikes seen together with the
upper coil (a), and zoom in the high density range (b). Photographs courtesy of Robin
Maretzki (a) and Achim Beetz (b).

reviews. In the homoclinic snaking scenario (Pomeau 1986; Woods & Champneys
1999; Coullet, Riera & Tresser 2000), each alternating turn of a ‘snake’ in control
parameter phase space is correlated with the emergence of a further interior cell
of the localised pattern. This scenario has proven to be an important mechanism
for localisation in more than a hundred theoretical studies. However, experimental
evidence is limited, so far, to buckling (Thompson 2015), a semiconductor laser
(Barbay et al. 2008), vertically vibrated media (Umbanhowar, Melo & Swinney
1996), nonlinear optics (Akhmediev & Ankiewicz 2005), gas discharges (Purwins,
Bödeker & Amiranashvili 2010), a light valve (Haudin et al. 2011) and, in the
context of fluids, the Taylor–Couette flow (Abshagen et al. 2010; Schneider et al.
2010). A pending problem is a comparison of experiment and theory of homoclinic
snaking for fully localised two-dimensional (2D) patterns (not just structures that are
localised in a single spatial direction) in a physical fluid system.

A step towards filling this gap is investigating the surface instability of an
electrically or magnetically polarisable fluid, because spatial inhomogeneities and
noise are very low. When a static layer of magnetic fluid is subjected to a vertical
magnetic field, it becomes unstable when a critical value Bc of the magnetic induction
is surpassed. Owing to this Rosensweig instability (Cowley & Rosensweig 1967), a
regular hexagonal pattern of cellular spikes emerges. By applying local magnetic
pulses, localised radially symmetric spikes could be generated on the free-surface
(Richter & Barashenkov 2005). In this paper we demonstrate that various localised
hexagon patches as in figure 1 emerge spontaneously if the homogeneous field
is switched into a regime where we expect to find homoclinic snaking. So far,
the modelling of localised spikes is limited to finite element simulations (Lavrova,
Matthies & Tobiska 2008; Cao & Ding 2014) and a simple reaction–diffusion
model (Richter & Barashenkov 2005). However, the Rosensweig instability involves
a free-surface and so the justification of reaction–diffusion theory is problematic.
Solving the full dynamic equations, we present numerical evidence that the
localised hexagon patches undergo homoclinic snaking similar to that observed
in reaction–diffusion theory (Woods & Champneys 1999; Coullet et al. 2000).

The outline of the article is as follows. In § 2, we describe the experimental
set-up, which is followed by a characterisation of the ferrofluid (§ 3) and the
experimental results (§ 4). In § 5 we then introduce the mathematical model for
the experiment, which we numerically solve in § 6 and present the numerical results.
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FIGURE 2. (Colour online) Set-up of the apparatus for measuring the Rosensweig
instability. Scheme of the assembled set-up (a), and exploded view of the container with
the coils (b).

Then § 7 compares experimental and theoretical results. We finish with conclusions
and outlook (§ 8).

2. Experimental set-up
Our experimental set-up is sketched in figure 2(a). An X-ray point source emits

radiation vertically from above through the container with the ferrofluid, which is
placed midway between a Helmholtz pair of coils. Underneath the container, an X-ray
camera records the radiation passing through the layer of ferrofluid. The intensity at
each pixel of the detector is directly related to the height of the fluid above that pixel.
Therefore, the full surface topography can be reconstructed after calibration (Richter
& Bläsing 2001; Gollwitzer et al. 2007).

The container, which holds the ferrofluid sample, is depicted in figure 2(b). It
is a regular octagon machined from aluminium with a side length of 77 mm
and two concentric inner bores with a diameter of 140 mm. These circular holes
are carved from above and below, leaving only a thin base in the middle of
the vessel with a thickness of 2 mm. On top of the octagon, a circular lid of
aluminium is placed, which closes the hole from above (see figure 2b). Each side
of the octagon is equipped with a thermoelectric element QC-127-1.4-8.5MS from
Quick-Ohm. These are powered by a 1.2 kW Kepco KLP-20-120 power supply. The
hot side of the thermoelectric elements is connected to water-cooled heat exchangers.
The temperature is measured at the bottom of the aluminium container with a
Pt100 resistor. The temperature difference between the centre and the edge of the
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Quantity Value Error Unit

Density ρ 1168.0 ±1 kg m−3

Surface tension σ 30.9 ±5 mN m−1

Viscosity at 10 ◦C η 4.48 ±0.1 Pa s
Initial permeability from (3.2) µr,i 4.57 ±0.005
Saturation magnetisation from (3.2) MS 23.15 ±0.8 kA m−1

Critical induction from (3.6) Bc,∞ 10.83 ±0.1 mT
Critical induction from experiment Bc,exp 11.23 ±0.1 mT

TABLE 1. Properties of the magnetic fluid APG E32 (Lot G090707A) from Ferrotec Co.

bottom plate does not exceed 0.1 K at temperature 10.0 ◦C measured at the edge
of the vessel. A closed loop control, realised using a computer and programmable
interface devices, holds the temperature θ of the vessel constant with an accuracy
of 10 mK.

The container is surrounded by a Helmholtz pair of coils, thermally isolated from
the vessel with a ring made from a flame-resistant composite material (FR-2). As
shown in figure 2, the diameter of the coils is intentionally smaller than the diameter
of the vessel in order to introduce a magnetic ramp. With this arrangement, the
magnetic field strength falls off towards the border of the vessel, where it reaches
80 % of its value in the centre. The ramp is introduced in order to minimise the
differences between the amplitudes obtained in a finite and an infinite geometry. For
details of the magnetic ramp, see Knieling, Rehberg & Richter (2010). Filling the
container to a height of 5 mm with ferrofluid enhances the magnetic induction in
comparison with the empty coils for the same current I. Therefore B(I) is measured
immediately beneath the bottom of the container, at the central position, and serves
as the control parameter in the following.

3. Properties of the magnetic fluid
For the experiments, we use the ferrofluid APG E32 from Ferrotec Co. Table 1 lists

the important material parameters. The density ρ was measured utilising an electronic
density meter (DMA 4100) from Anton Paar. The surface tension was measured by
means of a ring tensiometer (Lauda TE 1) and corroborated by the pendant drop
mehode (Dataphysics OCA 20).

The viscosity η has been measured in the temperature range of −5 ◦C 6 θ 6 20 ◦C,
using a commercial rheometer (MCR 301, Anton Paar) with a shear cell featuring
a cone–plate geometry. At room temperature, the magnetic fluid with a viscosity of
η= 2 Pa s is 2000 times more viscous than water. The value of η can be increased by
a factor of 9 when the liquid is cooled to −5 ◦C. The temperature-dependent viscosity
data can be well described by the Vogel–Fulcher law (Rault 2000)

η= η0 exp
(

ψ

θ − θ0

)
, (3.1)

with η0 = 0.48 mPa s, ψ = 1074 K and θ0 = −107.5 ◦C, as reported in detail by
Gollwitzer, Rehberg & Richter (2010). For the present measurements, we chose a
temperature of θ = 10 ◦C, where the viscosity amounts to η = 4.48 Pa s according
to (3.1).
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FIGURE 3. (Colour online) (a) Measured magnetisation, M, curve versus the field in the
fluid, HF, and (b) related chord (red dashed), tangent (blue dashed) and effective (black
solid line) permeabilities. The dotted line marks µeff at Hc.

The magnetisation, M(HF), where HF is the magnetic field in the fluid, has been
measured by means of a fluxmetric magnetometer (Lakeshore Model 480). A spherical
cavity with a volume of 1 ml was constructed from Perspex and filled up to the brim
with the magnetic fluid. By means of X-rays we checked for a bubble-free filling.
Figure 3(a) presents the measured data together with a fit (solid line) by the equation

M(HF)=MS
HF

HF + MS

µr,i − 1

, (3.2)

utilised by Fröhlich (1881) and Vislovich (1990), where M=|M|, MS is the saturation
magnetisation, HF is the magnitude of the applied magnetic field in the fluid and µr,i
is the initial magnetic permeability.

Fitting the data with (3.2) we obtain for the initial magnetic permeability µr,i=4.57,
and for the saturation magnetisation MS = 23.15 kA m−1. Equation (3.2) is used to
calculate the chord permeability

µch ≡M/HF + 1 (3.3)

and the tangent permeability

µta ≡ ∂M
∂HF
+ 1= µr,i − 1(

1+ (µr,i − 1)
HF

MS

)2 + 1, (3.4)

which are displayed in figure 3(b) by a dashed red (blue) line, respectively. The
effective permeability

µeff =
√
µta(HF)µch(HF) (3.5)

is the geometric mean of the two permeabilities (Cowley & Rosensweig 1967) and is
marked in figure 3(b) by the black solid line.

By means of µeff (M), the material parameters σ and ρ, and the gravitational
acceleration g = 9.81 m s−2, the critical magnetisation for a semi-infinite layer of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

56
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.565


288 D. J. B. Lloyd, C. Gollwitzer, I. Rehberg and R. Richter

0
10.6 10.8 11.0

Magnetic induction
11.2 11.4

1a

2a

2b

3b

3a

3

2

1b

1

0.5

1.0

1.5

 A
 (

m
m

) 2.0

2.5

3.0

(a) (b)

(c)

FIGURE 4. (Colour online) (a) The bifurcation diagram (black line) of this pattern is
obtained by fitting equation (11) in Gollwitzer et al. (2010) to about 170 000 measured
data. Via the path indicated by the arrows, one obtains localised patches, as shown in (c).
The magnetic induction B is kept fixed during (1) for a time delay of τ1, then B is
switched to (2) for a time delay of τ2 before finally being switched to (3) until equilibrium
is reached at point (3b). (b) A reconstruction of the height field of the domain-covering
hexagons at point (1b). (c) Gives a reconstruction of the height field of a three-spike patch
at point (3b) in the bifurcation diagram.

ferrofluid is approximated by the implicit equation (Rosensweig 1985)

Mc(M)= 2
µ0

√
1+ 1

µeff (M)
√
ρgσ . (3.6)

By numerically solving the implicit equation, we obtain Mc = 6.2303 kA m−1, Hc =
2.3872 kA m−1 and Bc = µ0(Hc + Mc) = 10.83 mT. Note that this value is just an
approximation for a semi-infinite layer of ferrofluid. Revisiting figure 3(b), we see that
µeff drops considerably for increasing field. At the critical field, we find µeff (Hc)= 3.2
(cf. the dotted line). The critical induction found by fitting amplitude equations to the
experimental data (Gollwitzer et al. 2010) is about 4 % higher (cf. table 1).

We stress that the mapping between a linear and a nonlinear M(H) by (3.5) is only
valid in the linear regime of pattern formation, i.e. for the onset of the instability, but
not for the fully developed nonlinear patterns.

4. Experimental results
In the investigated regime, the plain surface and domain-covering regular up-

hexagonal (i.e. hexagons whose maximum amplitude is positive) patterns are bistable
(10.95 mT 6 B 6 11.23 mT), as shown by the bifurcation diagram in figure 4(a),
which stems from a fit to about 170 000 measured data points (Gollwitzer et al.
2010). Figure 4(b) displays an experimental realisation of the domain-covering
hexagonal pattern observed at the upper branch, the infinite extension of which has
the symmetry of the dihedral group D6.

Owing to the high viscosity of the magnetic fluid, the formation of Rosensweig
patterns takes 60 s. This allows us to vary the magnetic induction B (the control
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parameter) and the pattern amplitude A almost independently. In this way we can enter
the region around the unstable branch of the instability, where homoclinic snaking is
suspected, from the side, as sketched in figure 4.

Starting from a flat layer, B is always switched to an overcritical value B1 =
11.45 mT, cf. position (1a) in figure 4. With time, the amplitude of the domain-
covering hexagon pattern increases along path (1). After τ1 = 60.0 s this pattern is
stabilised (1b). Then B is switched to a value B2 = 10.74 mT before the fold of
the hexagons and the magnetic fluid is allowed to relax from (2a) towards the flat
state. Before the magnetic fluid flattens completely, B is switched at (2b) to a value
B3 in the neighbourhood (3a) of the unstable branch of the imperfect transcritical
bifurcation (cf. equations (1) and (2) in Gollwitzer et al. 2010), marked by a dashed
line and shaded region in figure 4. Now the pattern relaxes on path (3a) to (3b), where
the height of the patch finally settles down (equilibrates) to a value approximately
1.5 mm higher (depending on the size of the patch, i.e. for larger patches, the
height tends to that for the domain-covering hexagons) than the domain-covering
hexagons. A movie (available at http://dx.doi.org/10.1017/jfm.2015.565) shows the
birth of a three-spike patch. Each patch was at least stable for 120 s, as recorded
by the measuring programme. Moreover, we have checked the long-term stability of
exemplary patches after generation and observed no decay for more than 2 h.

Starting at the edge of the bistable region defined by the fold of the domain-
covering cellular hexagon spikes and increasing B3, we obtain a sequence of localised
states ranging from solitary spikes to patches containing multiple spikes/hexagon cells
on an otherwise flat fluid surface with two to 24 cells, as shown in figure 5 for
τ2 = 10.0 s. The height of the spikes/cells of a patch are not uniform; we observe
that spikes near the centre of the patch are higher than those on the edge of the
patch. The distance between spikes within a patch is approximately the same as the
spatial period of the domain-covering hexagon pattern. Remarkably, the spikes do not
spread out in space as time increases despite their magnetic dipole–dipole repulsion,
originating from the fact that the spikes are magnetised in parallel. In this way the
patches are not an ensemble of weakly interacting solitary spikes in the sense of
Richter & Barashenkov (2005).

Moreover, it is interesting to note the mechanism by which hexagon cells are added
to large patches as B3 is increased. Going from figure 5(f ) to (i), we see that spikes
are added in the middle of the lower front in order to form a completed patch with
dihedral symmetry D2. It is also possible to see completed patches with D6 symmetry,
as shown in figure 1.

Similar patches have been uncovered in the 2D Swift–Hohenberg equation as a
signature of homoclinic snaking (cf. Lloyd et al. 2008; Escaff & Descalzi 2009;
Kozyreff & Chapman 2013). Also the mechanisms governing the growth of a patch,
as observed above, resemble the ones described by these authors.

As shown in figure 6, the number of spikes in a patch increases monotonically with
B3, with clearly defined plateaux. The data related with figure 5 are marked byC and
have been recorded with a delay of τ2 = 10.0 s. Reducing τ2 to 9.5 s (@), 8.5 s (E)
and 7.5 s (A) shifts the curves to lower magnetic inductions: because the starting
amplitudes are higher, a lower B3 is sufficient to generate a localised patch. Most
importantly the prominent plateaux at 3, 10, 12, 14, . . . cells exist for all these values
of τ2. For the very short delay of τ2 = 1.0 s, the curve (♦) hardly exhibits plateaux
(apart from the plateau at 27 spikes, which is the maximal size of a hexagonal pattern
in the set-up). That is because, for τ2 = 1.0 s, the regular hexagonal pattern (see 1b
in figure 4) has hardly decayed, and we cannot sensitively explore the phase space
where homoclinic snaking occurs.
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FIGURE 5. (Colour online) Localised states for τ2=10.0 s at (a) B=11.0725 mT, (b) B=
11.0857 mT, (c) B = 11.1120 mT, (d) B = 11.1648 mT, (e) B = 11.1780 mT, (f ) B =
11.1911 mT, (g) B= 11.2043 mT, (h) B= 11.2175 mT and (i) B= 11.2307 mT.

5. Governing equations
In order to elucidate the snaking process, we numerically solve the full three-

dimensional (3D) dynamical equations. The field in the fluid is modelled by Maxwell’s
equations with no free currents and a Young–Laplace equation for the free-surface.
Since there are no free currents, the magnetic field in the fluid, HF, can be written
in terms of a gradient field HF = hẑ−∇φ, where h is the magnitude of the applied
uniform magnetic field strength in the fluid in the vertical direction ẑ and the
non-uniform part of the field is described by −∇φ. The magnetisation is given by
the linear equation M(HF) = (µr − 1)HF, where HF = |HF| and µr = const. is the
magnetic permeability of the magnetic fluid relative to that of free space, µ0. Thus
the magnetic induction follows from the linear relation B=µrµ0 HF.

Of course, a linear magnetisation law can only be a rough approximation of the
real M(HF) measured in the experiment (§ 3). Despite that, previous analytical studies,
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FIGURE 6. (Colour online) The number of spikes versus B3 for different delays τ2= 1.0 s
(♦), 7.5 s (A), 8.5 s (E), 9.5 s (@) and 10.0 s (C) exhibits plateaux. The plateaux at 3,
10, 12, 14 and 21 spikes, where patches are forming complete patches, are marked by
horizontal lines.

which are based on a linear M(HF), can successfully predict all regular planforms on
the ferrofluids and their underlying bifurcations (see Gailitis 1977; Friedrichs & Engel
2001; Friedrichs 2002; Bohlius, Brand & Pleiner 2011). Likewise in our numerical
study we aim to catch the decisive qualitative features seen in the experiment, and to
elucidate whether they are connected to homoclinic snaking.

The magnetic field in the air above the magnetic fluid is given by HA=µrhẑ−∇χ
and the steady-state free-surface is given by z= ζ (x, y), with ζ = 0 corresponding to
the flat state. The equations are non-dimensionalised using the critical wavenumber
kc =√ρg/σ for the length scale and

√
ρgσ for the unit of pressure, where ρ is the

fluid density and σ is the surface tension. Furthermore, the amplitude h of the uniform
field strength inside the magnetic fluid is rescaled using µr,

H =
√

µ0µr

2(µr + 1)
(µr − 1)h, (5.1)

such that the instability occurs at Hc = 1. We note that, when comparing (5.1) with
the related equation (5.5) of Silber & Knobloch (1988), we have rescaled with respect
to µ0. The bifurcation parameter is then

ε =H − 1. (5.2)

We also note that ε depends on µr. For a static magnetic fluid in a vertical field, the
dimensionless equations are

∇(p∗ + z− 1
2(µr − 1)|HF|2)= 0, z ∈ (−D, ζ ), (5.3a)

∇2φ = 0, z ∈ (−D, ζ ), (5.3b)
∇2χ = 0, z ∈ (ζ ,D), (5.3c)

where D is the depth of the fluid and p∗ is an effective pressure in the magnetic
fluid. Equation (5.3a) is the stationary Navier–Stokes equation for the magnetic

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

56
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.565


292 D. J. B. Lloyd, C. Gollwitzer, I. Rehberg and R. Richter

fluid, and (5.3b) and (5.3c) are derived from Maxwell’s equations assuming a linear
magnetisation law (see Cowley & Rosensweig 1967). We consider a domain above
the fluid to a height D for computational ease. At the interface z= ζ , the boundary
conditions are given by

p∗ + 1
2(µr − 1)2(HF · n̂)2 = 2κ, (5.4a)

[B · n̂]+− = 0, [H × n̂]+− = 0, (5.4b,c)

where [·]+− is the value of the jump across the interface of the quantity in the brackets,
n̂ is the unit normal to the interface and κ is the mean curvature of the surface (see
Silber & Knobloch 1988):

n̂= ẑ−∇ζ
(1+ |∇ζ |2)1/2 , κ = ∇ · n̂

2
. (5.5a,b)

No-flux boundary conditions are imposed on the top and bottom of the domain, i.e.
φz(x,−D)= χz(x,+D)= 0 where x= (x, y). Solving (5.3a) for the pressure, within a
constant, C, at the free-surface yields

p∗ =−ζ + 1
2(µr − 1)|HF|2 +C, at z= ζ . (5.6)

The pressure can then be eliminated and the boundary conditions written in terms of
the fields ζ (x, y), φ(x, y, z) and χ(x, y, z), as well as two parameters, µr and ε.

The system of equations possesses a free energy given by

E(ζ , φ, χ) =
∫
Ω

[
1
2

(∫ D

ζ (x)
|HA|2 dz+µr

∫ ζ (x)

−D
|HF|2 dz

)
− 1

2
ζ 2

+Cζ +µrh(χz=D − φz=−D)−
√

1+ |∇ζ |2 − 1
]

dx, (5.7)

made up of magnetic, hydrostatic and surface energies, respectively, with conservation
of mass, with boundary conditions at the top and bottom of the domain, and with
the boundary condition at the interface φ(x, ζ )− hζ (1−µr)= χ(x, ζ ) as constraints,
where Ω ⊂ R2 is the space domain of ζ (x) and x = (x, y). We note that Gailitis
(1977) and Bohlius, Pleiner & Brand (2006) use other energy formulations without
the boundary conditions and conservation of mass. The constant C is a Lagrange
multiplier for the mass constraint:

∫
Ω
ζ dx equal to a constant. Taking variations of

E with respect to the free-surface ζ yields the interface equation (5.4a), and taking
variations with respect to φ and χ , using the constraint, yields the Laplace equations
(5.3b) and (5.3c) and the no-flux boundary conditions φz(x,−D)=χz(x,+D)= 0. The
advantage of this free energy is that it represents the whole system and we can now
numerically compute energies taking into account the magnetic fields.

In order to fix the pressure constant, C, we assume that the base state (χ, φ, ζ )=
(0, 0, 0) solves the equations corresponding to the mass constraint

∫
Ω
ζ dx = 0. We

choose to study the case of large depth of magnetic fluid and we set the depth, D, to
be 10. For µr = 2, this yields a depth of 16.42 mm, i.e. about three times the depth
of the fluid in the experiment, which is sufficiently large that the domain-covering
hexagons do not change as the depth is increased. We have ignored the effect of
the shallow layer in our numerics since one would have to solve for an additional
magnetic field below the magnetic fluid and apply suitable compatibility conditions.
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Carrying out a coordinate transformation to flatten out the free-surface (Twombly &
Thomas 1983) given byx

y
z

→
x̂

ŷ
ẑ

=
 x

y
z− ζ
D− ζ D

 , for ζ < z<D, (5.8)

and x
y
z

→
x̂

ŷ
ẑ

=
 x

y
z− ζ
D+ ζ D

 , for −D< z< ζ, (5.9)

we can perform a Legendre transformation in order to define a Hamiltonian.
Arbitrarily taking the x direction, we define the momenta coordinates α= ∂E/∂φx, β=
∂E/∂χx and η= ∂E/∂ζx. Then the Hamiltonian for the system is given by

H(φ, χ, ζ , α, β, η)=
∫ D

0
αφx dz+

∫ D

0
βχx dz+ ηζx − E, (5.10)

on the constraint manifold M={φ(x, 0)− hζ (1−µr)−χ(x, 0)= 0, φx(x, 0)− hζx(1−
µr) − χx(x, 0) = 0}; see Groves & Toland (1997) and Groves, Lloyd & Stylianou
(2015) for the similar case of water waves.

The Hamiltonian (5.10) is a constant along solutions in the x direction and
provides a wavelength selection principle (see Lloyd et al. (2008) for the same
principle applied to the Swift–Hohenberg equation). In particular, if we evaluate H
along any localised planar (hexagon) front connecting to the trivial state ζ = 0 and
the domain-covering hexagon pattern, we find that H = H(0) along the limiting
domain-covering hexagon pattern so that it belongs to the same level set. Generically,
H will only equal H(0) at finitely many spatially periodic orbits in the family
of spatially periodic patterns and will therefore serve as a selection principle that
involves only the spatially periodic patterns; see Beck et al. (2009) for more details.

6. Numerical results
The 3D equations (5.3b,c) and (5.4a) are solved by first flattening out the free-

surface using (5.8) and (5.9) so that the computational domains are fixed cuboids. We
apply Neumann boundary conditions on the four sizes of Ω in order to remove the
translational invariance in x and y that would cause problems with Newton solvers.
This choice of boundary conditions on Ω limits us to cellular hexagons, symmetric
planar fronts and D2 symmetric patches involving cellular hexagons computed on the
positive quadrant; see Lloyd et al. (2008) for more details. To remove the continuous
symmetry due to the magnetic potentials being defined only up to a constant, we add
an extra parameter λ to the Laplace equations (5.3b,c) to be solved along with φ, χ
and ζ and we append an extra equation (see Twombly & Thomas 1983)

χ(0,D)+µφ(0,−D)= 0. (6.1)

We now have a well-posed boundary value problem with all the continuous
symmetries removed, allowing us to use Newton methods. We discretise in MATLAB
using fourth-order central finite differences (for planar fronts) or a pseudo-spectral
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Fourier method (for hexagon spikes and patches) in x and y directions and Chebyshev
pseudo-spectral method in z with a Newton–GMRES method (Kelley 2003) and
secant pseudo-arclength continuation (Krauskopf, Osinga & Galan-Vioque 2007). For
the Newton–GMRES scheme, one needs a preconditioner. For this we precompute
a sparse incomplete LU-decomposition (with the Crout algorithm Saad (1996)) of
the linear system with a flat interface at onset and this is fixed for the continuation.
The incomplete LU-decomposition is computed with a drop tolerance of 1 × 10−6

and we set a maximum of 20 iterations for GMRES with 40 Arnoldi restarts and a
tolerance of 10−4. Typical spatial step sizes in x and y directions are 0.25–0.5 for
the Fourier pseudo-spectral method and 20 Chebyshev collocation points in z and
a fixed arclength step size of 0.01. The numerics are validated by comparing with
normal-form results by Silber & Knobloch (1988). In particular, we check that the
change of sub/supercriticality of rolls and squares occurs at the theoretically predicted
values of µr; see the appendix for more details. Fold loci are found by carrying out
parameter slices and then doing a linear interpolation about the fold values. The
Maxwell point is computed by appending the Hamiltonian and energy conditions to
the system.

In the following we present the results obtained with the procedures sketched above.
We start with the hexagon Maxwell curve (§ 6.1), which is succeeded by hexagon
planar fronts (§ 6.2), hexagon patches (§ 6.3) and rhomboid patches (§ 6.4).

6.1. Hexagon Maxwell curve

Intuitively, one expects localised patches to exist when the energy of a single hexagon
cell of the infinitely extended pattern has the same energy as the trivial flat state.
This occurs at the Maxwell point: a hexagon with a wavelength selected by H has
the same energy E(hex) = E(0), where hex is a single hexagon cell. For µr close
to 1, the hexagon Maxwell point was previously computed analytically by Friedrichs
& Engel (2001) with an energy minimisation principle for the wavelength selection.
In order to find a Maxwell curve relevant for localised hexagon patterns, one needs
to use the Hamiltonian selection principle. We find that the Hamiltonian wavelength
selection criterion only slightly changes the wavelength from that at onset. In figure 7,
we trace out the hexagon Maxwell curve varying both ε and µr. We find that the
Maxwell curve closely follows the fold of the domain-covering hexagons. In particular,
for µr= 2 the Maxwell point is found to be ε≈−0.013. For µr close to 1, the height
of the hexagons becomes very small, making it difficult for our numerics to capture,
since we only compute solutions to a relative error of 10−4 and round-off error starts
to dominate. We do believe, though, that the Maxwell curve should continue down
to µr = 1.

At the hexagon Maxwell curve, we expect to see stationary fronts between the flat
state and domain-covering hexagons since we are connecting states with the same
energy. Infinitely many different types of planar fronts are possible depending on the
front’s interface with respect to the underlying hexagonal lattice. These different fronts
can be classified by their Bravais–Miller index, which we denote by 〈n1n2〉, where nj

are the reciprocals of the intercepts of the line with the lines Rl i generated by the
lattice vectors l j, assigning the reciprocal nj= 0 if the line does not intersect Rl i (see
Ashcroft & Mermin 1976; Lloyd et al. 2008). It is these different types of fronts that
form the sides of large hexagon patches.
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FIGURE 7. (Colour online) Two-parameter (ε, µr) bifurcation diagram showing the
existence of the primary fold of the domain-covering hexagons and their corresponding
Maxwell point.

6.2. Hexagon planar fronts
The works of Lloyd et al. (2008), Escaff & Descalzi (2009), Kozyreff & Chapman
(2013) and Dean et al. (2015) suggest that one needs only to consider two main
hexagon planar fronts, namely the 〈10〉 and 〈11〉 fronts, in order to understand snaking
of fully localised patches. We note that, in figure 5(f –i), we see that the patches are
mostly made up of 〈10〉 fronts, with figure 5(f ) also showing the left- and right-hand
sides that are 〈11〉 fronts. Hence, we will concentrate on first understanding the 〈10〉
and 〈11〉 hexagon planar fronts.

Generically, we expect these hexagon fronts to remain pinned in an open region of
parameter space, where they undergo homoclinic snaking about the Maxwell point (see
Pomeau 1986; Beck et al. 2009). This is confirmed by our numerical results presented
in figure 8: for µr=2, indeed, the 〈10〉 and 〈11〉 fronts snake about the Maxwell point
at ε ≈−0.013. We find, similar to that reported in other systems (Lloyd et al. 2008;
Escaff & Descalzi 2009; Kozyreff & Chapman 2013; Lloyd & O’Farrell 2013), that
the 〈10〉 front snakes over a larger region of parameter space than the 〈11〉 front. This
gives a partial explanation as to why mostly patches with 〈10〉 sides are observed in
our experiments, as these live in a larger region of parameter space.

If the computational domain is commensurate with the domain-covering hexagons,
then we expect the snaking branches to terminate near the fold of the domain-covering
hexagons (see Dawes 2008). In figure 8, we have stopped the snaking branch early
and indicate that the snaking should continue indefinitely for fronts on the plane.

6.3. Hexagon patches
We turn now from the planar fronts to the hexagonal patches as seen in the experiment.
The numerical results for µr= 2 displayed in figure 9 show that radial spots bifurcate
subcritically at onset from the flat state and undergo a subsequent fold. Along the
upper branch of the spot there is a D6 bifurcation from which a hexagon patch
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0.5

–0.010

Maxwell point

–0.005 0

FIGURE 8. (Colour online) The L2 norm of the displacement of the interface of localised
planar hexagon fronts undergoes homoclinic snaking about the Maxwell point (@) for
µr= 2. The 〈10〉 front (blue) is snaking in a far larger region of parameter space than the
〈11〉 front (red). Here ‖ζ‖2

2= (1/|Ω|)
∫
Ω
ζ 2 dx is the normalised L2 norm of the interface.

–0.015
0

0.1

0.2

0.3

0.4

0.5

–0.010 –0.005 0

FIGURE 9. (Colour online) Emergence of a fully localised hexagon patch (dashed purple)
bifurcating from a single spike (green) with µr = 2. We also plot the snaking regions of
the 〈10〉 (blue) and 〈11〉 planar fronts (red).

emerges that undergoes a series of folds yielding larger and larger patches. We
terminate the branch early, as the snaking branch becomes highly intricate further
up the branch (cf. Lloyd et al. (2008, figure 25)). However, we expect this branch
to eventually terminate near the fold of the domain-covering hexagons. This patch
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FIGURE 10. (Colour online) Emergence of fully localised rhomboid patches bifurcating
from the flat state with µr = 2. We also plot the snaking regions of the 〈10〉 (blue) and
〈11〉 planar fronts (red).

also snakes about around the 〈10〉 and 〈11〉 hexagon fronts (indicated by the shaded
regions). We observe that the snaking occurs around the hexagon fronts since large
patches are effectively made up of combinations of hexagon fronts’ sides. The
hexagon patch displayed in the central inset of figure 9 occurs after the third fold of
the hexagon patch branch, and comprises seven fully developed spikes together with
an outer shell of 12 lower humps. It resembles the experimental patch presented in
figure 1, which is also part of the τ2 = 7.5 s series in figure 6.

6.4. Rhomboid patches
As seen in the experimental patterns shown in figure 5, the localisation of the
patches is not necessarily centred around a spike. The patches may equally well
organise around a valley between two spikes. These structures have been called
localised rhomboids (Lloyd et al. 2008). As shown in figure 10, we are able to find
these structures in the same parameter region as the localised hexagon patches. There
are some crucial differences for these structures to the localised hexagon patches
with a spike at the centre of the patch. The first difference is that rhomboid patches
emerge not from a bifurcation of a single spike but from a double-spike configuration
that bifurcates from the flat state. Figure 10 explains how patches are grown by first
trying to complete a 〈10〉 front side by first adding cells in the middle of each of
these sides. As the patches get larger, we see the snaking becomes more confined to
the 〈10〉 and 〈11〉 front snaking regions. In particular, when a patch has only 〈10〉
front sides, then the snaking diagram makes its largest excursion by travelling from
the leftmost 〈11〉 front limit to the rightmost 〈10〉. All other types of patches are
confined to the 〈11〉 front region. We note that the existence regions of the various
configurations are not the same.

We shall briefly comment on the stability of the branch shown in figure 10. It is not
possible to compute the stability of the branches directly from the numerics, since we
have not written down an equation for the evolution of the fluid velocity. However, we
expect the branch emanating from ε = 0 to initially be unstable since the bifurcation
is subcritical. We anticipate that the branch then re-stabilises at the first fold to yield a
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FIGURE 11. (Colour online) The height of the rhomboid patches for D= 7.5, 10 and 15
for µr = 2 up to the second fold. We observe that, as we decrease D, the height of the
patches also decreases, but that for D > 10 we observe little change in the height.

stable two-spike patch and, between each subsequent fold, the branch will destabilise
(due to an eigenvalue crossing the imaginary axis at the fold) and then re-stabilise
(see Beck et al. 2009). Near each fold, we anticipate that there are symmetry-breaking
bifurcations leading to non-D2 symmetric patches.

We eventually investigate the effect of changing the depth D on the localised
rhomboid patches. In figure 11, we plot the maximum height of the patches for
D= 7.5, 10 and 15. For clarity we stop the bifurcation curves before the second fold.
As the depth increases, the snaking diagrams are shifted to the left and the maximum
height of the patches increases as well. It becomes clear that the existence regions
of the localised patches are affected by the depth of the fluid. This is believed to
be caused by the Neumann boundary conditions at the bottom (which insist that the
magnetic field decays to the applied magnetic field here). In a shallow layer, that
constraint also reduces the magnetic field within the tip of the spikes, and thus their
maximum height.

7. Comparison between experimental and numerical results

We now turn to comparing our experimental and numerical results. As stated in
§ 5, our model is based on a linear magnetisation law, whereas we presented in § 3
the nonlinear M(HF) of the real ferrofluid, with an effective permeability ranging
from µeff = 4.57 at B = 0 mT down to 3.2 at Bc = 10.8 mT. Therefore, a direct
matching of all experimental and numerical results cannot be expected. For µr→ 1,
the linear magnetisation law becomes a more accurate approximation of the nonlinear
magnetisation law and the model predicts that homoclinic snaking should persist,
albeit with an exponentially small width in which the snaking exists.

In order to provide a comparison with the experimental results in § 4, we instead
chose a magnetic permeability µr = const. for our model, which captures the
qualitative features of the experiment. In a first attempt, we chose µr to be the
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FIGURE 12. (Colour online) (a) Numerical bifurcation diagram for µr = 3.2 for a two-
spike configuration, depicted in (b), that has bifurcated off the flat state. The state in (b)
was computed for B= 11.3 mT. We terminated the branch early.

effective permeability at the critical point µeff (Hc) = 3.2 (cf. figure 3b) for the
model: µr = 3.2. In figure 12(a), we path-follow the two-spike patch, as depicted
in figure 12(b), bifurcating from the flat state to the upper branch. As seen from
figure 12(a), for µr = 3.2, localised structures exist from B= 10.3 to 11.5 mT, which
is a significantly larger range (about 200 %) than that observed in figure 6. Moreover,
the height of the spikes is about 8 % larger than that observed experimentally.

In a second attempt, we select a smaller value of magnetic permeability, namely
µr = 2. Here we find that, while the critical value of the induction is far from that
experimentally observed, the width of the bistability region between the flat state
and the domain-covering hexagons is very close (approximately 0.25 mT in both
experiments and numerics); see figure 13. Furthermore, we find from the numerics at
the fold of the domain-covering hexagons that the predicted height of the hexagons
is 1.2 mm (from figure 4 we find the measured height of 1.3 mm) and at onset the
height of the stable hexagons is predicted to be 2.4 mm (and from figure 4 we find the
measured height of 2.4 mm), i.e. in the bistability region the numerics are within 5 %
error of that experimentally observed. Hence, it is possible that phenomenologically
µr=2 is the appropriate value to take in the linear magnetisation law for the numerics
for localised hexagon patches.

The heights of the spikes in the patches are found numerically to be highest at the
core of the patch and decrease as the spikes get closer to the edge of the patch. As
shown in figure 13(a), the maximum height of the rhomboid patches is slightly larger
than the domain-covering hexagons, similar to that seen in the experiments.

The numerical observation of various coexisting hexagon patches in figure 9, in
the bistability region of the flat state and the domain-covering hexagons, agrees well
with the experimental results shown in figure 6, where for the same B3 values several
different patches were observed. In particular, we are able to find numerically patches
(figure 10a–d) that look to be identical to those seen in figure 5(b,d,f,i). Our numerical
methods imposed that the patches should have D2 symmetry; hence we were unable
to locate any of the other patches seen in figure 5. However, owing to the existence of
a Maxwell point nearby, we believe hexagon spikes/cells can be added to the patches
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FIGURE 13. (Colour online) Maximum height of the domain-covering pattern (black line)
computed numerically for µr = 2 at the critical wavenumber kc ≈ 608.94 m−1 versus
the magnetic induction. The maximum height of the rhomboid patches is marked by a
brown line.

to break the D2 symmetry provided you are in the 〈11〉 hexagon front snaking region.
Hence, we have a possible explanation for the existence of all the various types of
patches observed experimentally.

Perhaps the largest difference between the numerical and experimental results is that
the sequence of plateaux for fixed τ2 suggests that one can climb up the snakes for
increasing B3, i.e. the snakes are not vertical as in figures 9 or 10 but slanted, as found
by Firth, Columbo & Scroggie (2007) and Dawes (2008) for a conserved quantity.
Slanted snaking may emerge in the presence of a nonlinear magnetisation law and
finite-domain effects, and could provide an explanation for the emergence of larger
and larger patches seen in figure 10.

8. Conclusion and outlook
Utilising a magnetic pulse sequence, we prepare a ferrofluidic layer to be situated

next to the unstable branch of the Rosensweig instability. There, localised hexagon
patches emerge spontaneously. The measured sequence of patches indicates homoclinic
snaking. This is corroborated by numerics, where we investigate the Young–Laplace
equation coupled to the Maxwell equations. Homoclinic snaking is demonstrated
for two types of planar hexagon fronts as well as hexagon and rhomboid patches.
The experimentally observed sequence of patterns can be interpreted as an imperfect
mixture of those prototype scenarios. The numerically unveiled Maxwell point of
the hexagons provides an energy argument for those various regular and irregular
patches observed, since near the Maxwell point the energy of a single hexagon spike
is the same as the flat state and there is no energy penalty in adding/removing
hexagon spikes. The width of the experimentally observed plateaux is about 0.5 % of
the control parameter, which is comparable to the snaking interval of the numerical
prototypes. Moreover, the height of the patches in experiment and numerics agrees
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FIGURE 14. (Colour online) (a) Bifurcation diagram of the domain-covering hexagons for
µr = 2 on the domain (x, y)∈ [−2π, 2π] × [−2π/

√
3, 2π/

√
3] with Nx =Ny = 20, D= 10

and varying Nz. (b) Bifurcation diagram of the domain-covering hexagons for µr = 2 on
the domain (x, y)∈ [−2π, 2π]× [−2π/

√
3, 2π/

√
3] with Nz= 20 and varying Nx (Ny=Nx).

(c) Relative error on a semi-log scale of the L2 norm of the interface ‖ζ‖2
2 for the domain-

covering hexagons on the upper branch at (ε,µr)= (0,2) with Nz=20,D=10 and varying
Nx = Ny with respect to the hexagon computed for Nz = 22, Nx = Ny = 22. (d) Relative
error on a semi-log scale of the L2 norm of the interface ‖ζ‖2

2 for the domain-covering
hexagons on the upper branch at (ε, µr)= (0, 2) with Nx = Ny = 20,D= 10 and varying
Nz with respect to the hexagon computed for Nz= 22,Nx=Ny= 22. From both (c) and (d)
we observe rapid (geometric) convergence due to the spectral accuracy of the numerical
pseudo-spectral methods.

within 10 %. Therefore, we believe that our model captures all the most important
phenomena of the system. In particular, as the relative magnetic permeability tends
to unity, the validity of our model increases. It thus unveils an organising centre for
the emergence of localised hexagon patches seen in the experiment.

It still remains to explore how various stable configurations of patches connect
via unstable branches both experimentally (by quasi-statically varying the magnetic
induction B once a patch has been generated) and theoretically. The discrepancy
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Amp

0 0 0

Rolls Squares Hexagons

Amp Amp

FIGURE 15. (Colour online) Normal-form results of Silber & Knobloch (1988) showing
the changes in sub- and supercriticality of the bifurcations for rolls, squares and
up-hexagons, i.e. hexagons whose maximum amplitude is positive.

between the experimental indications for slanted snaking and the vertical snaking
obtained numerically may be solved by incorporating a nonlinear magnetisation law,
finite-size and shallow-layer effects or by carrying out more experiments to determine
the precise extent of the plateaux.

Theoretically, there are now some very interesting directions one could take. With
the existence of an energy functional for the full system that incorporates the boundary
conditions, one could look at applying variational and spatial-dynamical techniques
that have been developed in the water–wave literature (see e.g. Groves & Sun 2008;
Buffoni et al. 2013).
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Appendix. Validation of the numerical scheme
We present an overview of the validation results of the numerical scheme. We first

plot a convergence test for the domain-covering hexagons for (ε, µr)= (0, 2) on the
domain (x, y)∈ [−2π, 2π] × [−2π/

√
3, 2π/

√
3] and D= 10. In figure 14, we plot the

relative error (relative to a hexagon spike computed with Nx=Ny= 40) as Nx=Ny=N
is varied and then as Nz is varied. Since we are using pseudo-spectral methods, we
see rapid (geometric) convergence with few mesh points. For our numerical results,
we have a relative error of 10−3 and the fold points are computed to a relative error
of 10−4.
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1
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FIGURE 16. (Colour online) Numerical computation of existence regions of domain-
covering rolls, squares and hexagons for ε < 0. We observe that all three of the
domain-covering patterns bifurcate subcritically in the regions where the normal form
theory of Silber & Knobloch (1988) predicts.

In order to test that we have correctly captured the nonlinearity in the system,
we compare our results with the normal-form analysis of Silber & Knobloch (1988)
shown in figure 15. Since the analysis is for small amplitude, we only compare the
bifurcation transitions for each of the rolls and squares from sub- to supercritical.
Here we find excellent agreement with our numerics, giving us confidence in our
results, as shown in figure 16, where we plot the existence regions of the rolls,
squares and hexagons for ε < 0. The final validation we carried out was to find that
the Maxwell point computed for µr = 1.9 lies in the middle of the snaking region
of both the 〈10〉 and 〈11〉 fronts in figure 8 as predicted by Woods & Champneys
(1999) and Coullet et al. (2000). This demonstrates that the discretisation of (5.3b,c)
and (5.4a) is consistent with the energy/Hamiltonian formalisation (5.7) and (5.10)
and we are solving the correct equations.
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