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Abstract
One way to model telecommunication networks are static Boolean models. However, dynamics such as node
mobility have a significant impact on the performance evaluation of such networks. Consider a Boolean model in
R𝑑 and a random direction movement scheme. Given a fixed time horizon 𝑇 > 0, we model these movements via
cylinders inR𝑑×[0, 𝑇]. In this work, we derive central limit theorems for functionals of the union of these cylinders.
The volume and the number of isolated cylinders and the Euler characteristic of the random set are considered and
give an answer to the achievable throughput, the availability of nodes, and the topological structure of the network.

1. Introduction

In the domain of telecommunication network performance evaluation, one of the oldest models used for
the dynamics of moving nodes is the random direction mobility model (for reference, see [15] or [5]).
Nowadays, it is available within standard evaluation frameworks surveyed in [6]. The random direction
model belongs to the group of standard, basic models used in nearly every performance evaluation
to understand the elementary properties in well-known standard scenarios before considering more
sophisticated and more realistic ones. Within a performance analysis, it is common to analyze a series of
states of the model indexed by time. However, for networks that are delay tolerant, such as opportunistic
networks, longer periods of time are more interesting. Opportunistic networks follow the store-carry-
forward paradigm, where the movement of the devices is used to carry the messages to their destinations.
In this domain, it is particularly interesting to answer certain questions for a longer period of time such
as:

(1) Will a message reach a node (at all)?
(2) Does a node stay isolated?

Since it is clear that mobility changes the properties of a network, there are first results to consider the
dynamics of mobile communication networks, see [7] for example, starting with discrete snapshots of
the random direction model on the torus. In [8], the nodes of the telecommunication network move
according to the random waypoint model and the connection time of two random nodes is studied. The
very recent work [12] also deals with a dynamic Boolean model, where Hirsch, Jahnel, and Cali consider
two different kinds of movement, small movements with a low speed and a few large movements with a
high speed. They derive asymptotic formulas for the percolation time and the 𝑘-hop connection time.

In this paper, we propose the time bounded cylinder (TBC) model which enables an analysis over a
complete timeframe by modeling the movement in R𝑑 and the resulting communication capabilities via
cylinders in R𝑑 × [0, 𝑇]. Our first step will be to establish the theory for a rigid movement model where
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nodes pick a direction and speed at random and keep these for the complete timeframe. In a second step,
we will propose a method to introduce changes in direction and speed.

The following is a slightly simplified construction, which will be made more precise in Section 2.
We take a set of points in R𝑑 × {0} sampled from a homogeneous Poisson point process with intensity
0 < 𝛾 < ∞. For each of these points p0, we randomly choose a vector v from the upper half of the 𝑑 + 1-
dimensional unit sphere. Then, we fix some 𝑇 ≥ 0 and look at p0 + v ∈ R𝑑+1. We scale this vector to a
length so that its tip pT lies in the affine space R𝑑 × {𝑇}. We fix some radius 𝑟 > 0 and for every point x
on this line consider the ball B𝑑 (x, 𝑟). The union of these balls defines the TBC on p0 with velocity v.
Labeling v the velocity of the cylinder is a slight abuse of notation, which we will explain further down
in this section. Let 𝑍 denote the union of all cylinders created this way for some Poisson process and let
𝑊𝑠 = [−𝑠/2, 𝑠/2]𝑑 × [0, 𝑇]. Our first main result is this:

Theorem 1.1. As 𝑠 → ∞, the standardized covered volume of the TBC model satisfies

𝜆𝑑+1(𝑍 ∩𝑊𝑠) − E[𝜆𝑑+1(𝑍 ∩𝑊𝑠)]√
V[𝜆𝑑+1(𝑍 ∩𝑊𝑠)]

𝑑−→ N(0, 1).

We prove this by applying results derived from the Malliavin–Stein method and see that the rate of
convergence in the Wasserstein distance is of order 1/

√
𝜆𝑑+1(𝑊𝑠), see Theorem 5.1. Theorem 6.6 gives

an analogous result in the setting allowing for changes in velocity. The covered volume is an interesting
quantity in network simulation, as it gives some insight into the connectedness of the model. Less
volume means more overlap of the communication zones. Therefore, since the TBC model considers
the complete timeframe, its covered volume actually gives some insight into the achievable throughput
of the network.

The next property considered is the number of isolated nodes, which means cylinders that do not
intersect with the rest of the model within the timeframe.

Theorem 1.2. Let IsoZ(𝑠) denote the number of cylinders with basepoint in [−𝑠/2, 𝑠/2]𝑑 that do not
intersect with any cylinder in the TBC model. Then,

IsoZ(𝑠) − E[IsoZ(𝑠)]√
V[IsoZ(𝑠)]

𝑑−→ N(0, 1)

as 𝑠 → ∞.

As before, we additionally offer a rate of convergence (see Theorem 5.2) and a version for changeable
velocities (see Theorem 6.7). These nodes are of particular interest in opportunistic networks, as one
can not communicate with them. Let us assume a sensor node (e.g. deployed for wildlife monitoring [1])
that can store the sensor data for some time, but has to transmit the data before it runs out of memory. If
this node stays isolated for too long, it results in loss of data (e.g. inaccuracies in the wildlife tracking
trace). Lastly, we come to a quantity of more theoretical significance and present a limit theorem for the
Euler characteristic of the model, a precise definition of which is given in Section 5.

Theorem 1.3. For 𝑠 → ∞, the Euler characteristic 𝜒 of the TBC model 𝑍 restricted to a window
𝑊𝑠 = [−𝑠/2, 𝑠/2]𝑑 satisfies a central limit theorem, namely

𝜒(𝑍 ∩𝑊𝑠) − E[𝜒(𝑍 ∩𝑊𝑠)]√
V[𝜒(𝑍 ∩𝑊𝑠)]

𝑑−→ N(0, 1).

Since the Euler characteristic can be defined as the alternating sum of Betti numbers, we see this
result as an incentive for further mathematical studies of the Betti numbers of the TBC model. These
would give great insight into the topological structure of the model, such as the number of connected
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Figure 1. The blue shaded area is the set of possible velocities when 𝑑 = 2.

components or the number of holes. From a computer science perspective, both of these would be of
special interest.

2. Construction of the cylinders

We consider a stationary Poisson process 𝜂 in R𝑑 with intensity 𝛾 ∈ (0,∞). We will refer to its points
as the basepoints of the cylinders we are about to construct. In terms of random networks, think of
these points as the positions of our nodes at time 0. Next, let ℎ ∈ (0, 1) denote a real constant and define
(Figure 1)

M𝑑
ℎ := {v ∈ 𝑆𝑑 : 𝑣𝑑+1 > ℎ}

and let Q denote some probability measure on M𝑑
ℎ . We shall refer to vectors chosen according to this

measure as the velocities of our cylinders. Q may be discrete or continuous, we do not impose any
restrictions on it other than not being allowed to depend on the position of the basepoints. As long as
the velocity is chosen independently and identically for all basepoints, the arguments made in this paper
will hold.

To construct a cylinder, fix some 𝑇 ∈ [0,∞). We call this parameter the time horizon of the model.
For (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 and 𝑢 ∈ R, we set x̂u = (𝑥1, . . . , 𝑥𝑑 , 𝑢) ∈ R𝑑+1. Given a basepoint p ∈ R𝑑 and
a velocity v ∈ M𝑑

ℎ , we define a TBC as a union of Minkowski sums. C𝑑 shall denote the system of
compact subsets of R𝑑 .

Definition 2.1. Given a radius 𝑟 ≥ 0 and a time horizon 𝑇 , the value of the function

Cyl𝑟 ,𝑇 : R𝑑 ×M𝑑
ℎ → C𝑑+1

(p, v) ↦→
⋃

𝑡 ∈[0,1]

((
𝑡𝑇

𝑣𝑑+1
· v + p̂0

)
+ B𝑑 (𝑟)

)

is called a time bounded cylinder.

The first 𝑑 entries of a vector v ∈ M𝑑
ℎ thus encode the direction, in which a node is moving in. The

entry with index 𝑑 + 1 encodes the speed at which that node is traveling in. Thus, the velocity of the
node is given by (1/𝑣𝑑+1)(𝑣1, . . . , 𝑣𝑑) and we slightly abuse notation by labeling the vector v ∈ M𝑑

ℎ as
such. We can now see that 𝑣𝑑+1 = 1 means a node remains in place, while smaller values for 𝑣𝑑+1 imply
faster movement. 𝑣𝑑+1 = 0 would imply infinite speed which, in turn, would imply cylinders of infinite
length. Thus, we need the restriction 𝑣𝑑+1 > ℎ to limit the movement speed of nodes.
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Figure 2. In the left picture, we see a cylinder with basepoint p and velocity v. The arrow marks the
displaced vector p̂0 + v. To the right, we have an excerpt of a TBC model 𝑍 constructed on R2.

Since 𝑟 and 𝑇 are constant in our model, we define Cyl(p, v) := Cyl𝑟 ,𝑇 (p, v) for ease of notation. It
will prove fruitful to think of the cylinders themselves as elements of a Poisson point process. To that
end, we take the points of 𝜂 and attach the velocities as markings, cf. [13, Definition 5.3].

Definition 2.2. Let 𝜂 and Q be defined as above. Mark every point in the support of 𝜂 with a velocity
from M𝑑

ℎ , randomly chosen i.i.d. according to Q. The resulting marked point process 𝜉, defined on
R𝑑 ×M𝑑

ℎ , is called the process of time bounded cylinders.

Lemma 2.3. 𝜉 is a Poisson point process with intensity measure Λ = 𝛾𝜆𝑑 ⊗ Q.

Proof. By Definition [13, Definition 5.3], 𝜉 is an independent Q-marking. The asserted statement now
follows directly from the Marking Theorem [13, Theorem 5.6]. �

We are now in a position to define our model (Figure 2):

Definition 2.4. With the point process 𝜉 given as above, the TBC model is the random closed set

𝑍 (𝜉) :=
⋃

(p,v) ∈𝜉
Cyl(p, v).

In this notation, we identify the random measure 𝜉 with its support.

This model is a modification of the Poisson cylinder model (see e.g. [17]), where a cylinder in R𝑑
is constructed by choosing a 𝑞-dimensional, 0 ≤ 𝑞 ≤ 𝑑 − 1, linear subspace of R𝑑 and taking the
Minkowksi sum of this subspace and a set taken from its orthogonal complement. A Poisson cylinder
process is then simply a Poisson process on the space of these cylinders. The union 𝑍 of the cylinders
created by such a process in the stationary case has been subject to recent study. In [10], Heinrich
and Spiess derive a central limit theorem for the 𝑑-dimensional volume of 𝑍 restricted to a growing
window of observation by taking into account the long-range dependencies and applying the method of
cumulants. In [11], the authors modified that limit theorem using weakened assumptions on the cylinder
bases and proved a new central limit theorem for the surface content of the model. In [2], Baci et al.
were able to derive concentration inequalities for the volume and the intrinsic volumes of the model,
again restricted to a compact window of observation. Assumptions of convexity on the cylinder bases
and isotropy of 𝑍 were made. In the very recent preprint [3], Betken et al. show central limit theorems
for geometric funtionals for Poisson cylinder processes. The special case of 𝑞 = 1 and spherical cylinder
bases is studied in [4], where Broman and Tykesson focus on connectivity properties. In the preprint
[9], Flimmel and Heinrich also followed the idea of cylinders constructed by marked point processes,
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but they restrict the underlying point process to lie on the real line. They determine the asymptotic limit
for the variance of the covered area for stripes of random thickness and prove a law of large numbers.

The classical Poisson cylinder model has two properties that do not fit to the telecommunication
network: the cylinders at a fixed time step would imply ellipses as a communication zone depending
on individual speed and direction—smaller angles (representing high speed) imply higher eccentricity.
In a telecommunication network however, the spherical communication area is preserved at any time
step independently of the movement. Secondly, almost horizontally running cylinders as in the classical
Poisson cylinder model would mean that one travels with almost infinite speed. The TBC model takes
up these two aspects. Since for fast movements the communication zone resembles flat tubes rather than
cylinders, which has direct influence on the covered volume of their intersection. On the other hand, the
cylinders which cross almost horizontally in the classical Poisson cylinder model have an impact on the
connection of the cylinders because they connect many other cylinders at once. This is why we consider
it interesting to study the asymptotics of the modified TBC model.

3. Preliminaries

A helpful tool in the study of random closed sets in general and in particular when proving the
main results presented in this chapter are capacity functionals. These can be seen as analogues to the
distribution functions of real-valued random variables for random closed sets, see [16] for reference.

Definition 3.1. The capacity functional of a random closed set 𝑍 ⊂ R𝑑 is a mapping defined by the
probability

P(𝑍 ∩ 𝐶 ≠ ∅)

with argument 𝐶 ∈ C𝑑 .

To derive the capacity functional of our model, we will need the following definition.

Definition 3.2. Given a set 𝐶 ∈ R𝑑 × [0, 𝑇] and a velocity v ∈ M𝑑
ℎ we denote by 𝐶̄v the v-shadow of 𝐶

onto R𝑑 , that is the set

𝐶̄v :=
{
x − 𝑥𝑑+1

𝑣𝑑+1
v | x ∈ 𝐶

}
⊂ R𝑑 × {0}.

Intuitively speaking, the v-shadow of a point x ∈ R𝑑+1 is the point of intersection of the line
{x + 𝑠 · v | 𝑠 ∈ R} and R𝑑 × {0}. That is the projection of x on R𝑑 × {0} along v. With this, we can
formulate our next lemma which gives a concise form of the capacity functional for the TBC model.

Lemma 3.3. For 𝑍 (𝜉) as in Definition 2.4 and a compact 𝐶 ⊂ R𝑑 × [0, 𝑇], we have

P(𝑍 (𝜉) ∩ 𝐶 ≠ ∅) = 1 − exp

(
−𝛾 ·

∫
M𝑑ℎ

𝜆𝑑 (𝐶̄v + B𝑑 (𝑟))Q(dv)
)
.

Proof. Define the set

𝐴𝐶 := {(p, v) ∈ R𝑑 ×M𝑑
ℎ | Cyl(p, v) ∩ 𝐶 ≠ ∅}.

By Lemma 2.3, 𝜉 is a Poisson point process. Thus, we have that

P(𝑍 (𝜉) ∩ 𝐶 ≠ ∅) = 1 − P(𝜉 (𝐴𝐶) = 0) = 1 − exp(−Λ(𝐴𝐶)).
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Note that for any fixed v ∈ M𝑑
ℎ and x ∈ R𝑑 × [0, 𝑇], there exists a ball of radius 𝑟 in R𝑑 such that a

cylinder with velocity v will include x if and only if its basepoint is included in that ball. The union of
these balls for all points x ∈ 𝐶 coincides with the set 𝐶̄v + B𝑑 (𝑟). We get

Λ(𝐴𝐶) = 𝛾

∫
M𝑑ℎ

∫
R𝑑

(Cyl(p, v) ∩ C ≠ ∅)𝜆d(dp)Q(dv)

= 𝛾

∫
M𝑑ℎ

∫
𝐶̄v+B𝑑 (𝑟 )

1𝜆𝑑 (dp)Q(dv) = 𝛾

∫
Md

h

𝜆d(C̄v + Bd (r))Q(dv).

�

If one wants to express the probability that a particular point x ∈ R𝑑 × [0, 𝑇] gets hit by the set of
cylinders, then Lemma 3.3 with 𝐶 := {x} yields

P(x ∈ 𝑍 (𝜉)) = 1 − exp(−𝛾 · 𝑟𝑑𝜅𝑑), (3.1)

where 𝜅𝑑 denotes the volume of the 𝑑-dimensional unit ball. To give bounds on the capacity functional,
we sometimes need the following definition.

Definition 3.4. Given a pair (p, v) ∈ R𝑑×M𝑑
ℎ , we call the distance between a basepoint (𝑝1, . . . , 𝑝𝑑 , 0)

and the projection of the endpoint (𝑇/𝑣𝑑+1)(𝑣1, . . . , 𝑣𝑑+1) + (𝑝1, . . . , 𝑝𝑑 , 0) onto R𝑑 ,

𝑅v :=
���� 𝑇

𝑣𝑑+1
(𝑣1, . . . , 𝑣𝑑 , 0)

���� = 𝑇 ·
√

1
𝑣2
𝑑+1

− 1

the scope of the corresponding cylinder Cyl(p, v). We denote the maximum scope of cylinders in our
model by 𝑅ℎ := 𝑇 ·

√
1/ℎ2 − 1.

Think of the scope of a cylinder as the radius of its 𝑑-dimensional area of influence. For (p, v), (q,w) ∈
R𝑑 ×M𝑑

ℎ the cylinders Cyl(p, v) and Cyl(q,w) can intersect only if ‖p−q‖ ≤ 𝑅v +𝑅w +2𝑟 ≤ 2(𝑅ℎ +𝑟).
Now we want to estimate P(Cyl(p, v) ∩ 𝑍 (𝜉) ≠ ∅). Notice that 𝜆𝑑 (Cyl(p, v)w + B𝑑 (𝑟)) takes its
minimum in the case w = v. Then, we have that Cyl(p, v)v = B𝑑 (p, 𝑟). The maximum is reached when
(𝑣1, . . . , 𝑣𝑑) and (𝑤1, . . . , 𝑤𝑑) have opposite velocities while 𝑣𝑑+1 = 𝑤𝑑+1 = ℎ. Then, it follows that

𝜆𝑑 (Cyl(0, v)w + B𝑑 (𝑟)) ≤ 𝜆𝑑 (B𝑑 (2𝑟)) + 2(𝑅ℎ + 𝑟) · 𝜆𝑑−1(B𝑑−1(2𝑟)) < ∞

for all v ∈ M𝑑
ℎ . We get

0 < (2𝑟)𝑑𝜅𝑑 ≤ 𝜆𝑑 (Cyl(p, v)w + B𝑑 (𝑟)) ≤ 2𝑑𝑟𝑑−1(𝑟𝜅𝑑 + (𝑅ℎ + 𝑟)𝜅𝑑−1)

and thus by Lemma 3.3

1 − exp(−𝛾(2𝑟)𝑑𝜅𝑑) ≤ P(Cyl(p, v) ∩ 𝑍 (𝜉) ≠ ∅)
≤ 1 − exp(−𝛾2𝑑𝑟𝑑−1(𝑟𝜅𝑑 + (𝑅ℎ + 𝑟)𝜅𝑑−1)). (3.2)

4. Applying the Malliavin–Stein bound

We follow the general definition in [13, Chapter 18] and consider a measurable space (X,X) and denote
by N the space of all locally finite counting measures on X. Let 𝜂 denote a Poisson process on X with
𝜎-finite intensity measure Λ.
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Definition 4.1. A random variable 𝐹, such that 𝐹 = 𝑓 (𝜂) P-a.s. for some measurable function 𝑓 : N →
R, is called a Poisson functional. In this notion, 𝑓 is called a representative of 𝐹.

Our aim in this paper is to derive asymptotic distributions of Poisson functionals based on 𝜉. This
involves the following operator which can be seen as a discrete analogue to classical derivatives.

Definition 4.2. For x ∈ X, we define a map Dx 𝑓 : N → R by

Dx 𝑓 := 𝑓 (𝜇 + 𝛿x) − 𝑓 (𝜇), 𝜇 ∈ N.

This map is called the difference (or add-one-cost) operator of 𝑓 (𝜇). We can extend this definition
inductively for 𝑛 ≥ 2 and (x1, . . . , xn) ∈ X𝑛 by setting D1 := D and defining D𝑛

x1 ,...,xn
𝑓 : N → R by

D𝑛
x1 ,...,xn

𝑓 := D1
x1

D𝑛−1
x2 ,...,xn

𝑓 .

We then call D𝑛
x1 ,...,xn

𝑓 the nth order difference operator.

Let us denote the Wasserstein distance of two random variables 𝑋 and 𝑌 by dW(𝑋,𝑌 ) :=
sup 𝑓 ∈Lip(1) |E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑌 )] |, where Lip(1) is the space of all Lipschitz functions 𝑓 : R → R

with Lipschitz constant less than or equal to one. The following well-known theorem is derived from
the Malliavian–Stein method and uses difference operators to give a bound on the Wasserstein distance
dW of the law of a Poisson functional and the standard normal distribution.

Theorem 4.3 [13, Theorem 21.3]. Let 𝜂 denote a Poisson process with intensity measure Λ. Consider
a Poisson functional 𝐹 on 𝜂 with E[𝐹] = 0 and V[𝐹] = 1. 𝑁 shall denote a standard normal random
variable. If E

[∫ (Dx𝐹)2Λ(dx)] < ∞, then there are constants

𝛼1(𝐹) =
∫ √

E[(Dx𝐹)2(Dy𝐹)2] ·
√
E[(𝐷2

x,z𝐹)2(𝐷2
y,z𝐹)2]Λ3(d(x, y, z)),

𝛼2(𝐹) =
∫
E[(D2

x,z𝐹)2(Dy,z𝐹)2]Λ3(d(x, y, z)),

𝛼3(𝐹) =
∫
E[|Dx𝐹 |3]Λ(dx),

such that
dW (𝐹, 𝑁) ≤ 2

√
𝛼1(𝐹) +

√
𝛼2(𝐹) + 𝛼3(𝐹).

We will now apply this theorem to our setting.

Lemma 4.4. Let 𝑓 : C𝑑+1 → R, 𝑠 ≥ 1 and 𝑊𝑠 = [−𝑠/2, 𝑠/2]𝑑 × [0, 𝑇]. Assume that | 𝑓 (𝐴) | < ∞ for
all 𝐴 ∈ C𝑑+1 and that there exist constants 𝑐1, 𝑐2, 𝑐3 and 𝑅 ∈ R such that the following conditions are
met for all x = (p, v), y = (q,w) ∈ R𝑑 ×M𝑑

ℎ:

(A) Dx𝐹 (𝑍 (𝜉) ∩𝑊𝑠) = 0 P-a.s. for ‖p‖ > 𝑅 + 𝑠,
(B) V[ 𝑓 (𝑍 (𝜉) ∩𝑊𝑠)] ≥ 𝑐1 · 𝜆𝑑+1(𝑊𝑠),
(C) max{E[Dx 𝑓 (𝑍 (𝜉) ∩𝑊𝑠)4], E[Dx 𝑓 (𝑍 (𝜉 + 𝛿𝑦) ∩𝑊𝑠)4𝑡]} ≤ 𝑐2,
(D) ‖p − q‖ > 𝑅 ⇒ E[(D2

x,y 𝑓 (𝑍 (𝜉) ∩𝑊𝑠))4] ≤ 𝑐3/𝜆𝑑+1(𝑊𝑠)4.

Then, there is a constant 𝑐 ∈ R such that, for a standard normal random variable 𝑁 ,

dW

(
𝑓 (𝑍 (𝜉) ∩𝑊𝑠) − E[ 𝑓 (𝑍 (𝜉) ∩𝑊𝑠)]√

V[ 𝑓 (𝑍 (𝜉) ∩𝑊𝑠)]
, 𝑁

)
≤ 𝑐√

𝜆𝑑+1(𝑊𝑠)
.
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The proof of this lemma gives insight into the composition of 𝑐, which is rather complex. When
proving our main results however, we will always set 𝑐3 = 0. In that case, the constant is reduced to the
following:

Remark 4.5. Let 𝑐3 = 0. In that case, the constant 𝑐 in Lemma 4.4 is given by

𝑐 =
𝛾
√
𝑐𝑑,𝑅,𝑇

𝑐3/2
1

(8√𝛾𝑐1𝑐2𝜆𝑑 (B𝑑 (𝑅)) + (1 + 𝑐2)√𝑐𝑑,𝑅,𝑇 ),

where 𝑐𝑑,𝑅,𝑇 = [22𝑑−1(𝑅𝑑 + 1/2𝑑)]/𝑇 . Note however, that 𝑅 will depend on 𝑇 .

An interesting fact is that the assumptions in the lemma imply an upper bound on the variance, which
is of the same order as the lower bound.

Remark 4.6. Since (C) implies E[Dx 𝑓 (𝑍 (𝜉) ∩𝑊𝑠)2] ≤ 1 + 𝑐2, the Poincaré inequality gives us the
upper bound

V[ 𝑓 (𝑍 (𝜉) ∩𝑊𝑠)] ≤
∫
𝑊𝑠×M𝑑ℎ

E[Dx 𝑓 (𝑍 (𝜉) ∩𝑊𝑠)2]Λ(dx) ≤ (1 + 𝑐2) · 𝜆𝑑+1(𝑊𝑠).

Proof of Lemma 4.4. We start by defining

𝑔(𝜉) :=
𝑓 (𝑍 (𝜉) ∩𝑊𝑠) − E[ 𝑓 (𝑍 (𝜉) ∩𝑊𝑠)]√

V[ 𝑓 (𝑍 (𝜉) ∩𝑊𝑠)]

and aim to use Theorem 4.3 on the Poisson functional 𝐺 with representative 𝑔. First let us check if the
prerequisites are met. From the finiteness of 𝑓 and condition (B), it follows that E[|𝐺 |2] < ∞. As we
have seen before, as a function of 𝑓 the difference operator is linear. This P-a.s. leads to

|Dx𝐺 | = |Dx 𝑓 (𝑍 (𝜉) ∩𝑊𝑠) |√
V[ 𝑓 (𝑍 (𝜉) ∩𝑊𝑠)]

. (4.1)

It follows now from conditions (A) and (B) that E[
∫
(Dx𝐺)2Λ(dx)] < ∞. Thus, we can apply the

theorem and must now derive bounds for 𝛼1(𝐺), 𝛼2(𝐺), and 𝛼3(𝐺). So let x, y ∈ R𝑑 × M𝑑
ℎ . By the

Cauchy–Schwarz inequality, (4.1) and stationarity of the Poisson process we have

E[(Dx𝐺)2(Dy𝐺)2] ≤
√
E[(Dx𝐺)4]

√
E[(Dy𝐺)4]

=
E[(Dx 𝑓 (𝑍 (𝜉) ∩𝑊𝑠))4]√
V[ 𝑓 (𝑍 (𝜉) ∩𝑊𝑠)]

4

≤ 𝑐2

𝑐2
1 · 𝜆𝑑+1(𝑊𝑠)2

, (4.2)

where the last inequality follows from conditions (B) and (C). To get a bound on the second order
operators, we use the well-known fact that for 𝑎, 𝑏 ∈ R and 𝑞 ≥ 1, the inequality |𝑎 + 𝑏 |𝑞 ≤ 2𝑞−1(|𝑎 |𝑞 +
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|𝑏 |𝑞) holds. Additionally, we use the linearity of the difference operator and then (B) and (C) again.

E[|D2
x,y𝐺 |4] =

E[|D2
x,y 𝑓 (𝑍 (𝜉) ∩𝑊𝑠) |4]
V[ 𝑓 (𝑍 (𝜉) ∩𝑊𝑠)]2

≤ 23 · (E[|Dx 𝑓 (𝑍 (𝜉 + 𝛿𝑦) ∩𝑊𝑠)) |4] + E[|Dx 𝑓 (𝑍 (𝜉) ∩𝑊𝑠) |4])
𝑐2

1 · 𝜆𝑑+1(𝑊𝑠)2

≤ 24 · 𝑐2

𝑐2
1 · 𝜆𝑑+1(𝑊𝑠)2

. (4.3)

Condition (D) sharpens this estimate to

E[|D2
x,y𝐺 |4] =

E[|D2
x,y 𝑓 (𝑍 (𝜉) ∩𝑊𝑠) |4]
V[ 𝑓 (𝑍 (𝜉) ∩𝑊𝑠)]2 ≤ 𝑐3

𝑐2
1 · 𝜆𝑑+1(𝑊𝑠)6

. (4.4)

Now let 𝑊̄𝑅,𝑠 = [−𝑠/2, 𝑠/2]𝑑 + B𝑑 (𝑅). It follows from condition (A), (4.2) and Cauchy–Schwarz that

𝛼1(𝐺) =
∫
(R𝑑×M𝑑ℎ )3

√
E[(Dx𝐺)2(Dy𝐺)2]

√
E[(D2

x,z𝐺)2(D2
y,z𝐺)2]Λ3(d(x, y, z))

=
∫
(𝑊̄𝑅,𝑠×M𝑑ℎ )3

√
E[(Dx𝐺)2(Dy𝐺)2]

√
E[(D2

x,z𝐺)2(D2
y,z𝐺)2]Λ3(d(x, y, z))

≤
∫
(𝑊̄𝑅,𝑠×M𝑑ℎ )3

√
𝑐2

𝑐1 · 𝜆𝑑+1(𝑊𝑠)
·
√
E[(D2

x,z𝐺)2(D2
y,z𝐺)2]Λ3(d(x, y, z))

≤
∫
(𝑊̄𝑅,𝑠×M𝑑ℎ )3

√
𝑐2

𝑐1 · 𝜆𝑑+1(𝑊𝑠)
· 4
√
E[(D2

x,z𝐺)4] 4
√
E[(D2

y,z𝐺)4]Λ3(d(x, y, z)).

We will now disassemble the domain of integration in order to properly apply our conditions. To that
end, set 𝐴x = B𝑑 (x, 𝑅) ×M𝑑

ℎ and 𝐴𝐶x = 𝑊̄𝑅,𝑠\B𝑑 (x, 𝑅) ×M𝑑
ℎ . This gives us the decomposition

∫
(𝑊̄𝑅,𝑠×M𝑑ℎ )3

4
√
E[(D2

x,z𝐺)4] 4
√
E[(D2

y,z𝐺)4]Λ3(d(x, y, z))

=
∫
𝑊̄𝑅,𝑠×M𝑑ℎ

∫
𝐴z

∫
𝐴z

4
√
E[(D2

x,z𝐺)4] 4
√
E[(D2

y,z𝐺)4]Λ(dx)Λ(dy)Λ(dz)

+
∫
𝑊̄𝑅,𝑠×M𝑑ℎ

∫
𝐴z

∫
𝐴𝐶z

4
√
E[(D2

x,z𝐺)4] 4
√
E[(D2

y,z𝐺)4]Λ(dx)Λ(dy) Λ(dz)

+
∫
𝑊̄𝑅,𝑠×M𝑑ℎ

∫
𝐴𝐶z

∫
𝐴z

4
√
E[(D2

x,z𝐺)4] 4
√
E[(D2

y,z𝐺)4]Λ(dx)Λ(dy)Λ(dz)

+
∫
𝑊̄𝑅,𝑠×M𝑑ℎ

∫
𝐴𝐶z

∫
𝐴𝐶z

4
√
E[(D2

x,z𝐺)4] 4
√
E[(D2

y,z𝐺)4]Λ(dx)Λ(dy)Λ(dz). (4.5)

The first summand on the right-hand side of (4.5) can now be bounded using (4.3). This yields
∫
𝑊̄𝑅,𝑠×M𝑑ℎ

∫
𝐴z

∫
𝐴z

4
√
E[(D2

x,z𝐺)4] 4
√
E[(D2

y,z𝐺)4]Λ(dx)Λ(dy)Λ(dz)

≤ 𝜆𝑑 (𝑊̄𝑅,𝑠)𝜆𝑑 (B𝑑 (𝑅))2 4𝛾3√𝑐2

𝑐1 · 𝜆𝑑+1(𝑊𝑠)
.
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By Fubini’s Theorem, the second and third summand are the same. Note that the implication in condition
(𝐷) applies to all pairs (x,w) with w ∈ 𝐴𝐶x , since the required distance is met. Thus, we can bound
these summands by using (4.3) and (4.4) which gives us

2 ·
∫
𝑊̄𝑅,𝑠×M𝑑ℎ

∫
𝐴z

∫
𝐴𝐶z

4
√
E[(D2

x,z𝐺)4] 4
√
E[(D2

y,z𝐺)4]Λ(dx)Λ(dy)Λ(dz)

≤ 2𝛾3 · 𝜆𝑑 (B𝑑 (𝑅))𝜆𝑑 (𝑊̄𝑅,𝑠)2 2 4
√
𝑐2

√
𝑐1 ·

√
𝜆𝑑+1(𝑊𝑠)

4
√
𝑐3√

𝑐1 · 𝜆𝑑+1(𝑊𝑠)3/2 .

Another application of (4.4) gives us a bound on the last summand

∫
𝑊̄𝑅,𝑠×M𝑑ℎ

∫
𝐴𝐶z

∫
𝐴𝐶z

4
√
E[(D2

x,z𝐺)4] 4
√
E[(D2

y,z𝐺)4]Λ(dx)Λ(dy)Λ(dz)

≤ 𝜆𝑑 (𝑊̄𝑅,𝑠)3 𝛾3√𝑐3

𝑐1 · 𝜆𝑑+1(𝑊𝑠)3 .

Next, we note that for the volume of 𝑊̄𝑅,𝑠 , we have

𝜆𝑑 (𝑊̄𝑅,𝑠) ≤ (2𝑅 + 𝑠)𝑑 ≤ 2𝑑−1(2𝑑𝑅𝑑 + 𝑠𝑑) ≤ 2𝑑−1(2𝑑𝑅𝑑 + 1)𝑠𝑑

=
22𝑑−1 (𝑅𝑑 + 1

2𝑑 )
𝑇

𝜆𝑑+1(𝑊𝑠) =: 𝑐𝑑,𝑅,𝑇 · 𝜆𝑑+1(𝑊𝑠).

Using these results, we can now further estimate 𝛼1(𝐺) by

𝛼1(𝐺) ≤
√
𝑐2

𝑐1 · 𝜆𝑑+1(𝑊𝑠)
·
∫
(𝑊̄𝑅,𝑠×M𝑑ℎ )3

4
√
E[(D2

x,z𝐺)4] 4
√
E[(D2

y,z𝐺)4]Λ3(d(x, y, z))

≤ 𝜆𝑑 (𝑊̄𝑅,𝑠)𝜆𝑑 (B𝑑 (𝑅))2 4𝛾3𝑐2

𝑐2
1 · 𝜆𝑑+1(𝑊𝑠)2

+ 2 · 𝜆𝑑 (B𝑑 (𝑅))𝜆𝑑 (𝑊̄𝑅,𝑠)2 2𝛾3𝑐
3
4
2

4
√
𝑐3

𝑐2
1 · 𝜆𝑑+1(𝑊𝑠)3

+ 𝜆𝑑 (𝑊̄𝑅,𝑠)3 𝛾3√𝑐2
√
𝑐3

𝑐2
1 · 𝜆𝑑+1(𝑊𝑠)4

=
𝛾3𝑐𝑑,𝑅,𝑇

√
𝑐2

𝑐2
1 · 𝜆𝑑+1(𝑊𝑠)

(4√𝑐2𝜆𝑑 (B𝑑 (𝑅))2 + 4 4
√
𝑐2𝑐3𝑐𝑑,𝑅,𝑇 𝜆𝑑 (B𝑑 (𝑅)) +

√
𝑐3𝑐

2
𝑑,𝑅,𝑇 ).

Next, we take care of 𝛼2(𝐺). We use the Cauchy–Schwarz inequality to get

𝛼2(𝐺) =
∫
(R𝑑×M𝑑ℎ )3

E[(D2
x,z𝐺)2(D2

y,z𝐺)2]Λ3(d(x, y, z))

≤
∫
(𝑊̄𝑅,𝑠×M𝑑ℎ )3

√
E[(D2

x,z𝐺)4]
√
E[(D2

y,z𝐺)4]Λ3(d(x, y, z))
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and apply the same decomposition argument as in the treatment of 𝛼1(𝐺).

𝛼2(𝐺) ≤ 𝜆𝑑 (𝑊̄𝑅,𝑠)𝜆𝑑 (B𝑑 (𝑅))2 24𝛾3 · 𝑐2

𝑐2
1 · 𝜆𝑑+1(𝑊𝑠)2

+ 2 · 𝜆𝑑 (B𝑑 (𝑅))𝜆𝑑 (𝑊̄𝑅,𝑠)2 4𝛾3√𝑐2

𝑐1 · 𝜆𝑑+1(𝑊𝑠)

√
𝑐3

𝑐1 · 𝜆𝑑+1(𝑊𝑠)3

+ 𝜆𝑑 (𝑊̄𝑅,𝑠)3 𝛾3𝑐3

𝑐2
1 · 𝜆𝑑+1(𝑊𝑠)6

≤ 𝛾3𝑐𝑑,𝑅,𝑇

𝑐2
1 · 𝜆𝑑+1(𝑊𝑠)

(16𝑐2𝜆𝑑 (B𝑑 (𝑅))2 + 8
√
𝑐2𝑐3𝑐𝑑,𝑅,𝑇 𝜆𝑑 (B𝑑 (𝑅)) + 𝑐3𝑐

2
𝑑,𝑅,𝑇 ).

Finally, we use (4.1), (B) and then note that (C) implies E[|Dx 𝑓 (𝑍 (𝜉 ∩𝑊𝑠)) |3] ≤ 1 + 𝑐2 to get

𝛼3(𝐺) ≤
∫
𝑊̄𝑅,𝑠×M𝑑ℎ

E[|Dx𝐺 |3]Λ(dx)

=
∫
𝑊̄𝑅,𝑠×M𝑑ℎ

E

[
|Dx 𝑓 (𝑍 (𝜉 ∩𝑊𝑠)) |3√
V[ 𝑓 (𝑍 (𝜉 ∩𝑊𝑠))]

3

]
Λ(dx)

≤
∫
𝑊̄𝑅,𝑠×M𝑑ℎ

1
𝑐3/2

1 𝜆𝑑+1(𝑊𝑠)3/2
· E[|Dx 𝑓 (𝑍 (𝜉 ∩𝑊𝑠)) |3]Λ(dx)

≤ 𝛾(1 + 𝑐2) · 𝑐𝑑,𝑅,𝑇
𝑐3/2

1

√
𝜆𝑑+1(𝑊𝑠)

.

Using these bounds, Theorem 4.3 now gives us the asserted statement. �

5. Central limit theorems

We will now present our limit theorems on the asymptotic behavior of 𝑍 (𝜉). We start with the volume of
the union of TBCs restricted to a compact window of observation. To be more precise, we are interested
in the asymptotic distribution of the random variable

𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠)

where, as before, 𝑊𝑠 := [−𝑠/2, 𝑠/2]𝑑 × [0, 𝑇]. Additionally to Theorem 1.1, we will provide a rate of
convergence and in fact prove the following:

Theorem 5.1. Let 𝑁 denote a standard normal random variable and 𝑍 (𝜉) as in Definition 2.4. Assume
𝑟 < 𝑠. Then, there exists a constant 𝑐 ∈ R+ such that

dW

(
𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠) − E[𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠)]√

V[𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠)]
, 𝑁

)
≤ 𝑐√

𝜆𝑑+1(𝑊𝑠)
.

We will remark that the capacity functional of the model admits a beautiful formula for the expected
volume. An application of Fubini’s theorem and (3.1) immediately yield

E[𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠)] = E
[∫
𝑊𝑠

(x ∈ 𝑍 (𝜉))𝜆𝑑+1(dx)
]

= (1 − exp(−𝛾 · 𝑟𝑑𝜅𝑑)) · 𝜆𝑑+1(𝑊𝑠).
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Our second main result concerns itself with isolated cylinders. These represent nodes that have no
contact to other nodes for the time frame at all. As before, we prove Theorem 1.2 by proving a stronger
result offering rates of convergence. We start by considering the point process of isolated cylinders 𝜉Iso
where

𝜉Iso (𝐴) =
∫
R𝑑×M𝑑ℎ

(p ∈ 𝐴) · (Cyl(p, v) ∩ 𝑍 (𝜉 − 𝛿 (p,v) ) = ∅)𝜉 (d(p, v))

counts the isolated cylinders with basepoint in 𝐴 ⊂ R𝑑 . Let us make a few remarks about its expectation.
By the Mecke equation and Lemma 3.3, we have

E[𝜉Iso (𝐴)] =
∫
𝐴×M𝑑ℎ

P[Cyl(x) ∩ 𝑍 (𝜉) = ∅]Λ(dx)

=
∫
𝐴×M𝑑ℎ

1 − exp

(
−𝛾 ·

∫
M𝑑ℎ

𝜆𝑑 (Cyl(x)w + B𝑑 (𝑟))Q(dw)
)
Λ(dx)

= 𝛾 ·
∫
M𝑑ℎ

1 − exp

(
−𝛾 ·

∫
M𝑑ℎ

𝜆𝑑 (Cyl(0, v)w + B𝑑 (𝑟))Q(dw)
)
Q(dv) · 𝜆𝑑 (𝐴)

for the intensity of the point process 𝜉Iso. Taking (3.2) into account yields

𝛾𝜆𝑑 (𝐴) · exp(−𝛾2𝑑𝑟𝑑−1(𝑟𝜅𝑑 + (𝑅ℎ + 𝑟)𝜅𝑑−1)) ≤ E[𝜉Iso (𝐴)]
≤ 𝛾𝜆𝑑 (𝐴) · exp(−𝛾(2𝑟)𝑑𝜅𝑑).

As before, let 𝑠 > 0 and 𝑊𝑠 = [−𝑠/2, 𝑠/2]𝑑 × [0, 𝑇]. By

Iso𝑍 ( 𝜉 ) (𝑊𝑠) := 𝜉Iso(𝑊𝑠)

we define the random variable counting the number of isolated cylinders with basepoint in 𝑊𝑠. We
present the following limit theorem.

Theorem 5.2. Assume 𝑠 ≥ 6(𝑅ℎ +𝑟) and let 𝑁 denote a standard normal random variable. There exists
a constant 𝑐 ∈ R+ such that

dW

(
Iso𝑍 ( 𝜉 ) (𝑊𝑠) − E[Iso𝑍 ( 𝜉 ) (𝑊𝑠)]√

V[Iso𝑍 ( 𝜉 ) (𝑊𝑠)]
, 𝑁

)
≤ 𝑐√

𝜆𝑑+1(𝑊𝑠)
.

The last main result takes a first step in analyzing the topological structure of the TBC model and
gives insight into its Euler characteristic. By R𝑑 let us denote the convex ring over R𝑑 that is the system
containing all unions of finitely many compact, convex subsets of R𝑑 (cf. [16, p. 601]).

Definition 5.3. In the context of convex geometry, the Euler characteristic is a function

𝜒 : R𝑑 → Z

with the properties

• 𝜒(𝐾) = 1 if 𝐾 ⊂ R𝑑 convex,
• 𝜒(∅) = 0 and
• 𝜒(𝐴 ∪ 𝐵) = 𝜒(𝐴) + 𝜒(𝐵) − 𝜒(𝐴 ∩ 𝐵) for all 𝐴, 𝐵 ⊂ R𝑑 .

For reference, see [16, p. 625]. Since our cylinders clearly are convex sets in R𝑑+1 and 𝜂 is a Poisson
process with finite intensity, 𝜒(𝑍 (𝜉) ∩𝑊𝑠) is well defined for 𝑊𝑠 as given above. Theorem 1.3 follows
from:
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Theorem 5.4. Assume 𝑠 ≥ 6(𝑅ℎ +𝑟) and let 𝑁 denote a standard normal random variable. There exists
a constant 𝑐 ∈ R+ such that

dW

(
𝜒(𝑍 (𝜉) ∩𝑊𝑠) − E[𝜒(𝑍 (𝜉) ∩𝑊𝑠)]√

V[𝜒(𝑍 (𝜉) ∩𝑊𝑠)]
, 𝑁

)
≤ 𝑐√

𝜆𝑑+1(𝑊𝑠)
.

5.1. Proof for the covered volume

We start with the proof of the limit theorem concerning the covered volume of 𝑍 (𝜉) in 𝑊𝑠.

Proof of Theorem 5.1. We aim to use Lemma 4.4 with

𝑓 = 𝜆𝑑+1.

Clearly 𝜆𝑑+1(𝐴) < ∞ for all 𝐴 ∈ C𝑑+1. Next, note that for x = (p, v) ∈ R𝑑 × M𝑑
ℎ , we P-a.s. have

Dx𝜆𝑑+1(𝑍 (𝜉) ∩ 𝑊𝑠) = 0 for ‖p‖ > 𝑅ℎ + 𝑠 since in this case Cyl(x) ∩ 𝑊𝑠 = ∅. If we set further
y = (q,w) ∈ R𝑑 × M𝑑

ℎ , we have D2
x,y𝜆𝑑+1(𝑍 (𝜉) ∩ 𝑊𝑠) = 0 for ‖p − q‖ > 2(𝑅ℎ + 𝑟) P-a.s. since

Cyl(x) ∩ Cyl(y) = ∅:

D2
x,y𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠) = DxDy𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠)

= Dx(𝜆𝑑+1(𝑍 (𝜉 + 𝛿y) ∩𝑊𝑠) − 𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠))
= Dx𝜆𝑑+1(𝑍 (𝜉 + 𝛿y) ∩𝑊𝑠) − Dx𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠) = 0

P-a.s.. Thus, conditions (A) and (D) are fulfilled and we have 𝑐3 = 0. Condition (C) is next. Note that
all cylinders in our model are of the same volume. An application of Fubini’s Theorem shows that

𝜆𝑑+1(Cyl(p, v)) = 𝑇𝜅𝑑 𝑟
𝑑 (5.1)

for all (p, v) ∈ R𝑑 ×M𝑑
ℎ . When we add a cylinder to the model, in the extreme case it becomes a subset

of𝑊𝑠 and intersects with none of the preexisting cylinders. In that case, it adds the entirety of its volume
to 𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠). We can conclude

D(p,v)𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠) ≤ 𝜆𝑑+1(Cyl(p, v)) P-a.s.

and thus from (5.1) that

E[|D(p,v)𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠) |4] ≤ (𝑇𝜅𝑑𝑟𝑑)4 =: 𝑐2

and thus get condition (C). It remains to prove the lower bound on the variance. An application of
Fubini’s theorem yields

V[𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠)]

= E

[∫
𝑊 2
𝑠

(x ∈ 𝑍 (𝜉), y ∈ 𝑍 (𝜉))𝜆2
𝑑+1(d(x, y))

]
− E

[∫
𝑊𝑠

(x ∈ 𝑍 (𝜉))𝜆𝑑+1(dx)
]2

=
∫
𝑊 2
𝑠

P(x ∈ 𝑍 (𝜉), y ∈ 𝑍 (𝜉)) − P(x ∈ 𝑍 (𝜉))P(y ∈ 𝑍 (𝜉))𝜆2
𝑑+1(d(x, y))

=
∫
𝑊 2
𝑠

P(x ∉ 𝑍 (𝜉), y ∉ 𝑍 (𝜉)) − P(x ∉ 𝑍 (𝜉))P(y ∉ 𝑍 (𝜉))𝜆2
𝑑+1(d(x, y)),
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where the last equality follows from an application of DeMorgan’s laws. Lemma 3.3 now yields

P(x ∉ 𝑍 (𝜉), y ∉ 𝑍 (𝜉)) = P({x, y} ∩ 𝑍 (𝜉) = ∅)

= exp

(
−𝛾 ·

∫
M𝑑ℎ

𝜆𝑑 ({x, y}v + B𝑑 (𝑟))Q(dv)
)
.

To estimate this probability, consider some x, y ∈ 𝑊𝑠 and assume ‖x − y‖ ≤ 𝑟 . Then, the distance of
their respective 𝑣-shadows satisfies the same, that is, ‖x̄v − ȳv‖ ≤ 𝑟 for x̄v := {x}v and ȳv := {y}v. Also
denote by 𝐻𝑑

𝑤 (𝑧) the cap of a 𝑑-dimensional hypersphere with radius 𝑧 and height 𝑤. Then,

𝜆𝑑 (B𝑑 (𝑟)) ≤ 𝜆𝑑 ((x̄v + B𝑑 (𝑟)) ∪ (ȳv + B𝑑 (𝑟))) ≤ 2𝜆𝑑 (B𝑑 (𝑟)) − 2𝜆𝑑 (𝐻𝑑
𝑟/2(𝑟)).

Since 𝑒𝑥 > 1 for all 𝑥 > 0, we get

P(x ∉ 𝑍 (𝜉), y ∉ 𝑍 (𝜉)) − P(x ∉ 𝑍 (𝜉))P(y ∉ 𝑍 (𝜉))
≥ exp(−2𝛾𝜆𝑑 (B𝑑 (𝑟)) + 2𝛾 · 𝜆𝑑 (𝐻𝑑

𝑟/2(𝑟))) − exp(−2𝛾𝜆𝑑 (B𝑑 (𝑟))) =: 𝜏 > 0

for all x ∈ B𝑑+1 (y, 𝑟) and y ∈ 𝑊𝑠. Then,

V[𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠)] ≥
∫
𝑊𝑠

∫
B𝑑+1 (y,𝑟 )∩𝑊𝑠

P(x ∉ 𝑍 (𝜉), y ∉ 𝑍 (𝜉))

− P(x ∉ 𝑍 (𝜉))P(y ∉ 𝑍 (𝜉))𝜆𝑑+1(dx)𝜆𝑑+1 (dy)

≥
∫
𝑊𝑠

∫
B𝑑+1 (y,𝑟 )∩𝑊𝑠

𝜏𝜆𝑑+1(dx) 𝜆𝑑+1(dy)

= 𝜏

∫
𝑊𝑠

𝜆𝑑+1(B𝑑+1 (y, 𝑟) ∩𝑊𝑠)𝜆𝑑+1(dy).

For y ∈ 𝑊𝑠, we also have that

𝜆𝑑+1(B𝑑+1(y, 𝑟) ∩𝑊𝑠) ≥ 1
2𝑑+1 · 𝜆𝑑+1(B𝑑+1(min{𝑟, 𝑇}))

=
𝜅𝑑+1 · min{𝑟, 𝑇}𝑑+1

2𝑑+1 ,

where we have equality if 𝑦 sits just in a corner of the observation window 𝑊𝑠. For instance in the case
𝑑 = 1, 𝑟 < 𝑇 , and y = (−𝑠/2, 𝑇), one quarter of B2(y, 𝑟) intersects with 𝑊𝑠. Now, we can derive the
bound

V[𝜆𝑑+1(𝑍 (𝜉) ∩𝑊𝑠)] ≥ 𝜏

∫
𝑊𝑠

𝜅𝑑+1 · min{𝑟, 𝑇}𝑑+1

2𝑑+1 𝜆𝑑+1(d𝑦)

=
𝜏 · 𝜅𝑑+1 · min{𝑟, 𝑇}𝑑+1

2𝑑+1 · 𝜆𝑑+1(𝑊𝑠) =: 𝑐1 · 𝜆𝑑+1(𝑊𝑠).

This shows condition (B) of Lemma 4.4 and concludes the proof. �

Taking up Remark 4.6, we note that both lower and upper bound on the variance are of the same order.

5.2. Proof for the isolated nodes

Next, we deal with the limit theorem for the isolated cylinders.
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Proof of Theorem 5.2. As we did for the covered volume, we aim to apply Lemma 4.4 to the function

Iso𝑍 ( 𝜉 ) : 𝜉 ↦→ 𝑛 ∈ N,

counting the number of isolated cylinders created by 𝜉. Since the Poisson process of basepoints 𝜂 has
finite intensity, it holds that Iso𝑍 ( 𝜉 ) (𝐴) < ∞ P-a.s. for all 𝐴 ∈ C𝑑+1. Next, we verify condition (A) and
(D). Set 𝑅 = 2(𝑅ℎ + 𝑟) and 𝑐3 = 0. Since two cylinders can only intersect if the distance between their
basepoints is smaller than 𝑅, both conditions are satisfied. This argument follows analogously to our
reasoning in the proof of Theorem 5.1. For the same reason, we can bound the first-order difference
operator by

|DxIso𝑍 ( 𝜉 ) (𝑊𝑠) | ≤ 𝜂(B𝑑 (𝑅)) P-a.s.

Set 𝑎 := E[𝜂(B𝑑 (𝑅))] = 𝛾 · 𝜆𝑑 (B𝑑 (0, 𝑅)) and 𝑥 ∈ R𝑑 ×M𝑑
ℎ . The number of isolated cylinders that can

be connected by adding Cyl(𝑥) to the model is limited by the total number of cylinders within maximum
range. By using the fourth moment of the Poisson distributed random variable 𝜂(B𝑑 (𝑅)), we get

E[DxIso𝑍 ( 𝜉 ) (𝑊𝑠)4] ≤ 𝑎4 + 6𝑎3 + 7𝑎2 + 𝑎.

Thus, condition (C) is satisfied with 𝑐2 := 𝑎4 +6𝑎3 +7𝑎2 + 𝑎 +1. To verify (B), we use a strategy applied
in [14] and disassemble [−𝑠/2, 𝑠/2]𝑑 into boxes of side length 6(𝑅ℎ + 𝑟). Without loss of generality,
we can assume 𝑠 = 𝑛 · 6(𝑅ℎ + 𝑟) for some 𝑛 ∈ N, as the area outside these boxes is of no consequence
to what follows. We index these sets by indices collected in the set 𝐼. For each 𝑖 ∈ 𝐼 consider 𝐶𝑖 , a box
of side length 2(𝑅ℎ + 𝑟) in the center of the corresponding greater box 𝑆𝑖 of side length 6(𝑅ℎ + 𝑟). We
define the event

𝐴𝑖 = {𝜂(𝐶𝑖) = 2, 𝜂(𝑆𝑖\𝐶𝑖) = 0}.

Let the 𝜎-algebra F contain information on basepoints and velocities of all cylinders of 𝑍 (𝜉), except
those with basepoint in a square 𝑆𝑖 with (𝐴𝑖) = 1. Now we decompose the variance

V[Iso𝑍 ( 𝜉 ) (𝑊𝑠)] = E[V[Iso𝑍 ( 𝜉 ) (𝑊𝑠) | F ]] + V[E[Iso𝑍 ( 𝜉 ) (𝑊𝑠) | F ]]
≥ E[V[Iso𝑍 ( 𝜉 ) (𝑊𝑠) | F ]]

= E

[ ∑
(𝐴𝑖 )=1

V𝑋𝑖,1 ,𝑋𝑖,2 [Iso𝑍 ( 𝜉 ) (𝑊𝑠)]
]
, (5.2)

where the right-hand side variance is taken with respect only to the two random elements 𝑋𝑖,1, 𝑋𝑖,2 ∈
R𝑑 ×M𝑑

ℎ , created by the event 𝐴𝑖 . Since these two cylinders can not intersect with any other cylinders
of the model, the number of isolated nodes outside 𝐴𝑖 is independent of that contributed by 𝑋𝑖,1 and
𝑋𝑖,2. Let Δ𝑋𝑖,1 ,𝑋𝑖,2 Iso𝑍 ( 𝜉 ) (𝑊𝑠) denote that contribution. Note that

Δ𝑋𝑖,1 ,𝑋𝑖,2 Iso𝑍 ( 𝜉 ) (𝑊𝑠) = 2 · (Cyl(𝑋𝑖,1) ∩ Cyl(𝑋𝑖,2) = ∅).

This yields

V𝑋𝑖,1 ,𝑋𝑖,2 [Iso𝑍 ( 𝜉 ) (𝑊𝑠)]
= V𝑋𝑖,1 ,𝑋𝑖,2 [Iso𝑍 ( 𝜉−𝛿𝑋𝑖,1−𝛿𝑋𝑖,2 ) (𝑊𝑠) + Δ𝑋𝑖,1 ,𝑋𝑖,2 Iso𝑍 ( 𝜉 ) (𝑊𝑠)]
= V𝑋𝑖,1 ,𝑋𝑖,2 [Δ𝑋𝑖,1 ,𝑋𝑖,2 Iso𝑍 ( 𝜉 ) (𝑊𝑠)]
= 4 · P[Cyl(𝑋𝑖,1) ∩ Cyl(𝑋𝑖,2) = ∅] · P[Cyl(𝑋𝑖,1) ∩ Cyl(𝑋𝑖,2) ≠ ∅] =: 𝑐4,
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since both probabilities clearly are strictly positive. Using this in (5.2) together with the stationarity and
independence properties of 𝜂 as well as |𝐼 | = (𝑠/6(𝑅ℎ + 𝑟))𝑑 , we have

V[Iso𝑍 ( 𝜉 ) (𝑊𝑠)] ≥ 𝑐4 ·
∑
𝑖∈𝐼
P[𝐴𝑖]

≥ 𝑐4 ·
∑
𝑖∈𝐼
P[𝜂(𝐶𝑖) = 2] · P[𝜂(𝑆𝑖\𝐶𝑖) = 0]

≥ 𝑐4 ·
∑
𝑖∈𝐼

𝑐5 = 𝑐6 ·
(

𝑠

6(𝑅ℎ + 𝑟)

)𝑑

=
𝑐6

6𝑑𝑇 (𝑅ℎ + 𝑟)𝑑 𝜆𝑑+1(𝑊𝑠)

and thus condition (B). In the last equality, we have used that 𝜆𝑑+1(𝑊𝑠) = 𝑠𝑑 · 𝑇 . �

Again, the lower bound matches the order of the upper bound as given in Remark 4.6.

5.3. Proof for the Euler characteristic

It remains to prove the limit theorem for the Euler characteristic.

Proof of Theorem 5.4. We aim to use Lemma 4.4 on 𝑓( ·) for 𝑓𝜉 : C𝑑+1 → Z with

𝑓𝜉 (𝐴) =
{
𝜒(𝑍 (𝜉) ∩ 𝐴), if 𝐴 ∈ R𝑑+1

0, otherwise.

Since 𝜂 has finite intensity, the properties of 𝜒 imply that 𝑓 (𝐴) < ∞ for all 𝐴 ∈ C𝑑+1 P-a.s. Once again
we start by checking conditions (A) and (D). Again, set 𝑅 = 2(𝑅ℎ +𝑟) and 𝑐3 = 0. As Cyl(p, v) ∩𝑊𝑠 = ∅
for any (p, v) ∈ R𝑑 ×M𝑑

ℎ with ‖p‖ ≥ 𝑅 + 𝑠, condition (A) is satisfied.
Also, for (q,w) ∈ R𝑑 ×M𝑑

ℎ , ‖p−q‖ ≥ 𝑅 implies Cyl(p, v) ∩Cyl(q,w) = ∅ and thus D(p,v) (𝜒(𝑍 (𝜉 +
𝛿 (q,w) ) ∩𝑊𝑠)) − D(p,v) (𝜒(𝑍 (𝜉) ∩𝑊𝑠)) = 0 P-a.s. To verify (C), we note that for x ∈ R𝑑 × M𝑑

ℎ , the
definition of 𝜒 gives us

Dx𝜒(𝑍 (𝜉) ∩𝑊𝑠) = 𝜒(𝑍 (𝜉 + 𝛿x) ∩𝑊𝑠) − 𝜒(𝑍 (𝜉) ∩𝑊𝑠)
= 𝜒((𝑍 (𝜉) ∪ Cyl(x)) ∩𝑊𝑠) − 𝜒(𝑍 (𝜉) ∩𝑊𝑠)
= 𝜒((𝑍 (𝜉) ∩𝑊𝑠) ∪ (Cyl(x) ∩𝑊𝑠)) − 𝜒(𝑍 (𝜉) ∩𝑊𝑠)
= 𝜒(Cyl(x) ∩𝑊𝑠) − 𝜒(𝑍 (𝜉) ∩ Cyl(x) ∩𝑊𝑠) P-a.s.

Furthermore, it holds true that 𝜒(Cyl(x) ∩𝑊𝑠) = (Cyl(x) ∩𝑊𝑠 ≠ ∅) and since 𝜒(𝑍 (𝜉) ∩Cyl(x) ∩𝑊𝑠)
counts the number of disjoint intersections of Cyl(x) ∩𝑊𝑠 with cylinders of 𝑍 (𝜉), we also have

𝜒(𝑍 (𝜉) ∩ Cyl(x) ∩𝑊𝑠) ≤
∑
y∈𝜉

(Cyl(y) ∩ Cyl(x) ≠ ∅) ≤ 𝜂(B𝑑 (𝑅)) P-a.s.

Thus, the triangle inequality gives

|Dx𝜒(𝑍 (𝜉 + 𝛿y) ∩𝑊𝑠) | ≤ |𝜒(Cyl(x) ∩𝑊𝑠) | + |𝜒(𝑍 (𝜉 + 𝛿y) ∩ Cyl(x) ∩𝑊𝑠) |
≤ 1 + |𝜂(B𝑑 (𝑅)) + 1| = 2 + 𝜂(B𝑑 (𝑅))

P-a.s. for all x ∈ R𝑑 ×M𝑑
ℎ and y ∈ R𝑑 . Therefore, we conclude that (C) is fulfilled with

𝑐2 := E[(2 + 𝜂(B𝑑 (𝑅)))4] .
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To verify (B), we use the same strategy as in the proof of Theorem 5.2 and now have to consider
V𝑋𝑖,1 ,𝑋𝑖,2 [𝜒(𝑍 (𝜉) ∩𝑊𝑠)]. Again, since the cylinders created by 𝑋𝑖,1 and 𝑋𝑖,2 can not intersect with any
other cylinder outside the box 𝐶𝑖 , we can denote this contribution as before by Δ𝑋𝑖,1 ,𝑋𝑖,2 𝜒(𝑍 (𝜉) ∩𝑊𝑠)
and use the additivity of the Euler characteristic to get

V𝑋𝑖,1 ,𝑋𝑖,2 [𝜒(𝑍 (𝜉) ∩𝑊𝑠)]
= V𝑋𝑖,1 ,𝑋𝑖,2 [𝜒(𝑍 (𝜉 − 𝛿𝑋𝑖,1 − 𝛿𝑋𝑖,2 ) ∩𝑊𝑠) + Δ𝑋𝑖,1 ,𝑋𝑖,2 𝜒(𝑍 (𝜉) ∩𝑊𝑠)]
= V𝑋𝑖,1 ,𝑋𝑖,2 [Δ𝑋𝑖,1 ,𝑋𝑖,2 𝜒(𝑍 (𝜉) ∩𝑊𝑠)] .

Since Δ𝑋𝑖,1 ,𝑋𝑖,2 𝜒(𝑍 (𝜉) ∩𝑊𝑠) ∈ {1, 2}, we get

V𝑋𝑖,1 ,𝑋𝑖,2 [𝜒(𝑍 (𝜉) ∩𝑊𝑠)]
= 5 · P[Cyl(𝑋𝑖,1) ∩ Cyl(𝑋𝑖,2) = ∅] · P[Cyl(𝑋𝑖,1) ∩ Cyl(𝑋𝑖,2) ≠ ∅] .

Thus, condition (B) follows as it did for Theorem 5.2. �

Note that, again, the order of the lower bound on the variance coincides with that of the upper bound
found in Remark 4.6.

6. Stacked time bounded cylinders

Up to this point, our model supports movements in one direction only. To allow for the nodes to change
direction and speed, we iterate the marking process, giving a node a new velocity vector at fixed points
in time. These times can be given deterministically or randomly, but independent of all other random
variables. In view of application, one could think of a deterministic setting like a daily routine or an
exponentially distributed random variable for the time distances.

6.1. Construction of the cylinderstacks

Set 𝑡0 := 0, 𝑡𝐾+1 := 𝑇 , and let TK = (𝑡0, 𝑡1, 𝑡2, . . . , 𝑡𝐾+1), for some 𝐾 ∈ N, be a strictly monotone
sequence of times in [0, 𝑇]. So we supplement our TBC model by 𝐾 time steps at which the walkers are
allowed to change their velocities. Now recall the definition of a cylinder as given in Definition 2.1. We
will now modify it to reflect the expanded setting. To a point p ∈ 𝜂 let V = (v0, . . . , vK) be the vector
of velocities chosen, that is vi ∈ M𝑑

ℎ for 𝑖 ∈ {0, . . . , 𝐾}. Consider the projection 𝜋 : M𝑑
ℎ → [0, 1] onto

the time, that is 𝜋(v) = 𝑣𝑑+1 for v ∈ M𝑑
ℎ , and recall that p̂0 ∈ R𝑑+1 is the vector p but with an additional

coordinate with value zero. Then,

p̂k := p̂0 +
𝑘−1∑
𝑗=0

|𝑡 𝑗+1 − 𝑡 𝑗 |
𝜋(vj)

vj.

In the context of random networks, think of this vector as the coordinates (in space and time) of a
node at time 𝑡𝑘 which started its journey in p ∈ R𝑑 at time zero and moved with velocities vj for the
time segment [𝑡 𝑗 , 𝑡 𝑗+1] for 𝑗 = 0, . . . , 𝑘 − 1. We are now in a position to modify Definition 2.1 for this
expanded setting (Figure 3).

Definition 6.1. Given a radius 𝑟 ≥ 0 and TK as above, the values of the function

Cyl𝑟 ,TK
: R𝑑 × (M𝑑

ℎ)𝐾+1 → C𝑑+1

(p, v) ↦→
𝐾⋃
𝑘=0

⋃
𝑢∈[0,1]

((
p̂k + 𝑢 |𝑡𝑘+1 − 𝑡𝑘 |

𝜋(vk)
· vk

)
+ B𝑑 (𝑟)

)

are the time bounded cylinderstacks.
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Figure 3. An excerpt of the TBC model in the expanded setting.

Our idea is that at every time 𝑡 ∈ TK, a cylinder has the opportunity to change velocity and will do
so with probability 𝑞 ∈ [0, 1]. A new velocity is always drawn with respect to the probability measure
Q introduced in Section 2. Thus, the aforementioned vector V = (v0, . . . , vK) ∈ (M𝑑

ℎ)𝐾+1 is drawn with
respect to the probability measure

Q𝐾 := Q ⊗ ((1 − 𝑞)𝛿v0 + 𝑞Q) ⊗ · · · ⊗ ((1 − 𝑞)𝛿vK−1 + 𝑞Q).

We can now give analogues to Definition 2.2 and Lemma 2.3.

Definition 6.2. Let 𝜂 be defined as in Section 2 and Q𝐾 as above. Mark every point in the support of 𝜂
with a direction from (M𝑑

ℎ)𝐾+1, randomly with respect to Q𝐾 . The resulting marked point process 𝜉𝐾
defined on R𝑑 × (M𝑑

ℎ)𝐾+1 is called the process of time bounded cylinderstacks.

Lemma 6.3. 𝜉𝐾 is a Poisson point process with intensity measure Λ𝐾 = 𝛾𝜆𝑑 ⊗ Q𝐾 .

Proof. Since Q𝐾 is independent of the Poisson process 𝜂, we have an independent marking again and
thus the statement follows as it did for Lemma 2.3. �

That the process of time bounded cylinderstacks preserves the Poisson properties of the original
point process seems remarkable, but can be intuitively explained by using thinnings. Since for 𝑡1 ≥ 𝑇 ,
the model remains unchanged let us consider 𝑡1 < 𝑇 . We start with the point process 𝜉 as introduced in
Definition 2.2. From Lemma 2.3, we know that 𝜉 is a Poisson point process. Now we take a 𝑞-thinning of
𝜉, namely a Bernoulli experiment with parameter 𝑞 which decides for each point of the Poisson process
if it belongs to 𝜉 (𝑞) or 𝜉 − 𝜉 (𝑞). The Thinning Theorem [13, Corollary 5.9] implies that both 𝜉 (𝑞) and
𝜉 − 𝜉 (𝑞) are Poisson processes.

For the points in 𝜉 (𝑞), we now choose a new velocity and by adding this into another component of
the marking, we get a new marked point process which we call 𝜉 (𝑞)𝑀 . Analogously to the single velocity
case the Marking Theorem implies that this process is Poisson. For points in 𝜉 − 𝜉 (𝑞), the velocity stays
the same, nevertheless, as for 𝜉 (𝑞) we add the previous velocity as a new marking and again obtain a
marked point process 𝜉 (1−𝑞)𝑀 . As a superposition of two Poisson processes, 𝜉1 := 𝜉 (𝑞)𝑀 ⊕ 𝜉 (1−𝑞)𝑀
is also Poisson. We proceed in thinning, marking, and gluing together for each time step 𝑡𝑖 < 𝑇 and obtain
the Poisson process of cylinderstacks. We can now conveniently define the expanded model as follows.
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Definition 6.4. With the point process 𝜉𝐾 given as above, the stacked time bounded cylinder (sTBC)
model is the random closed set

𝑍 (𝜉𝐾 ) :=
⋃

(p,v) ∈𝜉𝐾
Cyl(p, v).

In this notation, we identify the random measure 𝜉𝐾 with its support.

With these definitions, we can now rephrase Lemma 4.4 to work with our modifications.

Lemma 6.5. Let 𝑓 : C𝑑+1 → R, 𝑠 ≥ 1 and 𝑊𝑠 = [−𝑠/2, 𝑠/2]𝑑 × [0, 𝑇]. Assume that | 𝑓 (𝐴) | < ∞ for
all 𝐴 ∈ C𝑑+1 and that there exist constants 𝑐1, 𝑐2, 𝑐3 and 𝑅 ∈ R such that the following conditions are
met for all x = (p, v), y = (q,w) ∈ R𝑑 × (M𝑑

ℎ)𝐾+1:

(A) Dx𝐹 (𝑍 (𝜉𝐾 ) ∩𝑊𝑠) = 0 P-a.s. for ‖p‖ > 𝑅 + 𝑠,
(B) V[ 𝑓 (𝑍 (𝜉𝐾 ) ∩𝑊𝑠)] ≥ 𝑐1 · 𝜆𝑑+1(𝑊𝑠),
(C) max{E[Dx 𝑓 (𝑍 (𝜉𝐾 ) ∩𝑊𝑠)4], E[Dx 𝑓 (𝑍 (𝜉𝐾 + 𝛿y) ∩𝑊𝑠)4]} ≤ 𝑐2,
(D) ‖p − q‖ > 𝑅 ⇒ E[(D2

x,y 𝑓 (𝑍 (𝜉𝐾 ) ∩𝑊𝑠))4] ≤ 𝑐3
𝜆𝑑+1 (𝑊𝑠)4 .

Then, there is a constant 𝑐 ∈ R such that, for a standard normal random variable 𝑁 ,

dW

(
𝑓 (𝑍 (𝜉𝐾 ) ∩𝑊𝑠) − E[ 𝑓 (𝑍 (𝜉𝐾 ) ∩𝑊𝑠)]√

V[ 𝑓 (𝑍 (𝜉𝐾 ) ∩𝑊𝑠)]
, 𝑁

)
≤ 𝑐√

𝜆𝑑+1(𝑊𝑠)
.

As the proof in Section 4 relies only on the assumed bounds and not on how the model is constructed,
we can use the same techniques and estimates we used there and prove this lemma analogously.

6.2. Covered volume

As usual, let 𝑊𝑠 := [−𝑠/2, 𝑠/2]𝑑 × [0, 𝑇]. We will now study the covered volume of the sTBC model
that is the random variable

𝜆𝑑+1(𝑍 (𝜉𝐾 ) ∩𝑊𝑠).

As this is an additive function, our strategy for working with this quantity will be to split the sTBC
model into TBC models and evaluate the volume for each of them. To that end let 𝑍𝑡 (𝜉) denote the TBC
model with time horizon 𝑡 ≥ 0. We will first apply our strategy when computing the expectation of the
volume. Using (3.1) and Fubini, we have

E[𝜆𝑑+1(𝑍 (𝜉𝐾 ) ∩𝑊𝑠)] = E
[∫
𝑊𝑠

(x ∈ 𝑍 (𝜉𝐾 )) dx
]

= E

[
𝐾∑
𝑘=0

∫
[−𝑠/2,𝑠/2]𝑑×[𝑡𝑘 ,𝑡𝑘+1 ]

(x ∈ 𝑍 |𝑡𝑘+1−𝑡𝑘 | (𝜉)) dx
]

= E

[
𝐾∑
𝑘=0
E

[∫
[−𝑠/2,𝑠/2]𝑑×[𝑡𝑘 ,𝑡𝑘+1 ]

(x ∈ 𝑍 |𝑡𝑘+1−𝑡𝑘 | (𝜉)) dx | TK

] ]

= (1 − exp(−𝛾 · 𝑟𝑑𝜅𝑑)) · E
[
𝐾∑
𝑘=0

𝜆𝑑+1

( [
− 𝑠

2
,
𝑠

2

]𝑑
× [𝑡𝑘 , 𝑡𝑘+1]

)]

= (1 − exp(−𝛾 · 𝑟𝑑𝜅𝑑)) · 𝜆𝑑+1(𝑊𝑠).

We see that the expected volume remains unchanged, which is unsurprising given the homogeneous
nature of our model.
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Theorem 6.6. Let 𝑁 denote a standard normal random variable and assume 𝑟 < 𝑠. There exists a
constant 𝑐 ∈ R+ such that

dW

(
𝜆𝑑+1(𝑍 (𝜉𝐾 ) ∩𝑊𝑠) − E[𝜆𝑑+1(𝑍 (𝜉𝐾 ) ∩𝑊𝑠)]√

V[𝜆𝑑+1(𝑍 (𝜉𝐾 ) ∩𝑊𝑠)]
, 𝑁

)
≤ 𝑐√

𝜆𝑑+1(𝑊𝑠)
.

Proof. We use Lemma 6.5 on the function 𝑓 = 𝜆𝑑+1. Since the maximum scope of a cylinderstack is
the same as in the single velocity model, we can verify conditions (A) and (D) by the same observation
we made in the proof of Theorem 5.1, again using 𝑅 = 2(𝑅ℎ + 𝑟) and 𝑐3 = 0. The same is true for
condition (C) which once more is satisfied with 𝑐2 := (𝑇𝜅𝑑𝑟𝑑)4. To verify (B), we apply the first term
of the Wiener-Itô chaos expansion and bound

V[𝜆𝑑+1(𝑍 (𝜉𝐾 ) ∩𝑊𝑠)] ≥
∫
R𝑑×(M𝑑ℎ )𝐾+1

E[𝐷x (𝜆𝑑+1(𝑍 (𝜉𝐾 ) ∩𝑊𝑠)]2Λ𝐾 (dx)

≥
∫
[−𝑠/2,𝑠/2]𝑑×(M𝑑ℎ )𝐾+1

E[𝐷x (𝜆𝑑+1(𝑍 (𝜉𝐾 ) ∩𝑊𝑠)]2Λ𝐾 (dx),

see for example [13, Ex. 18.8]. As 𝐷x(𝜆𝑑+1(𝑍 (𝜉𝐾 ) ∩ 𝑊𝑠) ≥ 0 P-a.s., the expectation is, for all
x ∈ [−𝑠/2, 𝑠/2]𝑑 × (M𝑑

ℎ)𝐾+1, lower bounded by

E[𝐷x (𝜆𝑑+1(𝑍 (𝜉𝐾 ) ∩𝑊𝑠)] ≥ 𝜆𝑑+1(Cyl(x) ∩𝑊𝑠) · P(Cyl(x) ∩ 𝑍 (𝜉𝐾 ) ∩𝑊𝑠 = ∅).

Since all cylinders have a finite scope, the cylinders that are further away than two times this scope can
not meet regardless of any kinetics. This implies that

P(Cyl(x) ∩ 𝑍 (𝜉𝐾 ) ∩𝑊𝑠 = ∅) ≥ P(𝜂(𝐵𝑑 (2(𝑅ℎ + 𝑟)) = 0) = 𝑒−𝛾𝜆𝑑 (𝐵𝑑 (2(𝑅ℎ+𝑟 )) .

The minimal volume 𝜆𝑑+1(Cyl(x) ∩𝑊𝑠) is attained for a cylinder 𝐿 starting at a corner of [−𝑠/2, 𝑠/2]𝑑
and leaving the window with the fastest velocity. For 𝑑 = 2 and 𝑟 > 1, for example, consider the volume
of the enclosed tetrahedron with edge length 𝑟 in both directions and an edge of length 𝑟/(𝑟 − 1) · ℎ
along the time axis which implies 𝜆3(𝐿) ≥ 1

3 ·𝑟2/2 ·𝑟/(𝑟 − 1) ·ℎ. In higher dimensions, one can consider
the enclosed simplices accordingly. In any case, 𝜆𝑑+1(𝐿) is strictly positive and depending on 𝑟, 𝑑, and
ℎ only. This yields the needed lower bound on the variance

V[𝜆𝑑+1(𝑍 (𝜉𝐾 ) ∩𝑊𝑠)] ≥
∫
[−𝑠/2,𝑠/2]𝑑×(M𝑑ℎ )𝐾+1

E[𝐷x (𝜆𝑑+1(𝑍 (𝜉𝐾 ) ∩𝑊𝑠)]2Λ𝐾 (dx)

≥ 𝑐1 · 𝜆𝑑+1(𝑊𝑠)

for 𝑐1 = 𝜆𝑑+1(𝐿)2 · 1/𝑇 · 𝑒−2𝛾𝜆𝑑 (𝐵𝑑 (2(𝑅ℎ+𝑟 )) . Note that this method of estimating the variance is made
possible by the finite scope of our cylinders. Although it would also be applicable in the single direction
case, it leads to a worse bound than the method presented in Theorem 5.1 in the nonstacked TBC. �

6.3. Isolated cylinders

We are now interested in the isolated stacks in the sTBC model. The point process of isolated cylinder
stacks with basepoint in 𝐴 ⊂ R𝑑 is given by

𝜇(𝐴) =
∫
𝐴×(M𝑑ℎ )𝐾+1

(Cyl(x) ∩ 𝑍 (𝜉𝐾 − 𝛿x) = ∅)𝜉𝐾 (dx).

The next theorem shows asymptotic normality of Iso𝑍 ( 𝜉𝐾 ) (𝑊𝑠) = 𝜇(𝑊𝑠).
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Theorem 6.7. Let 𝑁 denote a standard normal random variable and assume 𝑠 ≥ 6(𝑅ℎ + 𝑟). There
exists a constant 𝑐 ∈ R+ such that

dW

(
Iso𝑍 ( 𝜉𝐾 ) (𝑊𝑠) − E[Iso𝑍 ( 𝜉𝐾 ) (𝑊𝑠)]√

V[Iso𝑍 ( 𝜉𝐾 ) (𝑊𝑠)]
, 𝑁

)
≤ 𝑐√

𝜆𝑑+1(𝑊𝑠)
.

Proof. Note that the maximum scope of a cylinder remains unchanged in the multi-directional setting.
Thus, conditions (A), (C), and (D) are derived in the same way as in the proof of Theorem 5.2, using
the same choices for 𝑅, 𝑐2, and 𝑐3. To verify (B), we use the same strategy as before and get to

V𝑋𝑖,1 ,𝑋𝑖,2 [Iso𝑍 ( 𝜉𝐾 ) (𝑊𝑠)]
= 4 · P[Cyl(𝑋𝑖,1) ∩ Cyl(𝑋𝑖,2) = ∅] · P[Cyl(𝑋𝑖,1) ∩ Cyl(𝑋𝑖,2) ≠ ∅] .

Even in this modified setting, it is clear that these probabilities are not zero, as they can be estimated
using 𝑟 and 𝑅. It follows that (B) holds true, which concludes the proof. �
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