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Abstract. Two Markov chains are regularly isomorphic if and only if they have a
common Markov extension by right closing block codes of degree one. A certain
ideal class in the integral group ring of the ratio group associated to a Markov chain
is a new invariant of regular isomorphism and some other coding relations.

1. Introduction
The object of this paper is to show that two Markov chains are regularly isomorphic
if and only if they have a common extension by right closing block codes of degree
1. Before turning to our discussion of this result, we recall some related terminology
and facts.

Let M be an irreducible stochastic matrix. Suppose M is k x k and let { 1 , . . . , k}
have the discrete topology. Give fl-co {!,•••>&} the product topology, and let X be
the subspace consisting of those x - (xn) e Il-oo 0 . •••»&} with M(xn, *„+,) > 0 for
all n e Z. Define the left shift homeomorphism S: X -* X by taking (Sx)n = xn+l for
all x e X and n e Z. The pair (X, S) is a subshift of finite type. Regarding the shift
S as being implicit, we often refer to X as a subshift of finite type. The alphabet
of (X, S) is s4(X) = {l,...,k}. An element of M(X) is a symbol of X. If
i o , i 1 , . . . , i ' M e ^ ( X ) are such that M(i0, /,), M(iu i2),..., M(i,_2, «/_,)> 0, then
the string i0/, • • • /,_, is called a word (or block) of length /; when there is a need
to emphasize X, we use the terms X-word and X-block. The closed-open sets

t'o'i ' ' " ';-i]r = {x = (*„) e X: xr = i0, xr+l = / , , . . . , xr+/_, = ;,_,}

are cylinders. (When r = 0, we drop this subscript.) A base for the topology of X is
given by these sets. The state partition of X consists of the cylinders [i], i e M(X).
For x e X and n € Z, we denote by xlx the one-sided sequence • • • xn_2xn_,xn. Let
m be the unique probability vector with mM = m. The matrix M gives an S-invariant
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Borel probability measure on X. This measure, which we also denote by m, is defined
by setting

m([i ' o i i • • • ii-,]r) = m(io)M(io, / , ) • • • M ( i , _ 2 , (,_,).

The triple (X, S,m) is the Markov chain defined by M. (Thus, we restrict our
attention to irreducible Markov chains.) As usual, we associate to (X, S, m) a directed
graph with k vertices. There is an edge from vertex i to vertex j provided M(i,j) > 0;
the transition probability M(i,j) is then assigned to this edge. We say thatje sd{X)
is a follower of iesi(X) whenever M(i,j)>0. A Markov chain is completely
described by giving its alphabet and, for each symbol, specifying its followers and
the associated transition probabilities.

Fix two (irreducible) Markov chains (X, S, m) and (Y,T,p). A block code
<f>:(X, S, m)^(Y, T, p) is a continuous surjection <j>: X -* Y such that 4>S = T(j> and
m°<f>~1=p. Up to composition with a power of the shift, every block code
<f> :(X, S,m)-*(Y, T,p) may be expressed as an /-block code for some leN in the
following way: there exists a map, which we also denote by <A, from X-blocks of
length / onto si{Y) such that </>(*)„ = $(xnxn + 1 • • • xn+,_,) for all xe X and n E Z .
The block code <f> is bounded-to-one if there exists a number K with card (<f>~\y)) s K
for all yeY.ln this case, there exists an integer d such that card (^"'(y)) = d for
all doubly transitive y e Y; this integer d is called the degree of <f>. When 0 is a
1-block code and bounded-to-one, a necessary and sufficient condition for d = 1 is
the existence of a y-word joj, • • -j;-i such that <)>~x[joj\ • • • 7 / - i ] c [ i ] r for some
j'e si(X) and r e Z (see [l]);joji • • • ji-i is then called a magic word for <f>. A 1-block
code <]>: (X, S, m) -»(Y, T, p) is called right resolving if, for each i e si(X), the map
f\>: M(X) -* si{ Y) restricts to a bijection from the followers of / onto those of <£(i).
It is easy to see that a right resolving code is bounded-to-one. A block code
<J>:(X, S, m)-* (Y, T,p) is right closing if, for each xe X, its image <p{x) and its past
x°-oo = • • • x_2x-iX0 determine x. Right closing codes are necessarily bounded-to-one.
In fact, according to [6] (or, see [2]), a block code is right closing if and only if it
is topologically conjugate to a right resolving code.

We identify all measure-theoretic objects which are equal almost everywhere. We
use the usual notation for refinements of partitions and cr-algebras generated by
partitions (see [17]).

Let a and /? be the state partitions of (X, S, m) and (Y, T,p), respectively. Write
« = V"=o S"a and /3~ = V^=o T"fi. A regular isomorphism between (X, S, m) and
(Y, T,p) is a measure-theoretic isomorphism <f>:(X, S,m)^(Y,T,p) such that

a~ v Sla v • • • v S~Na,

for some non-negative integer N (cf. [5]). Our main result is the following.

THEOREM. The Markov chains {X,S,m) and (Y, T,p) are regularly isomorphic if
and only if there exists a Markov chain (Z, U, q) and right closing codes -rr:(Z, U,q)->
(X, S, m) and 4>: (Z, U,q)^( Y, T, p) of degree 1.
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The situation described by the theorem may be pictured

(Z, U, q)

/ \
(X,S,m) (Y,T,p)

where each of n and i/> is right closing and of degree 1. It is easy to see that the
map i/f° v~1:(X, S, m)->(Y, T,p), defined for all doubly transitive points, is a
regular isomorphism. (See [1,4,6].) The theorem asserts, conversely, that the
existence of a regular isomorphism <f> implies the above picture. The body of the
paper, in the next two sections, is devoted to the proof of this statement. First we
give the construction for a common extension by right closing maps. Then we explore
the choices involved in the construction to provide magic words.

We list [3,5,8,12,15] for examples of material on regular isomorphism. A special
case of the theorem, that dealing with measures of maximal entropy, was established
in [3] with the aid of dimension groups and other algebraic ideas. The proof we
give for the general case is direct.

Our definition of regular isomorphism agrees with [3] and is a time-reversal of
the definition used in earlier work. Much of the earlier work dealt with invariants.
Our final section is a brief discussion of this topic, and includes an ideal class
invariant similar to the one employed in [3] and [14].

Acknowledgement. We would like to acknowledge the contributions of Brian
Marcus related to the work presented here; this work was motivated by past and
current collaborations with Marcus. We also thank Doug Lind for discussions.

2. Common right closing extensions
Let <f>: (X, S, m) -* (Y, T, p) be a regular isomorphism. We describe, in this section,
the construction of a Markov chain (Z, U, q) with a right resolving map
77-:(Z, U, q)-* (X, S,m) and a right closing map i/»: (Z, U,q)^{ Y, T,p).

We continue to denote the state partition of (X, S, m) by a, atoms of the o--algebra
a~ — \I°^=oS"a correspond to (allowable) one-sided sequences x~=- • • X-2x^lx0;
let X~ be the space of all such sequences x~. Corresponding to a point x~ e X~ we
have the set [x~] = {xsX: x°.x = x'} in X. More generally, we write [x~]n =
{xeX: xlao = x'}. X' is equipped with the restriction of m (to a"). Similarly, we
have the space Y~, given by the atoms of /3~.

By the definition of a regular isomorphism, there exists a non-negative integer N
with <)>~\p~)cS~N(a~) and <f>(a~)c T~N(j3~). Thus, SN ° 4>~\/3')c: a~ and
^ » 5 " N ( a " ) c r 2 N ( i 8 " ) . Write </> for ^ = 5 " N and N for 2N. We then have
<j>-l(P~)ca- and <£(«")c T-N(/3") = j8" v T~l/3 v • • -vT~N/3, and the theory of
Lebesgue spaces [13] implies the following

LEMMA 1. There exist (a.e. defined) maps <f>:X~-> Y~ and </>"': Y~-> X~ such that
<M*-oo), <t>-\y-t") are defined and <t>(x)lx= ^(xl^), <t>~\y)-x= ^(y"-^) for
all n € Z and a.a. x e X, y e Y.
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Without further ado, we restrict our attention to those points of X', X, Y~, Y
on which the maps considered in Lemma 1 are defined. In addition, we restrict to
x~eX~ with the property that the conditional measure m[x] on [x~] is sent by <f>
to the conditional measure /><*,[>-] on <f>[x~] = <f>{x e X: x0-^ = x~}. Thus we work on
good sets of measure 1 and do not need to make any further explicit reference to
Lemma 1. Preferring to use only <f> in our formulations, we will not make any
reference to the maps 4> and <£"' either.

Consider x~eX~. Since j3~<= 0 ( a ~ ) c / 3 " v T~xp v • • v T'Np, there exist
y~ e Y~ and a set E in V "=i T'"P such that <£[*"] = [>>~] n E. Since E corresponds
to a finite collection of Y-words of length N, this may be pictured as follows.

Distinguishing the zero coordinates of x and y ,weput / (x ) = (xo,yo, E). This
defines a mwp f:X'^ M{X)xM{Y)x\J^l T~"p. Let si be the essential image of
/ When (i,j, E)esi, we write [i,j, £ ] for the subset of X corresponding to
r\i,j, E) c X , and put [ij, £]„ = S-"([^>, £]).

si will give us the alphabet of the common extension Z. To define transitions,
let (i,j, E)e si. Fix x~ef~\i,j, E). For each follower i" of i we define a transition
from (i,j, E): Concatenate x~ and V to consider x'i'e X~, allow a transition from
(i,j, E) to (i',jr, E')=f(x~i'), and assign the probability

to this transition. Choosing an irreducible component of full topological entropy,
let (Z, U, q) be the resulting Markov chain. Define 1-block maps T T : Z - > X and
4>:Z-» y by setting 7r(i,j, E) = i and i/s(i,j, E)=j. It is clear from our definition of
transitions and Q that TT is then a surjective resolving map and q ° TT'1 = m. (See
Lemma 16 of [10].) The following lemma will be used to show that </> is right closing.

LEMMA 2. / / (io,jo, E0)est and jojl • • -jNjN+1 is a Y-word with [ji • ' •J/v]i<=£'o
then there exist i, e J ^ ( X ) and a set £, in V^=i T~"p such that ( i , , ; , , £ , )e si and
(ii,ji,Ei) is the unique follower of (io,jo, Eo) with [j2 • • -jN+1]i^ £ , .

Proof. Let x" sf'l{i0,j0, £0) be the point used in the definition of transitions from
(i0,jo, £o)» and let j " e Y~ be such that <t>[x~~\ - [y~] n £0 . Then XQ = Jo and >>o =j0-
Since [ji • • -JNII^ EO, we have <t>~l([y~]n[j{ • • -jNjN+l]x)^ [x~]. Moreover,

because </>(a" v S" 'a)c ;8 v T"'/3 v • v T~N/3v T~(N+l)p, there exists a follower
i, of »0 such that 0" '(b~]^[7i - ' -./W/v+i]i)c [^~'i]i- Hence

<A[̂ ~'r] = [>'~7i]^£i,

where £] is a set in V£=i r~")8 with [j2 • • -JN+X]I C £ I - Since the followers of
(io,jo, Eo) are determined by letting the followers of i0 partition the set [x~],
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the resulting ( i , , _ / , , £ , ) e i is the only follower of (io,jo, Eo) with [j2 • • • JN+I]\ C

£ , . D

Now let y e Y and let z~ e Z~ be such that if>(z~) = _y° «,. To verify that ifi is right
closing, it suffices to show that there exists a unique point z&Z with >fi(z) = y and
zn = z~ for all n < - N . (See [6], Proposition 1 of [2], or (5.1) of [4].) Write
Zn = (*„, y«, En) for n < 0. Observe that for any Z-word (i0,Jo, Fo) • • • ( W N , FN)
of length JV+1 we must have D'i • • • J J V ] I C fo(*). In particular, we
have O_A,+, • • 7 - j o ] | C £ . N . Apply Lemma 2 to (x_N, y_N, £_N) and
y_Ny_N+1 • • • yoyi to find the unique follower z-N+l = (LN+i,y_N+u F-N+i) of
(x_N,y_N, £_N) with [y-N+2 • • • M i l i c

 £-JV+I- Now apply Lemma 2 to
(Ljv+i.y-N+i, F-N+I) and y-jv+i^jv+2 • • " ^ I ^ to find the unique follower
z-N+2 = (i-N+2,y-N+2, F-N+2) of z_N+1 with [y-N+3 • • • y i ^ ] ^ ^-JV+2- Continue
in this way to produce, for n>-N, zn = (in,yn,Fn) with [yn+x • • • yn+N~\^ Fn.
Putting zn = z~ for n< —A/, the resulting point z € Z has iA(z) =*y and zn = z~ for
n < - N ; (*) and the uniqueness in Lemma 2 show that this is the only such point
in Z.

Thus, ip is right closing. We now prove:

L E M M A 3. q ° i]t~x = p.

Proof. The statement q°\j/~x=p is equivalent to the existence of v(i,j, E)>0,
(i,j, E)e M, such that

P(j,j')v(i',j',E') . .,
. = <?((i,j, £) , ( i ' , / , £')) = M(«, i')

w(i,7, £)
whenever transition from (i,j, £) to (i',f, £') is allowed. (See [15], and Lemma 15
of [10].) For {i,j,E)es£, put v{i,j, E)= p(E\[j]), the conditional probability of
the set £ in V"=i T~"fi, given the set [j] of /3. To show that this choice does the
job, suppose we have a transition from (i,j, E) to (i',f, £')• As before, let x~e X~
be the point used to define transitions from (i,j, E) and let y~ e Y~ be such that
<t>[x ] = [y~] n £. Recall that x~ is such that m[x] = P<p[x~] ° <t>- In particular:

mlx-]([x~i']l)=pHx-i{<t>\_x~i'~\1). (**)
Since XQ = /',

On the other hand, by the definition of transitions from (i,j, £ ) ,

Using this fact and </>[*"] = [y~] n £ we have

By the Markov property of p we have p [ r ] ( £ ) = />(£|[j]) = u(i,7, £) and
p[y-n(E')=p(E'\[j']) = v(i',j',E'), so the equation (**) shows

M(i, i') = PUJ'Mi'J', E')/v(i,j, £) ,
as desired. •

We have now established the existence of a Markov chain (Z, U, q) with a right
resolving map IT:(Z, U, q)^(X, S, m) and a right closing map ifi:(Z,U,q)^>
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(Y,T,p). At this point, the degrees of IT and i/» may be greater than 1. We obtained
Z by choosing, for each (i,j, E)esi,a point x~sf~\i,j, E) and using x~ to define
the transitions out of (i,j, E). The extension (Z, U, q) and the maps n, i// depend
critically on the x~ chosen. We will exploit this choice to obtain degree 1 maps.
Before we can do this, however, we need to have a little more room, which we
create with a slight generalization of the construction of (Z, U, q):

For fc>0, let sik be the set of all triples (/_*• • • i-xi0,j-k- • -j-ijo,E), where
i-k • • • i-ti0 is an X-word, _/_k • • • _/_,_/0 is a y-word and (i0,jo, E) e si. We refer to
i-k-• • i-xi0 as the X-coordinate of (i_k • • • i_,io,_/_fc • • -j-Jo, E). Similarly,
7_k • • -j-Jo is the V-coordinate. We can define a Markov chain as follows. For
each (/_*• • • i-JoJ-k' • • j-ik,E)ssik, choose a point x~ef~l(i0,j0, E) and use
x~ to determine the transitions out of (i_k • • • io,j-k' ' 'jo, E). (We will refer to
this procedure as the selection of a transition rule for (i.*.- • • io,j-k- • -jo,E).)
Note that we do not require xZk • • • xZx to equal /_* • • • i_!. If we let (Z, U, q) be
the Markov chain given by an irreducible component of full entropy and put
•n(i-k • • • io,j-k • • • jo, E) = i0, *l>(i-k • • • io,j-k " * ' Jo, E) =j0 then, by the arguments

given above (for the case k = 0), we obtain a right resolving block code v: (Z, U, q) -*
(X, S, m) and a right closing one *}i:{Z, U, q)->(Y, T,p). In the next section we
show that, for large k, the transition rules may be chosen so that there exist magic
words for v and i/>.

3. Magic words
Fix an element (x0, y0, Fo) € M.

LEMMA 4. For every sufficiently large n, there exists an X-word x_n • • • x0 such that

m([x-n,j, £]_nn[x_n- • • xo]_n n[xo,yo, Fo])>0

whenever ( x ^ J , £ ) e i .

Proof. Consider an X-word x_n • • • x0 terminating at x0. Observe that, for
(x^n,j, E) G si we have

m([x_n, j , E] n [x-n • • • x0]) m[x_nJ, E]

mO_n---x0] m[x_n]

since [x_n,y, £ ] e a'. Hence, as x_n • • • x0 and j , E run through all possibilities,
the above ratios yield finitely many positive numbers. Let e > 0 be such that 2e is
less than each of these numbers. Approximating [xo,yo, F0]e a" by cylinders, now
pick x_n • • • x0 such that

m{[x_n- • • xo]_n n[x0, y0, Fo])/ m([x..n • • • x o ] - J > l - e .

Considering the conditional probability on [x_n • • • xo]_n, we then have

m([x^n,j, E]-nn[x_n- • • xo]_nn[xo,yo, F0])/m([x-n • • • x o ]_J>e

whenever (x_n,y, £ ) e si. Furthermore, for any />0, we can extend x_n • • • x0

to find a word x_n_,-• • x_n_,x_n • • • x0 for which the analogous statement is
valid. D
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Suppose it happened, in Lemma 4, that the symbols appearing in x_n • • • x0 were
distinct. Then we could use si for the alphabet of the extension and turn x_n • • • x0

into a magic word for TT: We order the finite set {(i,j, £ ) e si: / = x_n} and, going
through its elements (x_n, j , E) in order, choose transition rules for (x-n,j, E) and,
perhaps, some other elements of si. We make a list of the elements of si that we
consider (choose a transition rule for); initially, this list is empty. For each (x-n,j, E),
pick x lying in the non-trivial intersection in Lemma 4, and put x" = xl£,. Let x~
determine the transition rule for (x_n,y, E) and let x~x_n+1, x~x_n + 1x_n + 2, . . .
determine the transition rule for/(x~x_n + 1) , / (x~x_n + 1x_n + 2) , . . . respectively, until
either (xo,yo, Fo) =/(x~x_n + 1 • • • x_,x0) or a previously considered element of si
is reached. Since the symbols of x_n • • • x0 are distinct, whenever a previously
considered state is reached before (xo,yo, FO), we are in phase with the transition
rules already selected and these take us to (xo,yo, Fo)- Thus x_n • • • x0 becomes a
magic word for TT.

In general, of course, the symbols of x_n • • • x0 will not be distinct. We will use
the alphabet sdk in dealing with the general case. For convenience, we will take k
to be a multiple of n, and make use of cycles of length n. We assume that n itself
is a large enough multiple of the common period of X and Y to guarantee the
existence of the cycles (and words) we use.

Let A = x^nix • • • („_, be such that x_ni, • • • in_xx_n is an X-word and the corre-
sponding periodic orbit /4°° has least period n. Similarly, let B, C be X-words
starting with x_n, and of length n, such that B°°, C°° give periodic orbits. Make sure
that Ax, Bx, C00 are distinct orbits. Letting k = an, extend x_n • • • x0 to
x_n_k • • • x_n • • • x0 • • • xk by putting xk = x._n, x_2n • • • x_n^, = B, xn- • • x2n_, = C,
xfcn_n • • • X(,n_, = A for -a s b < a, b # - 1 , 0, 1, 2, and choosing a connecting word
x, • • • xn_,. The word x_n_jt • • • xk may be pictured as follows.

A A B x,,,...xox,...xn_l C A A

-k-n -k -in ~2n -n 0 n In k-n k

Note that our definition ensures for sufficiently large k that (/c+l)-subwords of
x_fc_n • • • xk are distinct: if -/c - « < b, c < 0 and b ¥= c then xb • • • xb+k ^ xc • • • xc+(c.
We now select transition rules for elements of Mk.

(i) Consider {(«_„_*• • • i-n, j - n - k - • -j-n,E)es4k: /_„_*• • • j _ n = x_n_fc- • • x_n}.
For an element (x_n_k • • • x_n,j_n_k • • •_/_„, E) of this set, use Lemma 4 to
pick x e [ x _ n , j _ n , £ ] _ n n [ x _ n - • • xo]-nn[xo,yo, Fo], and put x" = x l i . We
then have / (x"x^ n + , • • • x0) = (x0, y0, Fo). For —n < b< 0, let j b , Eb be such
that /(x^x_n + 1 • • • xb) = (xhjb, £b). Let x~ determine the transition rule for
(*_„_*• •• x _ n , j _ n _ t - • • ; _ „ , £ ) . Continuing, let x"x_n+1, x"x_ n + 1 x_ n + 2 , . . .
determine the transition rule for (x_n_k+1 • • • x_nx_n+1, y_n_*+i • • -7-n+i.
£_„+,), (x_n_k+2 • • • x_nx_n+1x_n+2,7_n_k+2 • • -7 - n + 2 , £- n + 2 ) , • • • respectively,
until either (x_k • • • x0, j _ k • • • j-iy0, Fo) or a previously considered element
of sik is reached.

(ii) Fixx~<=f~l(x0,y0, F0)and,forl<b<k,letyb, Fb be such that /(x"x, • • • x6) =
(xfc,yfc, Ffc). For 0^fc<fc, let x~x, • • xh determine the transition rule
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for all elements of sik which have the form (x^k+b • • • x0 • • • xb,
j - k + b - • -j-iyoy, • • • yb,Fb).

Since (fc + l)-subwords of x_k_n • • • xk are distinct, the transition rules chosen
in (ii) are disjoint from these chosen in (i). Moreover, in (i), whenever we
reach a previously considered state before (x_fc • • • xo,j-k- • -j-i^o.^o), we are
in phase with previously selected transition rules and these take us to
(x_k • • • xo,j_k- • -j~,y0, Fo). For the remaining elements of ^ . s e l e c t the transition
rules arbitrarily. In the resulting labelled graph, every path labelled x_fc_n • • • xk

terminates at the state (x0 • • • xk,yoyx • • • yk, Fk). Hence, x_k_n • • • xk is a magic
word for the resulting map TT onto (X, S, m). It also follows that the graph has only
one irreducible component of full topological entropy.

Notice. At this point TT has degree 1, but ip may not. The rest of this section is
concerned with getting IT and t/» which simultaneously have degree 1. The argument
we give is quite technical, but has the advantage of being direct and not relying on
invariants. In addition, our description of this argument is concise. An alternative
and less technical approach, which makes use of some invariants and Ashley's recent
work [18], is described in the Postscript at the end of the paper.

The transitions defined in (i) and (ii) are sufficient to make x_k-n • • • xk a magic
word for the map onto (X, S, m). Hence:
(iii) If the transition rules are altered for some elements of s&k and the X-coordinates

of these elements do not contain the periodic word AA -A of length [k/3n]n,
then x_/t_n • • • xk is a magic word for the resulting map onto (X, S, m).

We will create a magic word for the map onto (V, T, p) by altering some transition
rules, and rely on (iii) to retain the magic word x_fc_n • • • xk. The proof of the
following lemma is similar to that of Lemma 4. (See, also, Lemma 2.)

LEMMA 5. For every sufficiently large n, there exists a Y-word y_n • • • y0 • • • y^ such
that

p(<t>[i,y-n,E]-nn[y-n- • • yN]-nn <j>[x0, y0, F o ] )>0

whenever (i,y-n, E)ed and [>>_„+, • • • >-_„+*,], <= E.

Consider the (possibly reducible) extension we have on the alphabet sik, with
the maps TT, IJJ. For the periodic orbit A°° of X, I}I{TT~\AX')) consists of finitely many
periodic orbits of Y. Choose a Y-word A which gives a periodic orbit 4̂°° distinct
from those in ^(vr"^/!00)). Then there exists /i GN such that, for all large k' and
every word j _ k ' • • • j0 appearing in A°°, no subword of A°° longer than h can occur
in Tr-i/T'O'-fc" • •_/„).

Let _y_n • • • yN be the K-word given by Lemma 5. Let B be a F-word such that
B gives a periodic orbit B°° distinct from A°° and ABy_n is a y-word. We will
choose a large c and put >»_/••• y~n-\ = ACB to extend y_n • • • yN to a V-word

y-i • • • y-n • • • yN • • • yk+N = AcB~y_n • • • yk+N

with the following properties.
(iv) / > n + fc and the (/c+l)-subwords of y-n~k- • • yk+N are distinct.
(v) No (k+ l)-subword of y~n-k • • • yk+N equals one of A°°.
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(vi) Let x~ef~\xo,yo, Fo) and y~e Y~ be such that </>[x~] = LV ]nF0. Consider
theX-wordx, • • • xk with the property that <j>~\y~y>\ • • • yk+N]c: [X ~xt • • • xk],
and make sure that A does not appear in x, • • • xk.

To be sure of the existence of such AcBy_n • • • yk+N and to then be able to use
(iii) while turning it into a magic word, we describe certain recodings of the present
extension on the alphabet s£k. For k'>k, we can pass to a conjugate extension with
sAv for its alphabet by letting each (»'_,<• • • • io,j-k' • • -jo,E)e s£w inherit the transi-
tion rule of (ik • • • io,jk • • • j 0 , E)e sdk. Using this procedure to recode, we assume
that k is large enough for the word AcBy_n • • • yk+N to exist and have the required
properties. Also assume that fc/3 is much larger than h and n. After we increase k
to pass to the conjugate systems, we again have 1-block right closing maps onto
(X, S, m) and (Y, T,p); we continue to write v and tj) for these maps. The word
x_k_n • • • xk = A"~lBx-n • • • xn_,C4a~' is a magic word for IT and (iii) continues
to apply. We denote by s£k the set of elements of sik which actually appear in
(doubly infinite) points of the extension.

Now let y_i • • • yk+s = AcB~y-n • • • yk+M be as specified above. We mimic (i) and
(ii) to make AcBy_n • • • yk+N, for large enough c, into a magic word: We use
y-k-r,' • • yk+N in place of x_k_n • • • xk. We consider the set

and !>_„+, • • • ^_n + N] ,<=£}.

Starting with each element of this set, we re-select the transition rules along a path
labelled j»_n+1 • • • yk+N, using Lemma 5 in place of Lemma 4 and y~ of (vi) to play
the role of x~ of (ii).

As a result of (v), the above re-selection of transition rules does not change the
pre-image of A°°; this set equals ^''(A00) even after the re-selection. Hence, for
large enough c, every pre-image of y_t- • • y-n^k~\ will terminate at an element of
Mk, even after the re-selection, and the re-selected transition rules then make sure
that the word y~r • • yk+N = AcBy_n • • • yk+N is a magic word for the map onto
(V, T, p). In addition, our choice of A, the fact that k/3 is larger than h and (vi)
ensure that, for any element of sdk whose transition rule we altered, the X-coordinate
does not contain the periodic word AA -A of length [k/3n]n. By (iii), x_fc_n • • • xk

continues to be a magic word for the map onto (X, 5, m). As remarked earlier, the
existence of magic words implies that, in the graph, there is only one irreducible
component of full topological entropy. We restrict to this component to obtain the
desired irreducible Markov chain (Z, U, q) with right closing block codes of degree
1 onto (X,S,m) and (Y, T,p).

4. An invariant ideal class
We discuss some invariants of regular isomorphism.

For a non-negative matrix M and t e R, let M' denote the matrix compatible with
M and having M'(a, b) = M(a, b)' whenever M(a, b)*0. Writing /3M(f) for the
spectral radius of M', we have the /3-function fiM :R-»R+ of M. The ^-function of
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(X, S,m) equals that of its defining stochastic matrix; this is an invariant of regular
isomorphism [15].

Consider all pairs of X-words //'i • • • iti', ii[ • • • i'J/' which start with the same
symbol, end with same symbol and have the same length. The ratios
m[iix • • • iti'y m[ii[ • • • /Jf] form a multiplicative group, which is denoted by Am.
In addition, letting d be the period of (X, S, m), consider two words, //, • • • i,i' and
ii'i • • • i'l+di', which start with the same symbol, end with the same symbol and differ
by d in length, and put cm = m[ii\ • • • i'i+di']/m[iix • • • i,i']. It is easy to see that the
set cmAm is independent of the choice of »i • • • iti' and ii\ • • • i'i+d''- The pair
(Am, cmAm) was studied in [9]. (Am had earlier appeared in [7] and [16].) Although
regular isomorphism was not considered in [9], the invariance of (Am, cm, Am) under
regular isomorphism is an immediate consequence of the work in [9].

The fact that regular isomorphism of (X, S, m) and (Y, T,p) implies jiM = fip,
Am = Ap and cmAm = cpAp may also be easily deduced from the main result of the
present paper; write /3, A and cA for these objects.

According to [9], there exists a diagonal matrix S such that the non-zero entries
of M = SMS~l/cUd belong to A. Clearly, 0 = p/c1/d is the /3-function of M. Let
R = Z[A] be the integral group ring of A, presented as all finite sums of exponentials,
X,, anu'n, with an e Z and un e A. Then A = M' may be viewed as a matrix over R,
and 0 is an integer over R (it satisfies a monic polynomial whose coefficients lie
in R, namely, the characteristic polynomial of A). Moreover, we can find a vector
rA over /?[/3] such that ArA = 0rA. Let $m be the ideal of R[ = ] generated by the
entries of rA, and consider the ideal class [$m] of 3m : [•$„,] is the equivalence class
consisting of ideals 3 which satisfy uJ = vJ*m for some non-zero u, v e R[j]- It is
not hard to see that [$m] does not depend on the choice of the above matrix M
over A or, by the Perron-Frobenius theorem, on the choice of the eigenvector rA of
A = M'. [3m] is an invariant of regular isomorphism, because of our main result
and the following.

PROPOSITION. 7/TT : (Z, U, q)^>(X, S, m) is a right closing block code of degree 1,
then [Jq] = [<?„].

One way to see this is as follows. Note that /J = /?m = y3,, A = Am = A, and
cA = cmAm = cqAq. Conjugating IT to a right resolving map, find a Markov
chain (Z', V, q') and a commutative diagram

(Z\ U', q') —?—> (Z, U, q)

" \ / •

(X, S, m)
where IT' is a right resolving block code and 0 is a block isomorphism. (See [6],
[15].) In particular, A = Q' and the analogous matrix A'= Q" are shift equivalent
over R (see [11], [16]), so [•$<,] = [•$<,]. Moreover, since TT' is right resolving, the
eigenvectors rA and rA may be chosen so that each entry of rA equals some entry
of rA, perhaps multiplied by an exponential u', we A; and vice versa. Since u' are
units in R, we have [-$q•] = [J>m] also.
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The invariant [&m] we just described generalizes the ideal class introduced by
Trow [14] and further studied in [3]. [^m] is closely tied to the dimension module
[16] of (X, S, m). This connection, and other related material, will be discussed
elsewhere. We close the paper with an example in which two Markov chains with
the same )3, A and cA are distinguished by the ideal class.

It is easy to see that A is finitely generated and, being a multiplicative subgroup
of the positive reals, free. It follows that R is isomorphic to a Laurent polynomial
ring Z [ x , , . . . ,xn, Xy\ ..., x~ '] ; it is often convenient to work with this polynomial
ring. The following example concerns the case R=Z[x, x~'].

Example. Let a, b>0, a + b = l, and consider the Markov chains defined by the
stochastic matrices

M = M
ab

P =

0

a + b2

1 + b

a + b2

1 + a

a2(l

a + b2

0

a(\ + b)

\ + a

a + b2

a)

1 + b

0

It is easy to see that /3 = a' + b', A = {(a/b)" : n e Z } and we may take c = b for both
of these. We can take S to be the 3 x 3 diagonal matrix with (a + b2,a{l + b),b(l + a))
as its diagonal and M = b~1M, P = b~i8P8~\ Writing x = (a/b)', we have R =
l[x, x~l], /3 = l + x , and

-&:]•
"o

X

1

X

0
1

r
X

0

The transposes of (1,1) and (x2 + x +1, x2 + 2x, 2x +1) give right eigenvectors of A
and B. Thus, [J?m] consists of principal ideals. We will argue by contradiction to
show that

is not a principal ideal of R[\/(l + x)]: Suppose $p is principal. Since x and l + x
are invertible in R[l/(l + x)], this means Jp - uR[l/(l+x)] for some ueZ[x] such
that x, l + x Jfu. As 3€ 3P, we have u|3 in Z[x]. So, u = ±3 or u = ±l. We cannot
have u = ±3, because x + 2e 3>p. If u = ±1 , then the equation

must hold for some v}, v2, v3eZ[x] and positive integers k, I. Put x = -2. The left
hand side becomes 3f1(-2) + 3u3(-2), so it is divisible by 3, while the right hand
side equals ±2k, which is absurd.

Postscript. After this paper was written, Ashley [18] proved the following beautiful
result. Suppose there exists a right closing code i^:(Z, U, q)^(Y, T,p) between
Markov chains with the same period dq = dp and with A<, = AP, (see §4 for the
definitions of these objects). Then according to [18], there also exists a right closing
code tj/:(Z, U, q)->(Y, T,p) which has degree 1. We use this result to describe an
alternative completion of the proof of our theorem. At the point in § 3 where the
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Notice of this postscript appears, we have an irreducible Markov chain (Z, U, q)
and right closing codes ir:(Z, U,q)^(X, S,m), \}i:(Z, U, q)^(Y, T,p), and we
know that IT has degree 1. We find dq = dm, A, = Am because IT has degree I, and
dm = dp, A m =A p as a result of our hypothesis that (X,S,m) and (Y, T,p) are
regularly isomorphic. Thus, dq = dp, A, = Ap and Ashley's result may be applied to
replace i/» by a right resolving code ij/:(Z, I/, <?)->( Y, T, p) of degree I.
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