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Abstract
In this paper, we develop two new homological invariants called relative dominant dimension with respect to a
module and relative codominant dimension with respect to a module. Among the applications are precise connections
between Ringel duality, split quasi-hereditary covers and double centralizer properties, constructions of split quasi-
hereditary covers of quotients of Iwahori-Hecke algebras using Ringel duality of q-Schur algebras and a new proof
for Ringel self-duality of the blocks of the Bernstein-Gelfand-Gelfand category O. These homological invariants
are studied over Noetherian algebras which are finitely generated and projective as a module over the ground ring.
They are shown to behave nicely under change of rings techniques.

1. Introduction

Quasi-hereditary algebras are finite-dimensional associative algebras of finite global dimension occur-
ring in areas like algebraic Lie theory, homological algebra and algebraic geometry. Further, all finite-
dimensional algebras are centralizer subalgebras of quasi-hereditary algebras (see [DR89, Iya04]). Given
a finite-dimensional algebra of infinite global dimension, we can ask to resolve it by a quasi-hereditary
algebra so that their representation theories are connected by a Schur functor with nice properties. Such
resolutions appear quite frequently as split quasi-hereditary covers in the sense of Rouquier [Rou08].
Well-known examples are Soergel’s Struktursatz (see [Soe90]) and Schur–Weyl duality between Schur
algebras 𝑆𝑘 (𝑑, 𝑑) and symmetric groups 𝑆𝑑 (see, for example, [Gre81]). In both cases, we are approx-
imating a self-injective algebra with a (split) quasi-hereditary algebra. The quality of these resolutions
was determined in [Fan08, FK11] and recently in [Cru24c] for the integral case using dominant dimen-
sion and relative dominant dimension as developed in [Cru22b], respectively.

Each quasi-hereditary algebra comes with a characteristic tilting module, whose endomorphism
algebra is again quasi-hereditary (see [Rin91]), and it is known as the Ringel dual.

Schur algebras 𝑆𝑘 (𝑑, 𝑑) and blocks of the BGG category O possess a particular symmetry; they
are Ringel self-dual [Don93, Soe98], which means they are their own Ringel dual. One would like to
understand the role (if it exists) of Ringel duality in Schur–Weyl duality and Soergel’s Struktursatz.

A common feature in these three dualities is the existence of a double centralizer property on a
summand of a characteristic tilting module. In [KSX01], Schur–Weyl duality was proved using dominant
dimension and the self-injectivity of the group algebra of the symmetric group.

However, Schur algebras 𝑆(𝑛, 𝑑) with 𝑛 < 𝑑, in general, are not Ringel self-dual. Nonetheless, a
version of Schur–Weyl duality still holds between 𝑆(𝑛, 𝑑) and 𝑆𝑑 on a module M. The object M is
a summand of the characteristic tilting module of 𝑆(𝑛, 𝑑) and a right 𝑆𝑑-module, although it is not
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necessarily faithful as 𝑆𝑑-module. This means that the double centralizer property occurs between
𝑆(𝑛, 𝑑) and a quotient of the group algebra of the symmetric group. In [KSX01], this double centralizer
property was proved using the quasi-hereditary structure of 𝑆(𝑛, 𝑑) and a generalization of dominant
dimension which we shall discuss below. In addition, the quasi-hereditary structure of 𝑆𝑘 (𝑛, 𝑑) is
still deeply connected with the representation theory of 𝑆𝑑 via the above double centralizer property.
More precisely, Erdmann showed in [Erd94] that standard filtration multiplicities of summands of the
characteristic tilting module are related to decomposition numbers of the symmetric group.

This situation raises the following question: Is Schur–Weyl duality arising from the existence of a
quasi-hereditary cover that extends the connection between 𝑆𝑑 and 𝑆𝑘 (𝑑, 𝑑) when 𝑛 ≥ 𝑑? If so, how is
Ringel duality related with such a cover?

The aim of the present paper is to give precise answers to these questions and develop new techniques
on quasi-hereditary covers and Ringel self-duality continuing the approach developed in earlier papers
[Cru22b, Cru24c]. In particular, we continue to use the integral setup and split quasi-hereditary covers
since they are quite flexible under change of rings, and all the above examples fit in such a setup.

Motivation to generalize dominant dimension.
A module M (over a finite-dimensional algebra A) has dominant dimension at least n if there exists
an exact sequence 0 → 𝑀 → 𝐼1 → · · · → 𝐼𝑛 with 𝐼1, . . . , 𝐼𝑛 projective and injective modules over
A. In [FK11], it was observed that dominant dimension is a crucial tool to understand the quality of
quasi-hereditary covers of self-injective algebras, and more importantly of quasi-hereditary covers of
symmetric algebras having a simple preserving duality. This uses the Morita-Tachikawa correspondence,
a theorem by Mueller [Mue68], and the fact that any generator is also a cogenerator over a self-injective
algebra. Generator (resp. cogenerator) means a module whose additive closure contains all finitely
generated projective (resp. injective) modules.

Recall that (𝐴, 𝑃) is said to be a split quasi-hereditary cover of B if A is a split quasi-hereditary
algebra, P is a finitely generated projective A-module, B is isomorphic to End𝐴(𝑃)𝑜𝑝 and the canonical
map 𝐴 → End𝐵 (Hom𝐴(𝑃, 𝐴))

𝑜𝑝 induced by the A-module structure on Hom𝐴(𝑃, 𝐴) is an isomorphism
of algebras. But, in general, Hom𝐴(𝑃, 𝐴) is only a generator (but not a cogenerator). So, A might have
dominant dimension equal to zero. So, how to evaluate the quality of split quasi-hereditary covers,
in general? Furthermore, quotients of group algebras of the symmetric group are not in general self-
injective; thus, a new generalization of dominant dimension is required.

(1) In this paper, we provide a generalization of dominant dimension to be used as a tool to control
the connection between the module category of an algebra B with the module category of the
endomorphism algebra of a generator (not necessarily cogenerator) over B. In particular, it is a
tool to determine the quality of (split) quasi-hereditary covers.

Generalizations of dominant dimension have appeared several times in the literature. In [Mor70],
the concept of U-dominant dimension was introduced, where the additive closure of U replaces the
projective-injective modules. When U is a certain injective module, this invariant was used in [AT21]
to characterize a generalization of Auslander-Gorenstein algebras in terms of the existence of tilting-
cotilting modules (see also [LZ21]).

In [KSX01], this concept was applied to study Schur-Weyl duality between 𝑆𝑘 (𝑛, 𝑑) and 𝑘𝑆𝑑 for a field
k. That is, in [KSX01], it was proved without using invariant theory that the canonical homomorphism,
induced by the right action given by place permutation of the symmetric group on d-letters 𝑆𝑑 on
(𝑘𝑛)⊗𝑑 , 𝑘𝑆𝑑 → End𝑆𝑘 (𝑛,𝑑) ((𝑘𝑛)⊗𝑑)𝑜𝑝 is surjective for every natural numbers 𝑛, 𝑑. Here, 𝑆𝑘 (𝑛, 𝑑)
denotes the Schur algebra End𝑘𝑆𝑑 ((𝑘𝑛)⊗𝑑). The case 𝑛 ≥ 𝑑 follows from (𝑘𝑛)⊗𝑑 being faithful over
the self-injective algebra 𝑘𝑆𝑑 , and so it is also a generator-cogenerator. Therefore, this case can be
seen as a consequence of Morita-Tachikawa correspondence and the pair (𝑆𝑘 (𝑛, 𝑑), (𝑘

𝑛)⊗𝑑) being a
(split) quasi-hereditary cover. In the case 𝑛 < 𝑑, (𝑘𝑛)⊗𝑑 is no longer projective, in general, over the
Schur algebra but still belongs to the additive closure of the characteristic tilting module. To obtain the
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assertion then, they used the (𝑘𝑛)⊗𝑑-dominant dimension together with the quasi-hereditary structure
of the Schur algebras to transfer the double centralizer property from the easier case 𝑛 ≥ 𝑑 to the
case 𝑛 < 𝑑. This technique also works in the quantum case replacing the Schur algebras with q-Schur
algebras. The problem in both cases is the absence of a characterization of U-dominant dimension in
terms of homology or cohomology like in the classical dominant dimension. Moreover, it is not strong
enough to give us information if some cover is lurking around.

In [Cru22b], an integral version of dominant dimension was proposed to extend the theory of
dominant dimension of finite-dimensional algebras to Noetherian algebras which are projective over the
ground ring. This invariant was then used in [Cru24c] to understand the quality of the integral versions
of the pair (𝑆𝑘 (𝑑, 𝑑), (𝑘

𝑑)⊗𝑑). These developments raise the following questions (to be answered in
Theorem 5.3.1):

(2) Is the above case𝑛 < 𝑑 a particular case of some quasi-hereditary cover? If so, does such cover
admit an integral version?

Contributions and main results.
We propose and investigate a generalization of the relative dominant dimension introduced in [Cru22b]
that we call relative dominant dimension of a module M with respect to a module Q over a projective
Noetherian algebra (Noetherian algebra whose regular module is also projective over the ground ring).
We denote it by𝑄-domdim(𝐴,𝑅) 𝑀 . The projective relative injective modules are replaced by the modules
in the additive closure of Q using again exact sequences which split over the ground ring and imposing
an extra condition: the exact sequences considered should also remain exact under Hom𝐴(−, 𝑄). Such a
condition trivially holds for the relative dominant dimension studied in [Cru22b]. This extra condition is
also trivial when U is injective, and so the concept discussed here coincides with U-dominant dimension
in the cases that U is an injective module. This invariant also generalizes the concept of faithful dimension
studied in [BS98]. This relative dominant dimension with respect to a module admits a relative version
of a theorem by Mueller (see [Mue68, Lemma 3]) which characterizes dominant dimension in terms of
cohomology:

Theorem (Theorem 3.1.1 and Theorem 3.1.3). Let R be a commutative Noetherian ring. Let A be a
projective Noetherian R-algebra. Assume that Q is a finitely generated left A-module which is projective
over R so that 𝐷𝑄 ⊗𝐴 𝑄 is projective over R. Denote by B the endomorphism algebra End𝐴(𝑄)𝑜𝑝 . For
any finitely generated A-module M which is projective over R, the following assertions are equivalent.

(i) 𝑄-domdim(𝐴,𝑅) 𝑀 ≥ 𝑛 ≥ 2;
(ii) The map Hom𝐴(𝐷𝑄, 𝐷𝑀) ⊗𝐵 𝐷𝑄 → 𝐷𝑀 , given by 𝑓 ⊗ ℎ ↦→ 𝑓 (ℎ), is an A-isomorphism and

Tor𝐵𝑖 (Hom𝐴(𝐷𝑄, 𝐷𝑀), 𝐷𝑄) = 0 for all 1 ≤ 𝑖 ≤ 𝑛 − 2.

This result extends [BS98, Proposition 2.2], [GK15, Corollary 2.16(1),(2)] and [Cru22b, Theo-
rem 5.2].

For nice enough modules 𝑄, 𝑀 computations of relative dominant dimension can be reduced to
computations over finite-dimensional algebras over algebraically closed fields (see Theorem 3.2.5).

To understand (1), we study relative codominant dimension of a characteristic tilting module with
respect to a summand of a characteristic tilting module. This leads us to one of our main results:

Theorem (Theorem 5.3.1). Let R be a commutative Noetherian ring. Let A be a split quasi-hereditary
R-algebra with standard modules Δ (𝜆), 𝜆 ∈ Λ, with a characteristic tilting module T and 𝑅(𝐴) :=
End𝐴(𝑇)𝑜𝑝 the Ringel dual of A. Assume that Q is in the additive closure of T and fix 𝐵 := End𝐴(𝑄)𝑜𝑝 .
If 𝑄-codomdim(𝐴,𝑅) 𝑇 ≥ 2, then (𝑅(𝐴),Hom𝐴(𝑇, 𝑄)) is a split quasi-hereditary cover of B and the
Schur functor 𝐹 = Hom𝑅 (𝐴) (Hom𝐴(𝑇, 𝑄),−) : 𝑅(𝐴)-mod → 𝐵-mod induces isomorphisms

Ext 𝑗
𝑅 (𝐴)

(𝑀, 𝑁) → Ext 𝑗𝐵 (𝐹𝑀, 𝐹𝑁), ∀ 0 ≤ 𝑗 ≤ 𝑄-codomdim(𝐴,𝑅) 𝑇 − 2,
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for all modules 𝑀, 𝑁 admitting a filtration by standard modules over the Ringel dual of A. The converse
holds if R is a field.

Theorem 5.3.1 clarifies that the relative dominant (as well as codominant) dimension of a character-
istic tilting module with respect to some summand Q of a characteristic tilting module measures how
far Q is from being a characteristic tilting module. Equivalently, it implies that the faithful dimension
of Q measures how far Q is from being a characteristic tilting module.

Recall that in Rouquier’s terminology, if the Schur functor associated with some split quasi-hereditary
cover (𝐴, 𝑃) is fully faithful on standard modules, then (𝐴, 𝑃) is called a 0-faithful (split quasi-hereditary)
cover of the endomorphism algebra of P. Theorem 5.3.1 implies that any 0-faithful split quasi-hereditary
cover of a finite-dimensional algebra can be detected using relative codominant dimension with respect
to a summand of a characteristic tilting module and, furthermore, the quality of such a cover is completely
controlled by this generalization of codominant dimension. When the quasi-hereditary cover admits a
simple preserving duality, the relative dominant dimension of a characteristic tilting module with respect
to Q coincides with the relative codominant dimension of a characteristic tilting module with respect to
Q, where Q is a summand of a characteristic tilting module.

We answer Question (2) by picking A to be the q-Schur algebra 𝑆𝑅,𝑞 (𝑛, 𝑑) in Theorem 5.3.1 and
fixing Q to be (𝑅𝑛)⊗𝑑 .

Technically, the relative dominant dimension with respect to (𝑅𝑛)⊗𝑑 is different from the one used in
[KSX01], but the approach taken in [KSX01] also works and is perhaps even better with the setup that we
investigate here. In fact, using the Schur functor from the module category over a bigger q-Schur algebra
𝑆𝑘,𝑞 (𝑑, 𝑑) to the module category over 𝑆𝑘,𝑞 (𝑛, 𝑑), we can deduce that (𝑅𝑛)⊗𝑑-domdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇 is
at least half of the relative dominant dimension domdim (𝑆𝑅,𝑞 (𝑑, 𝑑), 𝑅). The computation of the relative
dominant dimension of 𝑆𝑅,𝑞 (𝑑, 𝑑) is due to [FK11, FM19, Cru22b]. In particular, the relative dominant
dimension of 𝑆𝑅,𝑞 (𝑑, 𝑑) is at least two, independently of R and d. Combining this with deformation
techniques, we obtain the following:

Theorem (Theorem 8.1.3). Let R be a commutative Noetherian regular ring with invertible element
𝑢 ∈ 𝑅 and 𝑛, 𝑑 be natural numbers. Put 𝑞 = 𝑢−2. Let T be a characteristic tilting module of 𝑆𝑅,𝑞 (𝑛, 𝑑).
Denote by 𝑅(𝑆𝑅,𝑞 (𝑛, 𝑑)) the Ringel dual End𝑆𝑅,𝑞 (𝑛,𝑑) (𝑇)𝑜𝑝 of the q-Schur algebra 𝑆𝑅,𝑞 (𝑛, 𝑑) (there
are no restrictions on the natural numbers n and d). Then,

◦ (𝑅(𝑆𝑅,𝑞 (𝑛, 𝑑)),Hom𝑆𝑅,𝑞 (𝑛,𝑑) (𝑇, (𝑅
𝑛)⊗𝑑)) is a split quasi-hereditary cover of End𝑆𝑅,𝑞 (𝑛,𝑑) (𝑉 ⊗𝑑)𝑜𝑝;

◦ (𝑅(𝑆𝑅,𝑞 (𝑛, 𝑑)),Hom𝑆𝑅,𝑞 (𝑛,𝑑) (𝑇, (𝑅
𝑛)⊗𝑑)) is an ((𝑅𝑛)⊗𝑑-domdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇 − 2)-faithful (split

quasi-hereditary) cover of End𝑆𝑅,𝑞 (𝑛,𝑑) (𝑉 ⊗𝑑)𝑜𝑝 in the sense of Rouquier.

The existence of this split quasi-hereditary cover clarifies why the quasi-hereditary structure of the
Ringel dual of the Schur algebra can be used to study the decomposition numbers of the symmetric
group [Erd94]. This result also explains why [KSX01] were successful in using tilting theory to
establish Schur-Weyl duality (see Remark 3.1.11). If 𝑛 ≥ 𝑑, Ringel self-duality implies that the split
quasi-hereditary cover constructed in Theorem 8.1.3 is equivalent to the split quasi-hereditary cover
(𝑆𝑅,𝑞 (𝑛, 𝑑), (𝑅

𝑛)⊗𝑑). The quality of the latter was completely determined in [Cru24c, Subsections 7.1,
7.2]. In general, the usual strategy is not sufficient for 𝑞 = −1. In such a case, going integrally is crucial,
and we make use of deformation techniques (see Corollary 5.3.5).

In [Soe98, Corollary 2.3], Soergel proved that the blocks of the BGG category O are Ringel self-dual
by constructing the explicit functor giving Ringel self-duality. Unfortunately, such proof does not offer
much information on which structural properties of O force its blocks to be Ringel self-dual. Later in
[FKM00, Proposition 4], a different proof of Ringel self-duality of the blocks of the BGG category O
was presented using as main tool the Enright completion functor.

In [Cru24c, Subsection 7.3], the author studied projective Noetherian algebras 𝐴D that encode the
representation theory of any block of the BGG category O. The Ringel self-duality of blocks of the
BGG category O is reproved in Theorem 8.2.1 by applying Theorem 5.3.1 to the algebras 𝐴D making
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use of integral versions of Soergel’s Struktursatz. In particular, we can now regard Ringel self-duality of
the blocks of the BGG category O as an instance of uniqueness of covers from Rouquier’s cover theory.

Organization
This paper is structured as follows: Section 2 sets up the notation, properties and results on covers, split
quasi-hereditary algebras, relative dominant dimension over Noetherian algebras and approximation
theory to use later. In Section 3, we give the definition of relative dominant (resp. codominant) dimension
with respect to a module over a projective Noetherian algebra (Definition 3.0.1). In Subsection 3.1, we
explore a characterization of relative dominant (resp. codominant) dimension with respect to an A-
module Q in terms of homology over End𝐴(𝑄)𝑜𝑝 (Theorems 3.1.1-3.1.4). As an application of this
characterization, we see how the relative dominant dimension with respect to a module varies on
exact sequences and long exact sequences in general. In Subsection 3.2, we study how computations
of the relative dominant dimension 𝑄-domdim(𝐴,𝑅) 𝑀 can be reduced to computations over finite-
dimensional algebras over algebraically closed fields under mild assumptions on Q and M (Theorem
3.2.5 and Lemma 3.2.3). In Section 4, we discuss the relation between the relative dominant dimension
with respect to a module with the concept of reduced cograde with respect to a module. In Section 5,
we investigate relative codominant dimension with respect to a module as a tool to establish double
centralizer properties (Lemmas 5.1.1 and 5.1.2), to discover (Theorem 5.3.1 and Corollary 5.3.5) and
to control (Corollary 5.3.1(d)) the quality of split quasi-hereditary covers. In Subsection 5.4, we discuss
how under special conditions dominant dimension can be used as a tool to study Ringel self-duality. In
Section 6, we clarify what the relative dominant dimension with respect to a summand of a characteristic
tilting module measures. In Section 7, we explore how to obtain lower bounds to the quality of a split
quasi-hereditary cover of a quotient algebra 𝐵/𝐽 using the quality of split quasi-hereditary covers of
B. In Subsection 8.1, we construct a split quasi-hereditary cover of the quotient of the Iwahori-Hecke
algebra involved in classical Schur-Weyl duality constituted by a Ringel dual of a q-Schur algebra using
relative dominant dimension with respect to (𝑅𝑛)⊗𝑑 (Theorem 8.1.3). In Subsubsection 8.2.1, we use
cover theory and relative dominant dimension to reprove Ringel self-duality of the blocks of the BGG
category O (Theorem 8.2.1). In Subsubsection 8.2.2, we see how these techniques can be used for Schur
algebras.

2. Preliminaries

Throughout this paper, we assume that R is a Noetherian commutative ring with identity and A is a
projective Noetherian R-algebra, unless stated otherwise. Here, A is called a projective Noetherian
R-algebra if A is an R-algebra so that A is finitely generated projective as R-module. We call A a free
Noetherian R-algebra if A is a Noetherian R-algebra so that A is free of finite rank as R-module. The
module category of left A-modules is denoted by 𝐴-Mod. We denote by 𝐴-mod the full subcategory of
𝐴-Mod whose modules are finitely generated and by 𝐴-Proj the subcategory of 𝐴-Mod of projective
modules. Given 𝑀 ∈ 𝐴-mod, we denote by add𝐴 𝑀 (or just add 𝑀) the full subcategory of 𝐴-mod whose
modules are direct summands of a finite direct sum of copies of M. We write 𝐴-proj to denote add 𝐴. By
End𝐴(𝑀) we mean the endomorphism algebra of an A-module M. By 𝐴𝑜𝑝 , we mean the opposite algebra
of A. We denote by 𝐷𝑅 (or just D) the standard duality functor Hom𝑅 (−, 𝑅) : 𝐴-mod → 𝐴𝑜𝑝-mod.
We say that 𝑀 ∈ 𝐴-mod∩𝑅-proj is (𝐴, 𝑅)-injective if 𝑀 ∈ add 𝐷𝐴. By (𝐴, 𝑅)-inj∩𝑅-proj we
mean the full subcategory of 𝐴-mod∩𝑅-proj whose modules are (𝐴, 𝑅)-injective. By an (𝐴, 𝑅)-exact
sequence we mean an exact sequence of A-modules which splits as a sequence of R-modules. By an
(𝐴, 𝑅)-monomorphism we mean an homomorphism 𝑓 ∈ Hom𝐴(𝑀, 𝑁) that fits into an (𝐴, 𝑅)-exact
sequence of the form 0 → 𝑀

𝑓
−→ 𝑁 . By a generator we mean a module 𝑀 ∈ 𝐴-mod satisfying

𝐴 ∈ add 𝑀 . Given 𝑀 ∈ 𝐴-mod, we denote by pdim𝐴 𝑀 (resp. idim𝐴 𝑀) the projective (resp. injective)
dimension of M.
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2.0.0.1. Change of rings.
We denote by MaxSpec(𝑅) the set of maximal ideals of R and by Spec 𝑅 the set of prime ideals of R.
By dim 𝑅 we mean the Krull dimension of R. We denote by 𝑅𝔭 the localization of R at the prime ideal 𝔭,
and by 𝑀𝔭 the localization of M at 𝔭 for every 𝑀 ∈ 𝐴-mod. In particular, 𝑀𝔭 ∈ 𝐴𝔭-mod. We say that a
local commutative Noetherian ring is regular if it has finite global dimension. In such a case, the global
dimension coincides with the Krull dimension. We say that a commutative Noetherian ring is regular
if for every 𝔭 ∈ Spec 𝑅, 𝑅𝔭 is regular. We denote by 𝑅(𝔪) the residue field 𝑅/𝔪 
 𝑅𝔪/𝔪𝔪. For each
𝑀 ∈ 𝐴-mod, by 𝑀 (𝔪) we mean the finite-dimensional module 𝑅(𝔪) ⊗𝑅 𝑀 over 𝐴(𝔪) = 𝑅(𝔪) ⊗𝑅 𝐴.
By 𝑅× we denote the set of invertible elements of R. We write 𝐷 (𝔪) to abbreviate 𝐷𝑅 (𝔪) for every
𝔪 ∈ MaxSpec 𝑅.

2.0.0.2. The functor 𝐹𝑄.
Let 𝑄 ∈ 𝐴-mod∩𝑅-proj satisfying 𝐷𝑄 ⊗𝐴𝑄 ∈ 𝑅-proj. By 𝐹𝑄 (or just F when no confusion arises) we
mean the functor Hom𝐴(𝑄,−) : 𝐴-mod → 𝐵-mod, where B is the endomorphism algebra End𝐴(𝑄)𝑜𝑝 .
In particular, 𝐵 ∈ 𝑅-proj and 𝐵-mod is an abelian category. Hence, B is a projective Noetherian R-
algebra. Given two maps 𝛼 ∈ Hom𝐴(𝑋,𝑌 ), 𝛽 ∈ Hom𝐴(𝑍,𝑊), we say that f and g are equivalent if
there are A-isomorphisms 𝑓 : 𝑋 → 𝑍 , 𝑔 : 𝑌 → 𝑊 satisfying 𝑔 ◦ 𝛼 = 𝛽 ◦ 𝑓 . By I𝑄 (or just I when no
confusion arises) we mean the left adjoint of F, 𝑄 ⊗𝐵 − : 𝐵-mod → 𝐴-mod. We denote by 𝜐 the unit
id𝐵-mod → 𝐹I and 𝜒 the counit I𝐹 → id𝐴-mod. Thus, for any 𝑁 ∈ 𝐵-mod, 𝜐𝑁 is the B-homomorphism
𝜐𝑁 : 𝑁 → Hom𝐴(𝑄,𝑄 ⊗𝐵 𝑁), given by 𝜐𝑁 (𝑛) (𝑞) = 𝑞 ⊗ 𝑛, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄. For any 𝑀 ∈ 𝐴-mod, 𝜒𝑀
is the A-homomorphism 𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝑀) → 𝑀 , given by 𝜒𝑀 (𝑞 ⊗ 𝑔) = 𝑔(𝑞), 𝑔 ∈ 𝐹𝑀, 𝑞 ∈ 𝑄. By
projectivization, the restriction of F to add𝑄 gives an equivalence between add𝑄 and 𝐵-proj. Further,
for every 𝑋,𝑌 ∈ 𝐴-mod and every 𝑀, 𝑁 ∈ 𝐵-mod, 𝜐𝑀 ⊕𝑁 is equivalent to 𝜐𝑀 ⊕ 𝜐𝑁 and 𝜒𝑋 ⊕𝑌 is
equivalent to 𝜒𝑋 ⊕ 𝜒𝑌 , respectively. We shall write 𝜒𝑟 and 𝜐𝑟 for the counit and unit, respectively, of the
adjunction − ⊗𝐵 𝐷𝑄 
 Hom𝐴(𝐷𝑄,−). Given a left (resp. right) exact functor H between two module
categories, we denote by R𝑖 𝐻 (resp. L𝑖 𝐻) the i-th right (resp. left) derived functor of H for 𝑖 ∈ N. Recall
that ⊥𝑄 = {𝑀 ∈ 𝐴-mod∩𝑅-proj | Ext𝑖>0

𝐴 (𝑀,𝑄) = 0} is a resolving subcategory of 𝐴-mod∩𝑅-proj.
Analogously, 𝑄⊥ is defined.

2.0.0.3. Filtrations.
Recall that for a given set (possibly infinite) of modules Θ in 𝐴-mod∩𝑅-proj, F (Θ) denotes the full
subcategory of 𝐴-mod∩𝑅-proj whose modules admit a finite filtration by the modules in Θ. Given a set
of modules Θ in 𝐴-mod∩𝑅-proj, we denote by Θ̃ the set of modules {𝜃 ⊗𝑅 𝑋𝜃 : 𝜃 ∈ Θ, 𝑋𝜃 ∈ 𝑅-proj}.
The following well-known lemma allows us to identify the set 𝐹𝑄Θ̃ := {𝐹𝑄𝑋 : 𝑋 ∈ Θ̃} with the set�𝐹𝑄Θ, where 𝐹𝑄Θ := {𝐹𝑄𝜃 : 𝜃 ∈ Θ}.

Lemma 2.0.1. Let 𝑀, 𝑁 ∈ 𝐴-mod and 𝑈 ∈ 𝑅-proj. Then, the R-homomorphism
𝜍𝑀,𝑁 ,𝑈 : Hom𝐴(𝑀, 𝑁) ⊗𝑅𝑈 → Hom𝐴(𝑀, 𝑁⊗𝑅𝑈), given by 𝑔⊗𝑢 ↦→ 𝑔(−)⊗𝑢, is an R-isomorphism.

2.0.0.4. Basics on approximations.
Let 𝑇 ∈ 𝐴-mod. An A-homomorphism 𝑀 → 𝑁 is called a left add𝑇-approximation of M provided that
N belongs to add𝑇 and the induced homomorphism Hom𝐴(𝑁, 𝑋) → Hom𝐴(𝑀, 𝑋) is surjective for
every 𝑋 ∈ add𝑇 . A map 𝑓 ∈ Hom𝐴(𝑌, 𝑀) is called a right add𝑇-approximation of M if𝑌 ∈ add𝑇 and
Hom𝐴(𝑋, 𝑓 ) is surjective for every 𝑋 ∈ add𝑇 . So, 𝑓 ∈ Hom𝐴(𝑌, 𝑀) is a right add𝑇-approximation of
M if and only if the map Hom𝐴(𝑇, 𝑓 ) is surjective and 𝑌 ∈ add𝑇 .

Lemma 2.0.2. Let 𝑀,𝑇 ∈ 𝐴-mod∩𝑅-proj and 𝑁 ∈ add𝑇 . An A-homomorphism 𝑓 : 𝑀 → 𝑁 is a left
add𝑇-approximation of M if and only if 𝐷 𝑓 : 𝐷𝑁 → 𝐷𝑀 is a right add 𝐷𝑇-approximation of 𝐷𝑀 .

Proof. Clear since Hom𝐴(𝑇, 𝑓 ) and Hom𝐴(𝐷 𝑓 , 𝐷𝑇) are equivalent (see [Cru22b, Proposition 2.2]). �
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Let 𝑀,𝑇 ∈ 𝐴-mod∩𝑅-proj. It is easy to check that an (𝐴, 𝑅)-exact sequence 𝑋𝑡
𝛼𝑡
−−→ · · · → 𝑋1

𝛼1
−−→

𝑋0
𝛼0
−−→ 𝑀 → 0 remains exact under Hom𝐴(𝑇,−) with 𝑋𝑖 ∈ add𝑇 if and only if for every 𝑖 = 1, . . . , 𝑡,

the induced maps 𝑋𝑖 � im𝛼𝑖 and 𝛼0 are right add𝑇-approximations. Dually, an (𝐴, 𝑅)-exact sequence
0 → 𝑀

𝛼0
−−→ 𝑋0

𝛼1
−−→ 𝑋1 → · · · → 𝑋𝑡 remains exact under Hom𝐴(−, 𝑇) with 𝑋𝑖 ∈ add𝑇 if and only if

the (𝐴, 𝑅)-monomorphismsim𝛼𝑖+1 ↩→ 𝑋𝑖+1 and 𝛼0 are left add𝑇-approximations with 𝑖 = 0, . . . , 𝑡 − 1.

2.1. Split quasi-hereditary algebras

Quasi-hereditary algebras were introduced by Cline, Parshall and Scott in [CPS88], and were defined
in terms of the existence of a certain idempotent ideal chain reflecting structural properties of the
algebra like the finiteness of the global dimension. In [CPS90], the concept of quasi-hereditary algebra
was generalized to Noetherian algebras. Among them are the split quasi-hereditary algebras which
possess nicer properties with respect to change of ground rings. In particular, every quasi-hereditary
algebra over an algebraically closed field is split quasi-hereditary. A module theoretical approach to split
quasi-hereditary algebras over commutative Noetherian rings was considered in [Rou08]. In [Has00],
a comodule theoretical approach was developed to split quasi-hereditary algebras over commutative
Noetherian rings.

Definition 2.1.1. Given a projective Noetherian R-algebra A and a collection of finitely generated left
A-modules {Δ (𝜆) : 𝜆 ∈ Λ} indexed by a poset Λ, we say that (𝐴, {Δ (𝜆)𝜆∈Λ}) is a split quasi-hereditary
R-algebra if the following conditions hold:

(i) The modules Δ (𝜆) ∈ 𝐴-mod are projective over R and End𝐴(Δ (𝜆)) 
 𝑅, for all 𝜆 ∈ Λ.
(ii) Given 𝜆, 𝜇 ∈ Λ, if Hom𝐴(Δ (𝜆),Δ (𝜇)) ≠ 0, then 𝜆 ≤ 𝜇.

(iii) Given 𝜆 ∈ Λ, there is 𝑃(𝜆) ∈ 𝐴-proj and an exact sequence 0 → 𝐶 (𝜆) → 𝑃(𝜆) → Δ (𝜆) → 0
such that 𝐶 (𝜆) has a finite filtration by modules of the form Δ (𝜇) ⊗𝑅 𝑈𝜇 with 𝑈𝜇 ∈ 𝑅-proj and
𝜇 > 𝜆. Moreover, 𝑃 =

⊕
𝜆∈Λ

𝑃(𝜆) is a progenerator for 𝐴-mod.

Under these conditions, we also say that (𝐴-mod, {Δ (𝜆)𝜆∈Λ}) is a split highest weight category.
We use the terms split quasi-hereditary algebra and split highest weight category interchangeably. The
modules Δ (𝜆) are known as standard modules. Much of the structure of a split quasi-hereditary algebra
is controlled by the subcategory F (Δ̃), where Δ̃𝐴 or just Δ̃ (when there is no confusion on the ambient
algebra) denotes the set {Δ (𝜆) ⊗𝑅 𝑈𝜆 : 𝜆 ∈ Λ,𝑈𝜆 ∈ 𝑅-proj}. This subcategory contains all projective
finitely generated A-modules, it is closed under extensions, closed under kernels of epimorphisms, and
closed under direct summands. Hence, F (Δ̃) can be viewed as the full subcategory of 𝐴-mod∩𝑅-proj
whose modules admit a finite filtration by direct summands of a direct sum of copies of standard modules.

Given another split quasi-hereditary algebra (𝐶, {Δ𝐶 (𝜆)𝜆∈Ω}), A and C are Morita equivalent as
split quasi-hereditary algebras if there exists an equivalence of categories 𝐺 : 𝐴-mod → 𝐶-mod and a
bijection of posets Φ : Λ → Ω such that for all 𝜆 ∈ Λ, 𝐺Δ𝐴(𝜆) 
 Δ𝐶 (Φ(𝜆)) ⊗𝑅 𝑈𝜆 for some invertible
R-module 𝑈𝜆.

2.1.0.1. Split heredity chains.
An alternative way to define split quasi-hereditary algebras is via split heredity chains. An ideal J is
called split heredity of A if 𝐴/𝐽 ∈ 𝑅-proj, 𝐽 ∈ 𝐴-proj, 𝐽2 = 𝐽 and the R-algebra End𝐴(𝐽)𝑜𝑝 is Morita
equivalent to R. A chain of ideals 0 = 𝐽𝑡+1 ⊂ 𝐽𝑡 ⊂ · · · ⊂ 𝐽1 = 𝐴 is called split heredity if 𝐽𝑖/𝐽𝑖+1 is a
split heredity ideal in 𝐴/𝐽𝑖+1 for 1 ≤ 𝑖 ≤ 𝑡. The algebra A is split quasi-hereditary if it admits a split
heredity chain. Given an increasing bijection Λ → {1, . . . , 𝑡}, 𝜆 ↦→ 𝑖𝜆, the standard modules and the
split heredity chain are related by the following identification: im(𝜏𝑖) 
 𝐽𝑖/𝐽𝑖+1, where 𝜏𝑖 is the map
Δ 𝑖 ⊗𝑅 Hom𝐴/𝐽𝑖+1 (Δ 𝑖 , 𝐴/𝐽𝑖+1) → 𝐴/𝐽𝑖+1 given by 𝜏𝑖 (𝑙 ⊗ 𝑓 ) = 𝑓 (𝑙). For more details on this equivalence,
we refer to [Cru24a, 3.3] and [Rou08, Theorem 4.16].
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2.1.1. Costandard modules and characteristic tilting modules
A split quasi-hereditary algebra (𝐴, {Δ (𝜆)𝜆∈Λ}) also comes equipped with a set of modules
{∇(𝜆) : 𝜆 ∈ Λ} known as costandard modules. These modules satisfy the following properties.
Proposition 2.1.2. Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary algebra. Then,

(i) (𝐴𝑜𝑝 , {𝐷∇(𝜆)𝜆∈Λ}) is a split quasi-hereditary algebra;
(ii) F (∇̃) = {𝑋 ∈ 𝐴-mod∩𝑅-proj : Ext1𝐴(𝑀, 𝑋) = 0, ∀𝑀 ∈ F (Δ̃)}, where ∇̃ denotes the set

{∇(𝜆) ⊗𝑅 𝑈𝜆 : 𝜆 ∈ Λ,𝑈𝜆 ∈ 𝑅-proj};
(iii) For any 𝜇 ≠ 𝜆 ∈ Λ, Hom𝐴(Δ (𝜆),∇(𝜆)) 
 𝑅 and Hom𝐴(Δ (𝜇),∇(𝜆)) = 0;
(iv) The choice of costandard modules satisfying the previous assertions is unique up to isomorphism;
(v) F (Δ̃) = {𝑋 ∈ 𝐴-mod∩𝑅-proj : Ext1𝐴(𝑋, 𝑁) = 0, ∀𝑁 ∈ F (∇̃)};

(vi) For any 𝑀 ∈ F (Δ̃), the functor − ⊗𝐴 𝑀 : F (𝐷∇̃) → 𝑅-proj is well defined and exact;
(vii) For any 𝑁 ∈ F (∇̃), the functor 𝐷𝑁 ⊗𝐴 − : F (Δ̃) → 𝑅-proj is well defined and exact;

(viii) For any 𝑀 ∈ F (Δ̃) and 𝑁 ∈ F (∇̃), it holds Hom𝐴(𝑀, 𝑁) ∈ 𝑅-proj.
Proof. For (i), (ii), (iii), (iv), (v), we refer to [Cru24b, Proposition 3.1, Theorem 4.1] and [Rou08,
Proposition 4.19, Lemma 4.21]. For (vi), (vii), (viii), we refer to [Cru24b, Proposition 4.3., Corollary
4.4.]. �

The subcategories F (Δ̃) and F (∇̃) are determined and determine a characteristic tilting module.
We call T a characteristic tilting module if it is a tilting module satisfying add𝑇 = F (Δ̃) ∩ F (∇̃).
By a tilting A-module we mean a module of finite projective dimension, with Ext𝑖>0

𝐴 (𝑇, 𝑇) = 0, and the
regular module has a finite coresolution by modules in add𝑇 . Let T be a characteristic tilting module
of A. So, we have add𝑇 =add

⊕
𝜆∈Λ 𝑇 (𝜆) so that each 𝑇 (𝜆) with 𝜆 ∈ Λ fits into exact sequences of the

form

0 → Δ (𝜆) → 𝑇 (𝜆) → 𝑋 (𝜆) → 0, 0 → 𝑌 (𝜆) → 𝑇 (𝜆) → ∇(𝜆) → 0, (1)

with 𝑋 (𝜆) ∈ F (Δ̃𝜇<𝜆) and𝑌 (𝜆) ∈ F (∇̃𝜇<𝜆). Here, the set {Δ (𝜇) ⊗𝑅𝑈𝜇 : 𝜇 ∈ Λ, 𝜇 < 𝜆,𝑈𝜇 ∈ 𝑅-proj}
is denoted by Δ̃𝜇<𝜆. Analogously, the set ∇̃𝜇<𝜆 is defined. A fundamental difference between the
classical case is that, in general, we cannot choose 𝑇 (𝜆) to be indecomposable modules. But two distinct
characteristic tilting modules have the same additive closure. These can be chosen to be indecomposable
when the ground ring is a local commutative Noetherian ring. The philosophical reason is that any split
quasi-hereditary algebra over a local commutative Noetherian ring is semi-perfect ([Cru24a, Theorem
3.4.1]). Let 𝑇 =

⊕
𝜆∈Λ 𝑇 (𝜆) be a characteristic tilting module. It follows, by construction, that a module

𝑀 ∈ 𝐴-mod∩𝑅-proj belongs precisely to F (Δ̃) if and only if there exists a finite coresolution of M by
modules in add𝑇 . Dually, a module 𝑀 ∈ 𝐴-mod∩𝑅-proj belongs precisely to F (∇̃) if and only if there
exists a finite resolution of M by modules in add𝑇 . For details on these statements, we refer to [Cru24b]
and [Cru24a, Section 3, Appendix A and B].

2.1.1.1. Change of rings.
An important feature of split quasi-hereditary algebras is that they behave quite well under change of
rings. This manifests itself in the subcategories F (Δ̃) and F (∇̃) as follows:
Proposition 2.1.3. Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary R-algebra. Let 𝑀 ∈ 𝐴-mod. Let Q
be a commutative R-algebra and Noetherian ring. Then, the following assertions hold.
(a) (𝑄 ⊗𝑅 𝐴, {𝑄 ⊗𝑅 Δ (𝜆)𝜆∈Λ}) is a split quasi-hereditary algebra over Q. The costandard modules of

𝑄 ⊗𝑅 𝐴 are the form 𝑄 ⊗𝑅 ∇(𝜆), 𝜆 ∈ Λ.
(b) 𝑀 ∈ F (Δ̃) if and only if 𝑀 (𝔪) ∈ F (Δ (𝔪)) for all maximal ideals 𝔪 of R and 𝑀 ∈ 𝑅-proj.
(c) 𝑀 ∈ F (∇̃) if and only if 𝑀 (𝔪) ∈ F (∇(𝔪)) for all maximal ideals 𝔪 of R and 𝑀 ∈ 𝑅-proj.
(d) Let T be a characteristic tilting module. 𝑀 ∈ add𝑇 if and only if 𝑀 (𝔪) ∈ add𝑇 (𝔪) for all maximal

ideals 𝔪 of R and 𝑀 ∈ 𝑅-proj.
(e) Let 𝑀 ∈ F (Δ̃) and let 𝑁 ∈ F (∇̃). Then, 𝑄 ⊗𝑅 Hom𝐴(𝑀, 𝑁) 
 Hom𝑄⊗𝑅𝐴(𝑄 ⊗𝑅 𝑀,𝑄 ⊗𝑅 𝑁).
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Proof. For (a), we refer to [Rou08, Proposition 4.14], [Cru24a, Proposition 3.1.1] and [Cru24b, Propo-
sition 5.9]. For (b), (c) and (d), we refer to [Rou08, Proposition 4.30] and [Cru24b, Proposition 5.7].
For (e), we refer to [Cru24b, Corollary 5.6]. �

2.1.2. Ringel duality
Applying the methods of [AR91] to Artinian quasi-hereditary algebras, Ringel, in [Rin91], discovered
that the endomorphism algebras of characteristic tilting modules admit a quasi-hereditary structure. As
seen in [Cru24b, Section 7], split quasi-hereditary algebras over commutative Noetherian rings also
come in pairs. The Ringel dual of a split quasi-hereditary 𝑹-algebra (𝐴, {Δ (𝜆)𝜆∈Λ}) is, up to Morita
equivalence, the endomorphism algebra 𝑅(𝐴) := End𝐴(𝑇)𝑜𝑝 of a characteristic tilting module T of
A. The standard modules of 𝑅(𝐴) are Δ𝑅 (𝐴) (𝜆) = Hom𝐴(𝑇,∇(𝜆)) with 𝜆 ∈ Λ𝑜𝑝 , where Λ𝑜𝑝 is the
opposite poset of Λ. The Ringel dual functor Hom𝐴(𝑇,−) : 𝐴-mod → 𝑅(𝐴)-mod restricts to an exact
equivalence F (∇̃) → F (Δ̃𝑅 (𝐴) ); it sends costandard modules to standard modules, (partial) tilting
modules to projective modules and modules in add 𝐷𝐴 to tilting modules.

A split quasi-hereditary R-algebra is called Ringel self-dual if there exists an exact equivalence
between F (Δ̃) and F (∇̃) – that is, if A and 𝑅(𝐴) are Morita equivalent as split quasi-hereditary
algebras. For split quasi-hereditary algebras over local commutative Noetherian rings, it is enough to
test Ringel self-duality after applying extension of scalars from the local ground ring to its residue field.
For more details, we refer to [Cru24b].

2.1.3. The quasi-hereditary structure of 𝑒𝐴𝑒
Given a split quasi-hereditary algebra (𝐴, {Δ (𝜆)𝜆∈Λ}) over a field k, we call an idempotent e of A
cosaturated if there exists a subset Γ ⊂ Λ such that 𝑒 topΔ (𝜆) = 0 precisely when 𝜆 ≤ 𝜇 for some
𝜇 ∈ Γ. Using cosaturated idempotents, we can construct new split quasi-hereditary algebras from bigger
ones without using necessarily quotients by split heredity ideals.

Theorem 2.1.4. Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary algebra over a field k. Then,

(i) Let e be an idempotent of A and define Λ′ = {𝜆 ∈ Λ : 𝑒 topΔ (𝜆) ≠ 0}. Then, {𝑒 topΔ (𝜆) : 𝜆 ∈ Λ′}

is a full set of simple modules in 𝑒𝐴𝑒-mod.
(ii) Assume that there exists a cosaturated idempotent e. Set Λ′ = {𝜆 ∈ Λ : 𝑒 topΔ (𝜆) ≠ 0}. Then,

(I) (𝑒𝐴𝑒, {𝑒Δ (𝜆)𝜆∈Λ′ }) is a split quasi-hereditary algebra. The costandard modules of 𝑒𝐴𝑒 are
of the form {𝑒∇(𝜆) : 𝜆 ∈ Λ′}. Moreover, 𝑒Δ (𝜆) = 𝑒∇(𝜆) = 0 for 𝜆 ∈ Λ \ Λ′.

(II) The (Schur) functor Hom𝐴(𝐴𝑒,−) : 𝐴-mod → 𝑒𝐴𝑒-mod preserves (partial) tilting modules.
Moreover, the partial tilting indecomposable modules of 𝑒𝐴𝑒 are exactly {𝑒𝑇 (𝜆) : 𝜆 ∈ Λ′}

and 𝑒𝑇 (𝜆) = 0 for any 𝜆 ∈ Λ \ Λ′.
(III) Let 𝑀 ∈ F (Δ) and 𝑁 ∈ F (∇). Then, the Schur functor Hom𝐴(𝐴𝑒,−) : 𝐴-mod → 𝑒𝐴𝑒-mod

induces a surjective map Hom𝐴(𝑀, 𝑁) → Hom𝑒𝐴𝑒 (𝑒𝑀, 𝑒𝑁).

Proof. Statement (i) actually holds for finite-dimensional algebras, in general. We refer to [Gre81,
Theorem 6.2g]. For (I), see [Don98, Proposition A3.11]. For (III), see, for example, [Erd94, 1.7] or
[Don98, Lemma A3.12]. For (II), see [Don98, Lemma A4.5]. �

2.2. Covers

A module 𝑀 ∈ 𝐴-mod is said to have a double centralizer property if the canonical homomorphism
of R-algebras 𝐴 → EndEnd𝐴 (𝑀 )𝑜𝑝 (𝑀) is an isomorphism.

The concept of cover was introduced in [Rou08] to evaluate the quality of a module category with
an approximation, in some sense, by a highest weight category. Let 𝑃 ∈ 𝐴-proj. We say that the
pair (𝐴, 𝑃) is a cover of End𝐴(𝑃)𝑜𝑝 if there is a double centralizer property on Hom𝐴(𝑃, 𝐴) (as
a right A-module). Equivalently, (𝐴, 𝑃) is a cover of End𝐴(𝑃)𝑜𝑝 if and only if the Schur functor
𝐹𝑃 = Hom𝐴(𝑃,−) : 𝐴-mod → End𝐴(𝑃)𝑜𝑝-mod is fully faithful on 𝐴-proj. Fix 𝐵 = End𝐴(𝑃)𝑜𝑝 . Since
Hom𝐴(𝑃,−) : 𝐴-mod → 𝐵-mod is isomorphic to the functor Hom𝐴(𝑃, 𝐴) ⊗𝐴 − : 𝐴-mod → 𝐵-mod, it
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follows by Tensor-Hom adjunction that Hom𝐵 (Hom𝐴(𝑃, 𝐴),−) : 𝐵-mod → 𝐴-mod is right adjoint to
the Schur functor Hom𝐴(𝑃,−) : 𝐴-mod → 𝐵-mod. We denote by 𝜂 : id𝐴-mod → 𝐺 ◦ 𝐹 the unit of this
adjunction. Observe that Hom𝐴(𝑃, 𝐴) is a generator as a B-module and since 𝑃 ∈ 𝐴-proj, the functor
Hom𝐵 (Hom𝐴(𝑃, 𝐴),−) : 𝐵-mod → 𝐴-mod is fully faithful.

If (𝐴, {Δ (𝜆)𝜆∈Λ}) is a split quasi-hereditary algebra and (𝐴, 𝑃) is a cover of B, then we say that
(𝐴, 𝑃) is a split quasi-hereditary cover of B. Let A be a resolving subcategory of 𝐴-mod and let i be
a non-negative integer. Denote by 𝐹𝑃 the functor Hom𝐴(𝑃,−) : 𝐴-mod → 𝐵-mod and by 𝐺𝑃 its right
adjoint. We say that the pair (𝐴, 𝑃) is an 𝑖-A cover of B if the Schur functor 𝐹𝑃 induces isomorphisms
Ext 𝑗𝐴(𝑀, 𝑁) → Ext 𝑗𝐵 (𝐹𝑃𝑀, 𝐹𝑃𝑁), ∀𝑀, 𝑁 ∈ A, 0 ≤ 𝑗 ≤ 𝑖. We say that (𝐴, 𝑃) is an (−1)-A cover
of B if (𝐴, 𝑃) is a cover of B and the restriction of 𝐹𝑃 to A is faithful. In Rouquier’s terminology, when
(𝐴, {Δ (𝜆)𝜆∈Λ}) is a split quasi-hereditary algebra, an i-F (Δ̃) cover is known as an i-faithful cover. The
optimal value of i making (𝐴, 𝑃) an i-A of B is called the Hemmer-Nakano dimension of A (with
respect to P). In [Cru24c, Section 4], the author proved, for example, that the number of simple B-
modules is an upper bound to the quality of a split quasi-hereditary cover, if the Schur functor associated
with it is not fully faithful. We refer to [Cru24c] for further details. Furthermore, we refer the reader
to [Cru24c, Subsection 4.3] for the definition of the concept of equivalent covers and for sufficient
conditions for the uniqueness of a cover.

2.3. Relative dominant dimension over Noetherian algebras

In [FK11], it was established that dominant dimension of certain modules over finite-dimensional
algebras control the quality of many 𝐴-proj-covers and F (Δ)-covers of a finite-dimensional algebra
B. Such covers that are controlled in this way are formed by the endomorphism algebras of generator-
cogenerators over B.

In [Cru22b], the author generalized the concept of dominant dimension to projective Noetherian
algebras. In [Cru24c], the author showed that this invariant does not fully control the quality of a
cover in the integral setup, since more factors influence the cover. But, this invariant can be exploited
together with change of rings to compute the quality of a cover which is formed by an integral version
of the endomorphism algebra of a generator-cogenerator. Such integral versions first appear in [Cru22b,
Theorem 4.1] which we call relative Morita-Tachikawa correspondence.

Given 𝑀 ∈ 𝐴-mod, the relative dominant dimension of 𝑀 , denoted as domdim(𝐴,𝑅) 𝑀 , is

sup{𝑡 ∈ N : 0 → 𝑀 → 𝐼1 → · · · → 𝐼𝑡 is (𝐴, 𝑅)-exact, 𝐼1, . . . , 𝐼𝑡 ∈ 𝐴-proj∩add 𝐷𝐴} ∈ N ∪ {0, +∞}.

We just write domdim𝐴 𝑀 when R is a field.
We denote by domdim (𝐴, 𝑅) the relative dominant dimension of the regular module A. This concept

behaves well under extension of scalars. In particular, if domdim(𝐴,𝑅) 𝐴 ≥ 1, then domdim(𝐴,𝑅) 𝑀 =
inf{domdim𝐴(𝔪) 𝑀 (𝔪) : 𝔪 ∈ MaxSpec 𝑅} for any 𝑀 ∈ 𝐴-mod∩𝑅-proj (see [Cru22b, Theorem 6.13]).

Given 𝑀 ∈ 𝐴-mod, we say that M is an (𝐴, 𝑅)-injective-strongly faithful module if M is (𝐴, 𝑅)-
injective and there exists an (𝐴, 𝑅)-monomorphism 𝐴 ↩→ 𝑋 for some 𝑋 ∈ add 𝑀 . By a RQF3-algebra
we mean a triple (𝐴, 𝑃,𝑉) formed by a projective Noetherian R-algebra A, a projective (𝐴, 𝑅)-injective-
strongly faithful left A-module P and a projective (𝐴, 𝑅)-injective-strongly faithful right A-module V.

We recall the following properties relating relative dominant dimension with cover theory.

Proposition 2.3.1. Let (𝐴, 𝑃,𝑉) be an RQF3-algebra over a commutative Noetherian ring R. The
following assertions hold.

(a) If domdim (𝐴, 𝑅) ≥ 2, then (𝐴,Hom𝐴𝑜𝑝 (𝑉, 𝐴)) is a cover of End𝐴(𝑉).
(b) Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary algebra. Assume that T is a characteristic tilting

module of A. Then, (𝐴,Hom𝐴𝑜𝑝 (𝑉, 𝐴)) is an (domdim(𝐴,𝑅) 𝑇 − 2)-F (Δ̃) cover of End𝐴(𝑉).

Proof. For (a), see [Cru24c, Proposition 2.4.4.]. For (b), see [Cru24c, Theorem 6.0.1,
Theorem 6.2.1]. �
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3. Relative (co-)dominant dimension with respect to a module

In this part, we study a new generalization of relative dominant dimension over projective Noetherian al-
gebras and how it can be used to obtain information about the functor 𝐹𝑄, for some𝑄 ∈ 𝐴-mod∩𝑅-proj,
where we do not assume Q to be necessarily projective.

Definition 3.0.1. Let 𝑇, 𝑋 ∈ 𝐴-mod∩𝑅-proj. If X does not admit a left add𝑇-approximation which
is an (𝐴, 𝑅)-monomorphism, then we say that relative dominant dimension of 𝑿 with respect
to 𝑻 is zero. Otherwise, the relative dominant dimension of 𝑿 with respect to 𝑻, denoted by
𝑇-domdim(𝐴,𝑅) 𝑋 , is the supremum of all 𝑛 ∈ N ⊂ N ∪ {0, +∞} such that there exists an (𝐴, 𝑅)-exact
sequence 0 → 𝑋 → 𝑇1 → · · · → 𝑇𝑛 which remains exact under Hom𝐴(−, 𝑇) with all 𝑇𝑖 ∈ add𝑇 .

By convention, the empty direct sum is the zero module. So, the existence of a finite relative add𝑇-
coresolutions implies that 𝑇-domdim(𝐴,𝑅) 𝑋 is infinite. In the same way, we can define the relative
dominant dimension of a right module with respect to a right module Q. We write 𝑄-domdim (𝐴, 𝑅)
instead of 𝑄-domdim(𝐴,𝑅) 𝐴. We just write 𝑇-domdim𝐴 𝑋 if R is a field.

Definition 3.0.1 generalizes the concept of relative dominant dimension introduced in [Cru22b].

Proposition 3.0.2. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra
with domdim (𝐴, 𝑅) ≥ 1 with projective (𝐴, 𝑅)-injective-strongly faithful left A-module P. Then, for
any 𝑋 ∈ 𝐴-mod, we have 𝑃-domdim(𝐴,𝑅) 𝑋 = domdim(𝐴,𝑅) 𝑋.

Proof. See [Cru22b, Proposition 3.15]. �

In order to avoid changing from left to right modules systematically in the coming sections, we can
introduce the relative codominant dimension with respect to a module.

Definition 3.0.3. Let 𝑄, 𝑋 ∈ 𝐴-mod∩𝑅-proj. If X does not admit a surjective right add𝑄-
approximation, then we say that relative codominant dimension of 𝑿 with respect to 𝑸 is zero. Oth-
erwise, the relative codominant dimension of 𝑿 with respect to 𝑸, denoted by 𝑄-codomdim(𝐴,𝑅) 𝑋 ,
is the supremum of all 𝑛 ∈ N ⊂ N ∪ {0, +∞} such that there exists an (𝐴, 𝑅)-exact sequence
𝑄𝑛 → · · · → 𝑄1 → 𝑋 → 0 which remains exact under Hom𝐴(𝑄,−) with all 𝑄𝑖 ∈ add𝑄.

In particular, 𝐷𝑄-domdim(𝐴,𝑅) 𝐷𝑀 = 𝑄-codomdim(𝐴,𝑅) 𝑀 whenever 𝑄, 𝑀 ∈ 𝐴-mod∩𝑅-proj. As
we will see later, these two invariants coincide in our main cases of interest.

3.1. Relative Mueller’s characterisation of relative dominant dimension with respect to a module

In this section, we study a version of Mueller’s theorem for the relative dominant dimension with respect
to a module. The arguments for these results are inspired by [AS93, Proposition 2.1].

Theorem 3.1.1. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra.
Assume that 𝑄 ∈ 𝐴-mod∩𝑅-proj satisfying in addition that Hom𝐴(𝑄,𝑄) ∈ 𝑅-proj. Denote by B the
endomorphism algebra End𝐴(𝑄)𝑜𝑝 . For 𝑀 ∈ 𝐴-mod∩𝑅-proj and 𝑛 ∈ N, the following assertions hold.

(i) The counit 𝜒𝑀 : 𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝑀) → 𝑀 is surjective if and only if 𝐷𝑄-domdim(𝐴,𝑅) 𝐷𝑀 ≥ 1.
(ii) 𝜒𝑀 : 𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝑀) → 𝑀 is an isomorphism if and only if 𝐷𝑄-domdim(𝐴,𝑅) 𝐷𝑀 ≥ 2.

Proof. Assume that 𝜒𝑀 is surjective. Since Hom𝐴(𝑄, 𝑀) ∈ 𝐵-mod, there exists 𝑋 ∈ add𝑄 and a
surjective map Hom𝐴(𝑄, 𝑋) � Hom𝐴(𝑄, 𝑀), say g. The functor 𝑄 ⊗𝐵 − is right exact, so 𝑄 ⊗𝐵 𝑔 is
surjective as well. Define 𝑓 := 𝜒𝑀 ◦ 𝑄 ⊗𝐵 𝑔 ◦ 𝜒−1

𝑋 ∈ Hom𝐴(𝑋, 𝑀). The map f is surjective, and it
satisfies Hom𝐴(𝑄, 𝑓 ) = 𝑔. So 𝐷 𝑓 is an (𝐴, 𝑅)-monomorphism 𝐷𝑀 → 𝐷𝑋 which remains exact under
Hom𝐴(−, 𝐷𝑄). Thus, 𝐷𝑄-domdim(𝐴,𝑅) 𝐷𝑀 ≥ 1. Conversely, assume that 𝐷𝑄-domdim(𝐴,𝑅) 𝐷𝑀 ≥ 1.
So, there exists 𝑋 ∈ add 𝐷𝑄 and an (𝐴, 𝑅)-monomorphism 𝑓 : 𝐷𝑀 → 𝑋 which is also a left add 𝐷𝑄-
approximation. Since 𝜒 is a natural transformation between 𝑄 ⊗𝐵 Hom𝐴(𝑄,−) and id𝐵-mod, the map
𝐷 𝑓 ◦𝜒𝐷𝑋 = 𝜒𝐷𝐷𝑀 ◦𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝐷 𝑓 ) is surjective. In particular, 𝜒𝐷𝐷𝑀 is surjective. As 𝐷𝐷𝑀 


𝑀 , 𝜒𝑀 is surjective, and (i) follows.
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Now, assume that 𝐷𝑄-domdim(𝐴,𝑅) 𝐷𝑀 ≥ 2. Then, there exists an (𝐴, 𝑅)-exact sequence 0 →

𝐷𝑀
𝑓0
−→ 𝑋0

𝑓1
−→ 𝑋1, with 𝑋0, 𝑋1 ∈ add 𝐷𝑄, which remains exact under Hom𝐴(−, 𝐷𝑄). As 𝑄 ⊗𝐵 − is

right exact, the following diagram is commutative with exact rows:

𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝐷𝑋1) 𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝐷𝑋0) 𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝐷𝐷𝑀)

𝐷𝑋1 𝐷𝑋0 𝐷𝐷𝑀

𝑄⊗𝐵Hom𝐴 (𝑄,𝐷 𝑓1)𝜒𝐷𝑋1

𝑄⊗𝐵Hom𝐴 (𝑄,𝐷 𝑓0)𝜒𝐷𝑋0
 𝜒𝐷𝐷𝑀

𝐷 𝑓1 𝐷 𝑓0

. (2)

By diagram chasing, 𝜒𝐷𝐷𝑀 is an isomorphism. Since 𝐷𝐷𝑀 
 𝑀 , 𝜒𝑀 is an isomorphism. Conversely,
assume that 𝜒𝑀 is an isomorphism. B is a Noetherian R-algebra, so we can consider a projective B-
presentation for Hom𝐴(𝑄, 𝑀) of the form Hom𝐴(𝑄,𝑄𝑚) Hom𝐴(𝑄,𝑄𝑛) Hom𝐴(𝑄, 𝑀)

𝑔1 𝑔0 for
some integers 𝑚, 𝑛. Since Hom𝐴(𝑄,−)|add𝑇 is full and faithful, there exists 𝑓1 ∈ Hom𝐴(𝑄

𝑚, 𝑄𝑛) such
that Hom𝐴(𝑄, 𝑓1) = 𝑔1. Fix 𝑓0 = 𝜒𝑀 ◦𝑄 ⊗𝐵 𝑔0 ◦ 𝜒−1

𝑄𝑛 . In particular, Hom𝐴(𝑄, 𝑓0) = 𝑔0. Hence,

𝑄 ⊗𝐵 Hom𝐴(𝑄,𝑄𝑚) 𝑄 ⊗𝐵 Hom𝐴(𝑄,𝑄𝑛) 𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝑀)

𝑄𝑚 𝑄𝑛 𝑀

𝑄⊗𝐵𝑔1
𝜒𝑄𝑚


𝑄⊗𝐵𝑔0
𝜒𝑄𝑛
 𝜒𝑀

𝑓1 𝑓0

(3)

is a commutative diagram. Since the vertical maps are isomorphisms and the upper row is exact, it
follows that the bottom row is exact and by construction, and it remains exact under Hom𝐴(𝑄,−).
As 𝑀 ∈ 𝑅-proj, it is, also, (𝐴, 𝑅)-exact. By applying the standard duality D, we obtain that
𝐷𝑄-domdim(𝐴,𝑅) 𝐷𝑀 ≥ 2. �

Remark 3.1.2. Note that, for each 𝑀 ∈ 𝐴-mod∩𝑅-proj, the map 𝜒𝑀 is equivalent to the map 𝛿𝐷𝑀

studied in [Cru22b, Lemma 3.21] when 𝑄 = 𝑃 is a projective (𝐴, 𝑅)-injective-strongly faithful module.

Similarly, we can write the dual version of Theorem 3.1.1.

Theorem 3.1.3. Let R be a commutative Noetherian ring. Let A be projective Noetherian R-algebra.
Assume that 𝑄 ∈ 𝐴-mod∩𝑅-proj satisfying in addition that Hom𝐴(𝑄,𝑄) ∈ 𝑅-proj. Denote by B the
endomorphism algebra End𝐴(𝑄)𝑜𝑝 . For 𝑀 ∈ 𝐴-mod∩𝑅-proj, the following assertions hold.

(i) 𝜒𝑟𝐷𝑀 : Hom𝐴(𝐷𝑄, 𝐷𝑀) ⊗𝐵 𝐷𝑄 → 𝐷𝑀 is surjective if and only if 𝑄-domdim(𝐴,𝑅) 𝑀 ≥ 1.
(ii) 𝜒𝑟𝐷𝑀 : Hom𝐴(𝐷𝑄, 𝐷𝑀) ⊗𝐵 𝐷𝑄 → 𝐷𝑀 is an isomorphism if and only if 𝑄-domdim(𝐴,𝑅) 𝑀 ≥ 2.

In fact, Theorem 3.1.1 characterizes the smaller cases of relative codominant dimension with respect
to a module. Now, the second part of the Mueller version for relative (co-)dominant dimension with
respect to a module is as follows:

Theorem 3.1.4. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra.
Assume that 𝑄 ∈ 𝐴-mod∩𝑅-proj satisfying in addition that Hom𝐴(𝑄,𝑄) ∈ 𝑅-proj. Denote by B the
endomorphism algebra End𝐴(𝑄)𝑜𝑝 . For 𝑀 ∈ 𝐴-mod∩𝑅-proj and 𝑛 ∈ N, the following assertions hold.

(i) 𝑄-codomdim(𝐴,𝑅) 𝑀 ≥ 𝑛 ≥ 2 if and only if 𝜒𝑀 : 𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝑀) → 𝑀 is an isomorphism of
left A-modules and Tor𝐵𝑖 (𝑄,Hom𝐴(𝑄, 𝑀)) = 0, 1 ≤ 𝑖 ≤ 𝑛 − 2.

(ii) 𝑄-domdim(𝐴,𝑅) 𝑀 ≥ 𝑛 ≥ 2 if and only if 𝜒𝑟𝐷𝑀 : Hom𝐴(𝐷𝑄, 𝐷𝑀) ⊗𝐵 𝐷𝑄 → 𝐷𝑀 is an isomor-
phism and Tor𝐵𝑖 (Hom𝐴(𝐷𝑄, 𝐷𝑀), 𝐷𝑄) = Tor𝐵𝑖 (Hom𝐴(𝑀,𝑄), 𝐷𝑄) = 0, 1 ≤ 𝑖 ≤ 𝑛 − 2.

Proof. We shall prove (i). Assume that 𝐷𝑄-domdim(𝐴,𝑅) 𝐷𝑀 ≥ 𝑛 ≥ 2. By Theorem 3.1.1, 𝜒𝑀 is an
isomorphism. By definition, there exists an (𝐴, 𝑅)-exact sequence 𝛿 : 𝐷𝑀 ↩→ 𝑋0 → 𝑋1 → · · · → 𝑋𝑛−1
which remains exact under Hom𝐴(−, 𝐷𝑄) with 𝑋𝑖 ∈ add 𝐷𝑄, 𝑖 = 0, . . . , 𝑛 − 1. In particular,
Hom𝐴(𝑋𝑛−1, 𝐷𝑄) → · · · → Hom𝐴(𝑋0, 𝐷𝑄) → Hom𝐴(𝐷𝑀, 𝐷𝑄) → 0 is exact and can be continued
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to a left projective B-resolution of Hom𝐴(𝑄, 𝑀). Consider the following commutative diagram:

𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝐷𝑋𝑛−1) · · · 𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝐷𝑋0) 𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝑀)

𝐷𝑋𝑛−1 · · · 𝐷𝑋0 𝐷𝐷𝑀

𝜒𝐷𝑋𝑛−1
 𝜒𝐷𝑋0
 𝜒𝐷𝐷𝑀
 . (4)

Observe that the bottom row is exact since the exact sequence 𝛿 is (𝐴, 𝑅)-exact. Since all vertical maps
are isomorphisms, it follows that the upper row is exact. Thus, Tor𝐵𝑖 (𝑄,Hom𝐴(𝑄, 𝑀)) = 0, 1 ≤ 𝑖 ≤ 𝑛−2.

Conversely, assume that 𝜒𝑀 is an isomorphism and Tor𝐵𝑖 (𝑄,Hom𝐴(𝑄, 𝑀)) = 0 for 1 ≤ 𝑖 ≤ 𝑛 − 2.
Let Hom𝐴(𝑄, 𝑋𝑛−1)

𝑔𝑛−1
−−−→ · · · → Hom𝐴(𝑄, 𝑋0)

𝑔0
−−→ Hom𝐴(𝑄, 𝑀) → 0 be a truncated projective

B-resolution of Hom𝐴(𝑄, 𝑀) and 𝑋𝑖 ∈ add𝐴𝑄. Furthermore, Hom𝐴(𝑄,−)|add𝑄 is full and faithful,
so each map 𝑔𝑖 can be written as Hom𝐴(𝑄, 𝑓𝑖) including 𝑔0 since 𝜒𝑀 is an isomorphism, where
𝑓𝑖 ∈ Hom𝐴(𝑋𝑖 , 𝑋𝑖−1) and 𝑓0 ∈ Hom𝐴(𝑋0, 𝑀). So, we have a commutative diagram

𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝑋𝑛−1) · · · 𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝑋0) 𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝑀)

𝑋𝑛−1 · · · 𝑋0 𝑀

𝜒𝑋𝑛−1 

𝑄⊗𝐵Hom𝐴 (𝑄, 𝑓𝑛−1) 𝑄⊗𝑔0

𝜒𝑋0
 𝜒𝑀


𝑓𝑛−1 𝑓0

. (5)

By assumption, Tor𝐵𝑖 (𝑄,Hom𝐴(𝑄, 𝑀)) = 0, 1 ≤ 𝑖 ≤ 𝑛−2. So, the upper row is exact. By the exactness
and the vertical maps being isomorphisms, the bottom row becomes exact. Since 𝑀 ∈ 𝑅-proj, it is also
(𝐴, 𝑅)-exact, and so it remains (𝐴, 𝑅)-exact under D. By construction, the bottom row remains exact
under Hom𝐴(𝑄,−); thus, 𝐷𝑄-domdim(𝐴,𝑅) 𝐷𝑀 ≥ 𝑛 ≥ 2. The statement (ii) is analogous to (i). �

Remark 3.1.5. The condition Hom𝐴(𝑄,𝑄) ∈ 𝑅-proj is used to enforce that B is a projective Noetherian
R-algebra same as A. Having only the criteria in Theorems 3.1.4 and 3.1.1, we can observe that the
arguments carry over if B is just a Noetherian R-algebra.

3.1.1. Identities on relative dominant and codominant dimension
An immediate consequence of Theorems 3.1.4 and 3.1.1 is the following.

Corollary 3.1.6. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra.
Assume that 𝑄 ∈ 𝐴-mod∩𝑅-proj satisfying in addition that Hom𝐴(𝑄,𝑄) ∈ 𝑅-proj. Then,

𝐷𝑄-domdim (𝐴, 𝑅) = 𝑄-codomdim(𝐴,𝑅) 𝐷𝐴 = 𝑄-domdim (𝐴, 𝑅).

Proof. By Tensor-Hom adjunction, there are bimodule isomorphisms 𝜓 : Hom𝐴(𝑄, 𝐷𝐴) → 𝐷𝑄
and 𝜔 : 𝑄 → Hom𝐴(𝐷𝑄, 𝐷𝐴). In particular, 𝜓 is a left B-isomorphism, while 𝜔 is a right B-
isomorphism. Moreover, 𝜒𝑟𝐷𝐴 ◦𝜔 ⊗𝐵 𝜓 = 𝜒𝐷𝐴. By Theorems 3.1.1 and 3.1.3, 𝐷𝑄-domdim (𝐴, 𝑅) ≥ 𝑖
if and only if 𝑄-domdim (𝐴, 𝑅) ≥ 𝑖 for 𝑖 = 1, 2. By Theorem 3.1.4, 𝐷𝑄-domdim (𝐴, 𝑅) =
𝐷𝑄-domdim(𝐴,𝑅) 𝐷𝐷𝐴𝐴 ≥ 𝑛 ≥ 2 if and only if 𝜒𝐷𝐴 is an isomorphism and 0 =
Tor𝐵𝑖 (𝑄,Hom𝐴(𝑄, 𝐷𝐴)) = Tor𝐵𝑖 (𝑄, 𝐷𝑄) = Tor𝐵𝑖 (Hom𝐴(𝐷𝑄, 𝐷𝐴), 𝐷𝑄), 1 ≤ 𝑖 ≤ 𝑛 − 2. The latter is
equivalent to 𝑄-domdim (𝐴, 𝑅) ≥ 𝑛 ≥ 2. �

It follows, by Theorem 3.1.4 and Corollary 3.1.6 (see also [ASS06, A.4]), that the relative dominant
dimension of the regular module with respect to a module Q over a finite-dimensional algebra coincides
with the faithful dimension of 𝑸 introduced in [BS98].

There is a version of Corollary 3.1.6 for (partial) tilting modules, if the split quasi-hereditary algebra
admits a duality functor on 𝐴-mod∩𝑅-proj interchanging Δ (𝜆) with ∇(𝜆) (or a simple preserving
duality if the ground ring is a field). Here, by a duality functor on 𝐴-mod∩𝑅-proj we mean an exact,
involutive and contravariant autoequivalence of categories 𝐴-mod∩𝑅-proj → 𝐴-mod∩𝑅-proj.

https://doi.org/10.1017/fms.2024.108 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.108


14 T. Cruz

Proposition 3.1.7. Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary R-algebra with a characteristic
tilting module T. Let𝑉 ∈ add𝐴𝑇 and assume that ♮ (−) : 𝐴-mod∩𝑅-proj → 𝐴-mod∩𝑅-proj is a duality
satisfying ♮Δ (𝜆) = ∇(𝜆) and ♮𝑉 
 𝑉 for all 𝜆 ∈ Λ. Then, 𝑉-domdim(𝐴,𝑅) 𝑇 = 𝑉-codomdim(𝐴,𝑅) 𝑇 .

Proof. Assume that 𝑉-domdim(𝐴,𝑅) 𝑇 ≥ 𝑛 ≥ 1 for 𝑛 ∈ N. By definition, there exists an (𝐴, 𝑅)-exact
sequence 𝛿 : 0 → 𝑇 → 𝑉0 → 𝑉1 → · · · → 𝑉𝑛−1, with 𝑉𝑖 ∈ add𝐴𝑉, which remains exact under
Hom𝐴(−, 𝑉). Applying the duality ♮ (−) to 𝛿, we obtain the exact sequence ♮𝛿 : ♮𝑉𝑛−1 → · · · →
♮𝑉1 → ♮𝑉0 → ♮𝑇 → 0. Applying ♮ (−) to the exact sequences defining 𝑇 (𝜆), we obtain that ♮𝑇 is
also a characteristic tilting module and so add𝑇 = add ♮𝑇 . In particular, ♮𝛿 is (𝐴, 𝑅)-exact. It remains
to show that ♮𝛿 remains exact under Hom𝐴(𝑉,−) 
 Hom𝐴(

♮𝑉,−). To see this, note that for every
homomorphism 𝑓 ∈ Hom𝐴(𝑁, 𝐿), the maps Hom𝐴(

♮𝑉, ♮ 𝑓 ) and Hom𝐴( 𝑓 , 𝑉) are equivalent since ♮ (−)

is a duality. Hence, Hom𝐴(
♮𝑉, ♮𝛿) is an exact complex since Hom𝐴(𝛿,𝑉) is so (see also Lemma 2.0.2).

Hence, 𝑉-codomdim(𝐴,𝑅) 𝑇 ≥ 𝑛 ≥ 1. Conversely, 𝑉-codomdim(𝐴,𝑅) 𝑇 = 𝐷𝑉-domdim(𝐴,𝑅) 𝐷𝑇 ≥

𝐷𝑉-codomdim(𝐴,𝑅) 𝐷𝑇 = 𝑉-domdim(𝐴,𝑅) 𝑇 . �

3.1.2. Behavior of relative dominant dimension on long exact sequences
Using Theorem 3.1.4, it is now clear how the relative dominant dimension with respect to a module
behaves on short exact sequences.

Lemma 3.1.8. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra.
Assume that 𝑄 ∈ 𝐴-mod∩𝑅-proj satisfying in addition that Hom𝐴(𝑄,𝑄) ∈ 𝑅-proj. Let 𝑀 ∈ 𝑅-proj
and consider the following (𝐴, 𝑅)-exact 0 → 𝑀1 → 𝑀 → 𝑀2 → 0 which remains exact under
Hom𝐴(−, 𝑄). Let 𝑛 = 𝑄-domdim(𝐴,𝑅) 𝑀 and 𝑛𝑖 = 𝑄-domdim(𝐴,𝑅) 𝑀𝑖 . Then, the following holds.

(a) 𝑛 ≥ min{𝑛1, 𝑛2}.
(b) If 𝑛1 < 𝑛, then 𝑛2 = 𝑛1 − 1.
(c) (i) 𝑛1 = 𝑛 =⇒ 𝑛2 ≥ 𝑛 − 1.

(ii) 𝑛1 = 𝑛 + 1 =⇒ 𝑛2 ≥ 𝑛.
(iii) 𝑛1 ≥ 𝑛 + 2 =⇒ 𝑛2 = 𝑛.

(d) 𝑛 < 𝑛2 =⇒ 𝑛1 = 𝑛.
(e) (i) 𝑛 = 𝑛2 =⇒ 𝑛1 ≥ 𝑛2.

(ii) 𝑛 = 𝑛2 + 1 =⇒ 𝑛1 ≥ 𝑛2 + 1.
(iii) 𝑛 ≥ 𝑛2 + 2 =⇒ 𝑛1 = 𝑛2 + 1.

Proof. By assumption, 0 → Hom𝐴(𝐷𝑄, 𝐷𝑀2) → Hom𝐴(𝐷𝑄, 𝐷𝑀) → Hom𝐴(𝐷𝑄, 𝐷𝑀1) → 0 is
exact. The remaining of the proof is exactly analogous to Lemma 5.12 of [Cru22b]. �

Corollary 3.1.9. Assume that 𝑄 ∈ 𝐴-mod∩𝑅-proj satisfying in addition that Hom𝐴(𝑄,𝑄) ∈ 𝑅-proj.
Let 𝑀𝑖 ∈ 𝐴-mod∩𝑅-proj, 𝑖 ∈ 𝐼, for some finite set I. Then,

𝑄-domdim(𝐴,𝑅)

(⊕
𝑖∈𝐼

𝑀𝑖

)
= inf{𝑄-domdim(𝐴,𝑅) 𝑀𝑖 : 𝑖 ∈ 𝐼}.

Proof. The argument given in [Cru22b, Corollary 5.10] works in this setup replacing the use of [Cru22b,
Theorem 5.2, Proposition 3.23] by Theorems 3.1.1 and 3.1.4. �

Usually, proving that a certain exact sequence remains exact under a certain Hom functor might be
difficult. Sometimes, we can assert that the existence of an (𝐴, 𝑅)-exact sequence implies the existence
of another whose morphisms can be factored through add𝑄-approximations for some module Q.

Lemma 3.1.10. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra,
𝑄, 𝑀 ∈ 𝐴-mod∩𝑅-proj, 𝑛 ∈ N and 𝑋𝑖 ∈ add𝑄 for 1 ≤ 𝑖 ≤ 𝑛. Assume that there exists an (𝐴, 𝑅)-exact
sequence 𝛿 : 0 → 𝑀 → 𝑋1 → · · · → 𝑋𝑛, with 𝑋𝑖 ∈ add𝑄, which remains exact under Hom𝐴(−, 𝑄),
that can be continued to an (𝐴, 𝑅)-exact sequence 0 → 𝑀 → 𝑋1 → · · · → 𝑋𝑛

ℎ
−→ 𝑌 with 𝑌 ∈ add𝑄.

Then, 𝑄-domdim(𝐴,𝑅) 𝑀 ≥ 𝑛 + 1.
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Proof. Consider the exact sequence 𝐷𝛿. Denote by 𝛼𝑖 the maps 𝐷𝑋𝑖 → 𝐷𝑋𝑖−1, where we
fix 𝑋0 := 𝐷𝑀 . The map 𝐷ℎ admits a factorization through ker𝛼𝑛, say 𝜈 ◦ 𝜋. Since B
is a Noetherian R-algebra, there exists 𝑍 ∈ add 𝐷𝑄 such that there exists a surjective map
𝑔 : Hom𝐴(𝐷𝑄, 𝑍) → Hom𝐴(𝐷𝑄, ker𝛼𝑛). Further, by projectization, the map Hom𝐴(𝐷𝑄, 𝜈) ◦ 𝑔
is equal to Hom𝐴(𝐷𝑄, 𝑓 ) for some 𝑓 ∈ Hom𝐴(𝑍, 𝐷𝑋𝑛). By construction, the sequence
𝑍

𝑓
−→ 𝐷𝑋𝑛−1 → · · · → 𝐷𝑋1 → 𝐷𝑀 → 0 becomes exact under Hom𝐴(𝐷𝑄,−), and if exact, it

is (𝐴, 𝑅)-exact. So, it is enough to show that ker𝛼𝑛 = im 𝑓 . This is clear since 𝜒𝑟𝑍 is an isomorphism,
and so 𝛼𝑛 ◦ 𝑓 = 0 which, in turn, implies that 𝑔 = Hom𝐴(𝐷𝑄, 𝑠) for some 𝑠 ∈ Hom𝐴(𝑍, ker𝛼𝑛). By
construction, this map is therefore surjective since 𝜋 must factor through s. So, the result holds. �

Remark 3.1.11. Observe that Theorem 2.8 of [KSX01] and Theorem 2.15 of [KSX01] are particular
cases of Lemma 3.1.10 (when 𝑛 = 1) and Theorem 3.1.3.

In contrast to Lemma 3.1.10, if we know the last map in an exact sequence and its cokernel, then
we can deduce the value of the relative dominant dimension with respect to a module using that exact
sequence.

Proposition 3.1.12. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra
and 𝑄 ∈ 𝐴-mod∩𝑅-proj so that Hom𝐴(𝑄,𝑄) ∈ 𝑅-proj and Ext𝑖>0

𝐴 (𝑄,𝑄) = 0. Suppose that 𝑀 ∈ ⊥𝑄.
An (𝐴, 𝑅)-exact sequence 𝛿 : 0 → 𝑀 → 𝑄1 → · · · → 𝑄𝑛 yields 𝑄-domdim(𝐴,𝑅) 𝑀 ≥ 𝑛 if and only if
𝑄𝑖 ∈ add𝑄 and the cokernel of 𝑄𝑛−1 → 𝑄𝑛 belongs to ⊥𝑄.

Proof. Denote by 𝑋𝑖 the cokernel of 𝑄𝑖−1 → 𝑄𝑖 and fix 𝑄0 = 𝑀 . Assume that 𝑄𝑖 ∈ add𝑄 and
𝑋𝑛 ∈ ⊥𝑄. So, 𝑋𝑛 ∈ 𝑅-proj and 𝛿 is (𝐴, 𝑅)-exact. It follows that Ext1𝐴(𝑋𝑖 , 𝑄) 
 Ext𝑛−𝑖+1

𝐴 (𝑋𝑛, 𝑄) = 0.
This means that 𝛿 remains exact under Hom𝐴(−, 𝑄), and so 𝑄-domdim(𝐴,𝑅) 𝑀 ≥ 𝑛.

Conversely, assume that 𝛿 yields𝑄-domdim(𝐴,𝑅) 𝑀 ≥ 𝑛. By assumption,𝑄𝑖 ∈ add𝑄 and 𝛿 is (𝐴, 𝑅)-
exact. Hence, 𝑋𝑛 ∈ 𝐴-mod∩𝑅-proj. Combining the conditions of Ext𝑖>0

𝐴 (𝑄𝑖 , 𝑄) = 0, Hom𝐴(−, 𝑄)

being exact on 𝛿 and 𝑀 ∈ ⊥𝑄, it follows by induction on i that 𝑋𝑖 ∈ ⊥𝑄. �

We note the following application of Lemma 3.1.8 useful in examples.

Corollary 3.1.13. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra.
Assume that𝑄 ∈ 𝐴-mod∩𝑅-proj satisfies in addition that Hom𝐴(𝑄,𝑄) ∈ 𝑅-proj and Ext𝑖>0

𝐴 (𝑄,𝑄) = 0.
Let 𝑀 ∈ 𝐴-mod∩𝑅-proj and an (𝐴, 𝑅)-exact sequence 0 → 𝑀 → 𝑄1 → · · · → 𝑄𝑡 → 𝑋 → 0. If
Ext𝑖𝐴(𝑋,𝑄) = 0 and 𝑄𝑖 ∈ add𝑄 for 1 ≤ 𝑖 ≤ 𝑡, then 𝑄-domdim(𝐴,𝑅) 𝑀 = 𝑡 +𝑄-domdim(𝐴,𝑅) 𝑋 .

Proof. Let 𝐶𝑖 be the image of the maps 𝑄𝑖 → 𝑄𝑖+1, 𝑖 = 1, . . . , 𝑡 − 1. Since 𝑄 ∈ ⊥𝑄, it follows that
Ext1𝐴(𝐶𝑖 , 𝑄) 
 Ext𝑡−𝑖+1

𝐴 (𝑋,𝑄) = 0. So, the exact sequences 0 → 𝐶𝑖 → 𝑄𝑖+1 → 𝐶𝑖+1 → 0 are exact
under Hom𝐴(−, 𝑄) (also with 𝐶0 = 𝑀 and 𝐶𝑡 = 𝑋). By Lemma 3.1.8 and induction on i, the result
follows. �

3.1.2.1. Projective dimension as an upper bound for relative dominant dimension.
We should point out that under certain conditions, the relative dominant dimension of the regular module
with respect to a module Q is bounded above (if finite) by the projective dimension of Q.

Proposition 3.1.14. Let R be a commutative Noetherian ring and A be a projective Noetherian R-
algebra. Let Q be a module in 𝑄 ∈ 𝐴-mod∩𝑅-proj with 𝑄 ∈ ⊥𝑄 and 𝐵 := End𝐴(𝑄)𝑜𝑝 ∈ 𝑅-proj so that
the projective dimensions pdim𝐴𝑄 and pdim𝐵 𝑄 are finite. If 𝑄-domdim (𝐴, 𝑅) > max{pdim𝐵 𝑄, 2},
then Q is a tilting A-module.

Proof. Fix 𝑛 = pdim𝐵 𝑄. By assumption, 𝐷𝑄-codomdim(𝐴𝑜𝑝 ,𝑅) 𝐷𝐴 ≥ 𝑛 + 1, and so Tor𝐵𝑖 (𝑄, 𝐷𝑄) =
0 for 𝑖 = 1, . . . , 𝑛 − 1 and 𝑄 ⊗𝐵 𝐷𝑄 
 𝐷𝐴 by Theorem 3.1.4. Therefore, applying − ⊗𝐵 𝐷𝑄 to a
projective resolution of Q over B yields an exact sequence 0 → 𝑋𝑛 → · · · → 𝑋0 → 𝑄 ⊗𝐵 𝐷𝑄 → 0
with 𝑋𝑖 ∈ add 𝐷𝑄. By applying D to this exact sequence, we obtain that Q is a tilting A-module. �
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3.2. Change of rings on relative dominant dimension with respect to a module

We now show that the relative dominant dimension with respect to a module behaves well under change
of rings techniques. As usual, the following results also hold for right A-modules and consequently
with codominant dimension in place of dominant dimension. For brevity, we consider only the left
versions. In the following, we say that a module 𝑄 ∈ 𝐴-mod∩𝑅-proj has a base change property
if Hom𝐴(𝑄,𝑄) ∈ 𝑅-proj and for every commutative R-algebra Noetherian ring S, the canonical map
𝑆 ⊗𝑅 Hom𝐴(𝑄,𝑄) → Hom𝑆⊗𝑅𝐴(𝑆 ⊗𝑅 𝑄, 𝑆 ⊗𝑅 𝑄) is an isomorphism.

Lemma 3.2.1. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra.
Assume that 𝑄 ∈ 𝐴-mod∩𝑅-proj has a base change property. Denote by B the endomorphism algebra
End𝐴(𝑄)𝑜𝑝 . Assume that 𝑀 ∈ 𝐴-mod∩𝑅-proj satisfies the following two conditions:

1. Hom𝐴(𝑀,𝑄) ∈ 𝑅-proj;
2. The map 𝑅(𝔪) ⊗𝑅 Hom𝐴(𝑀,𝑄) → Hom𝐴(𝔪) (𝑀 (𝔪), 𝑄(𝔪)) is an isomorphism for all

𝔪 ∈ MaxSpec 𝑅.

Then, the following assertions are equivalent.

(a) 𝑄-domdim(𝐴,𝑅) 𝑀 ≥ 1;
(b) 𝑆 ⊗𝑅 𝑄-domdim(𝑆⊗𝑅𝐴,𝑆) 𝑆 ⊗𝑅 𝑀 ≥ 1 for every commutative R-algebra and Noetherian ring S;
(c) 𝑄𝔪-domdim(𝐴𝔪 ,𝑅𝔪) 𝑀𝔪 ≥ 1 for every maximal ideal 𝔪 of R;
(d) 𝑄(𝔪)-domdim𝐴(𝔪) 𝑀 (𝔪) ≥ 1 for every maximal ideal 𝔪 of R.

Proof. Let S be a commutative R-algebra. Denote by 𝐷𝑆 the standard duality with respect to S,
Hom𝑆 (−, 𝑆). The result follows from the following commutative diagram:

𝑆 ⊗𝑅 Hom𝐴(𝐷𝑄, 𝐷𝑀) ⊗𝐵 𝐷𝑄 𝑆 ⊗𝑅 𝐷𝑀

𝑆 ⊗𝑅 Hom𝐴(𝐷𝑄, 𝐷𝑀) ⊗𝑆⊗𝑅𝐵 𝑆 ⊗𝑅 𝐷𝑄

Hom𝑆⊗𝑅𝐴(𝐷𝑆 (𝑆 ⊗𝑅 𝑄), 𝐷𝑆 (𝑆 ⊗𝑅 𝑀)) ⊗𝑆⊗𝑅𝐵 𝐷𝑆 (𝑆 ⊗𝑅 𝑄) 𝐷𝑆 (𝑆 ⊗𝑅 𝑀)

𝑆⊗𝑅𝜒
𝑟
𝐷𝑀

𝜃𝑆,𝑀





𝜑𝑆 𝜒𝑟
𝐷𝑆 (𝑆⊗𝑅𝑀 )

, (6)

where the map 𝜃𝑆,𝑀 is the isomorphism given in Proposition 2.3 of [Cru22b], while 𝜑𝑆 is the tensor
product of the canonical map given by extension of scalars on Hom (which is not claimed at the moment
to be an isomorphism) with the one providing the isomorphism 𝑆 ⊗𝑅 𝐷𝑄 
 𝐷𝑆 (𝑆 ⊗𝑅 𝑄).

The implications (𝑏) ⇒ (𝑐) ⇒ (𝑑) are immediate. Assume that (𝑎) holds. Then, 𝜒𝑟𝐷𝑀 is surjective.
By the commutative diagram, 𝜒𝑟𝐷𝑆𝑆⊗𝑅𝑀 is surjective, and so (𝑏) follows. Assume that (𝑑) holds. By
condition 2, 𝜑𝑅 (𝔪) must be an isomorphism for every 𝔪 ∈ MaxSpec 𝑅. Thus, by the diagram, 𝜒𝑟𝐷𝑀 (𝔪)

is surjective for every maximal ideal 𝔪 of R. By Nakayama’s Lemma, 𝜒𝑟𝐷𝑀 is surjective and (𝑎)
holds. �

Lemma 3.2.2. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra.
Let 𝑄 ∈ 𝐴-mod∩𝑅-proj satisfying Hom𝐴(𝑄,𝑄) ∈ 𝑅-proj. Denote by B the endomorphism algebra
End𝐴(𝑄)𝑜𝑝 . For 𝑀 ∈ 𝐴-mod∩𝑅-proj, the following assertions are equivalent.

(a) 𝑄-domdim(𝐴,𝑅) 𝑀 ≥ 𝑛 ≥ 1;
(b) 𝑄-domdim(𝑆⊗𝑅𝐴,𝑆) 𝑆 ⊗𝑅 𝑀 ≥ 𝑛 ≥ 1 for every flat commutative R-algebra and Noetherian ring S;
(c) 𝑄-domdim(𝐴𝔪 ,𝑅𝔪) 𝑀𝔪 ≥ 𝑛 ≥ 1 for every maximal ideal 𝔪 of R.

Proof. By the flatness of S, the vertical maps of the commutative diagram (6) are isomorphisms. So,
by Lemma 3.2.1, the implication (𝑎) ⇒ (𝑏) is clear for 𝑛 = 1, 2. Again, since S is flat and B is finitely
generated projective over R, 𝑆 ⊗𝑅 − commutes with Tor functors over B. Therefore, (𝑏) follows by
Theorem 3.1.4. Analogously, we obtain (𝑐) ⇒ (𝑎). �
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It is no surprise that the relative dominant dimension with respect to a module remains stable under
extension of scalars to the algebraic closure. For the sake of completeness, we give the result.

Lemma 3.2.3. Let k be a field with algebraic closure 𝑘 . Let A be a finite-dimensional k-algebra and
assume that 𝑄 ∈ 𝐴-mod. Then, 𝑘 ⊗𝑘 𝑄-domdim𝑘⊗𝑘 𝐴

𝑘 ⊗𝑘 𝑀 = 𝑄-domdim𝐴 𝑀 .

Proof. Of course, 𝑘 is free over k. Therefore, Tor𝐵𝑖 (Hom𝐴(𝐷𝑄, 𝐷𝑀), 𝐷𝑄) = 0 if and only if
Tor𝑘⊗𝑘𝐵𝑖 (Hom𝑘⊗𝑘 𝐴

(𝑘 ⊗𝑘 𝐷𝑄, 𝑘 ⊗𝑘 𝐷𝑀), 𝑘 ⊗𝑘 𝐷𝑄) = 0. By the same reason, 𝜒𝑟𝐷𝑀 is surjective (or
bijective) if and only if 𝜒𝑟

𝑘⊗𝑘𝐷𝑀
is surjective (or bijective). �

Lemma 3.2.4. Let 𝑄 ∈ 𝐴-mod∩𝑅-proj with a base change property. Denote by B the endo-
morphism algebra End𝐴(𝑄)𝑜𝑝. Let 𝑀 ∈ 𝐴-mod∩𝑅-proj satisfying Hom𝐴(𝑀,𝑄) ∈ 𝑅-proj. As-
sume that S is a commutative R-algebra and a Noetherian ring such that the canonical map
𝑆 ⊗𝑅 Hom𝐴(𝑀,𝑄) → Hom𝑆⊗𝑅𝐴(𝑆 ⊗𝑅 𝑀, 𝑆 ⊗𝑅 𝑄) is an isomorphism.

Then, 𝑄-domdim(𝐴,𝑅) 𝑀 ≤ 𝑆 ⊗𝑅 𝑄-domdim(𝑆⊗𝑅𝐴,𝑆) 𝑆 ⊗𝑅 𝑀 .

Proof. Assume that 𝑄-domdim(𝐴,𝑅) 𝑀 ≥ 𝑛 ≥ 1 for some 𝑛 ∈ N. Then, there exists an (𝐴, 𝑅)-exact
sequence 𝛿 : 0 → 𝑀 → 𝑋1 → · · · → 𝑋𝑛 which remains exact under Hom𝐴(−, 𝑄), where 𝑋𝑖 ∈ add𝐴𝑄.
The functor 𝑆⊗𝑅− preserves R-split exact sequences. Hence, 0 → 𝑆⊗𝑅𝑀 → 𝑆⊗𝑅 𝑋1 → · · · → 𝑆⊗𝑅 𝑋𝑛
is (𝑆 ⊗𝑅 𝐴, 𝑆)-exact and 𝑆 ⊗𝑅 𝑋𝑖 ∈ add𝑆⊗𝑅𝐴 𝑆 ⊗𝑅 𝑄. Since Hom𝐴(𝑀,𝑄) ∈ 𝑅-proj, the sequence
Hom𝐴(𝛿, 𝑄) splits over R, and thus, 𝑆 ⊗𝑅 Hom𝐴(𝛿, 𝑄) is an exact sequence. Using the commutative
diagram

𝑆 ⊗𝑅 Hom𝐴(𝑋𝑛, 𝑄) 𝑆 ⊗𝑅 Hom𝐴(𝑋𝑛−1, 𝑄) · · · 𝑆 ⊗𝑅 Hom𝐴(𝑀,𝑄)

Hom𝑆⊗𝑅𝐴(𝑆 ⊗𝑅 𝑋𝑛, 𝑆 ⊗𝑅 𝑄) Hom𝑆⊗𝑅𝐴(𝑆 ⊗𝑅 𝑋𝑛−1, 𝑆 ⊗𝑅 𝑄) · · · Hom𝑆⊗𝑅𝐴(𝑆 ⊗𝑅 𝑀, 𝑆 ⊗𝑅 𝑄),


 
 


it follows that the bottom row is exact. Hence, 𝑆 ⊗𝑅 𝑄-domdim(𝐴,𝑅) 𝑆 ⊗𝑅 𝑀 ≥ 𝑛. �

Finally, we reach the main result of this section.

Theorem 3.2.5. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra.
Assume that 𝑄 ∈ 𝐴-mod∩𝑅-proj has a base change property. Denote by B the endomorphism algebra
End𝐴(𝑄)𝑜𝑝 . Assume that 𝑀 ∈ 𝐴-mod∩𝑅-proj, satisfies the following two conditions:

1. Hom𝐴(𝑀,𝑄) ∈ 𝑅-proj;
2. The canonical map 𝑅(𝔪) ⊗𝑅Hom𝐴(𝑀,𝑄) → Hom𝐴(𝔪) (𝑀 (𝔪), 𝑄(𝔪)) is an isomorphism for every

maximal ideal 𝔪 of R.

Then, 𝑄-domdim(𝐴,𝑅) 𝑀 = inf{𝑄(𝔪)-domdim𝐴(𝔪) 𝑀 (𝔪) : 𝔪 ∈ MaxSpec(𝑅)}.

Proof. By Lemma 3.2.4, 𝑄(𝔪)-domdim𝐴(𝔪) 𝑀 (𝔪) ≥ 𝑄-domdim(𝐴,𝑅) 𝑀 for every maximal ideal 𝔪
of R. Conversely, assume that 𝑄(𝔪)-domdim𝐴(𝔪) 𝑀 (𝔪) ≥ 𝑛 for every maximal ideal 𝔪 of R. We want
to show that 𝑄-domdim(𝐴,𝑅) 𝑀 ≥ 𝑛. If 𝑛 = 0, then there is nothing to show. Using the commutative
diagram (6), we obtain that if 𝑛 ≥ 1 (resp. 𝑛 ≥ 2), then 𝜒𝑟𝐷𝑀 (𝔪) is surjective (resp. bijective) for
every maximal ideal 𝔪 of R. By Nakayama’s Lemma, 𝜒𝑟𝐷𝑀 is surjective, and since 𝐷𝑀 ∈ 𝑅-proj,
𝜒𝑟𝐷𝑀 is bijective in case 𝑛 ≥ 2. So, the inequality holds for 𝑛 = 1, 2. Assume now that 𝑛 ≥ 3. In
particular, 𝑄-domdim(𝐴,𝑅) 𝑀 ≥ 2, and therefore, Hom𝐴(𝐷𝑄, 𝐷𝑀) ⊗𝐵 𝐷𝑄 ∈ 𝑅-proj. By assumption,
Tor𝐵 (𝔪)

𝑖 (Hom𝐴(𝔪) (𝑀 (𝔪), 𝑄(𝔪)), 𝐷 (𝔪)𝑄(𝔪)) = 0 for 1 ≤ 𝑖 ≤ 𝑛 − 2 for every maximal ideal 𝔪 of R.
Let 𝑄• be a deleted B-projective resolution of 𝐷𝑄. So the chain complex 𝑃• = Hom𝐴(𝑀,𝑄) ⊗𝐵 𝑄• is
a projective complex over R since Hom𝐴(𝑀,𝑄) ∈ 𝑅-proj. Consider the Künneth spectral sequence for
chain complexes (see, for example, [Wei03, Theorem 5.6.4])

𝐸2
𝑖, 𝑗 = Tor𝑅𝑗 (𝐻𝑖 (Hom𝐴(𝑀,𝑄) ⊗𝐵 𝑄•), 𝑅(𝔪)) ⇒ 𝐻𝑖+ 𝑗 (Hom𝐴(𝑀,𝑄) ⊗𝐵 𝑄•(𝔪)). (7)
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Since Hom𝐴(𝑀,𝑄) ⊗𝐵 𝐷𝑄 ∈ 𝑅-proj, Hom𝐴(𝑀,𝑄) ⊗𝐵 𝑄•(𝔪) becomes a deleted projective 𝐵(𝔪)-
resolution of 𝐷𝑄(𝔪).

We shall proceed by induction on 1 ≤ 𝑖 ≤ 𝑛− 2 to show that Tor𝐵𝑖 (Hom𝐴(𝑀,𝑄), 𝐷𝑄) = 0. Observe
that Tor𝐵1 (Hom𝐴(𝑀,𝑄), 𝐷𝑄) ⊗𝑅 𝑅(𝔪) = 0 for every 𝔪 ∈ MaxSpec 𝑅 (see for example [Cru22b,
Lemma A.3]). Hence, Tor𝐵1 (Hom𝐴(𝑀,𝑄), 𝐷𝑄) = 0. Assume now that Tor𝐵𝑖 (Hom𝐴(𝑀,𝑄), 𝐷𝑄) = 0
for all 1 ≤ 𝑖 ≤ 𝑙 with 1 ≤ 𝑙 ≤ 𝑛−2 for some l. Then, 𝐸2

𝑖, 𝑗 = 0, for 1 ≤ 𝑖 ≤ 𝑙, 𝑗 ≥ 0 and 𝐸2
0, 𝑗 = 0, 𝑗 > 0. It

follows that Tor𝐵𝑙+1(Hom𝐴(𝑀,𝑄), 𝐷𝑄) (𝔪) = 0 for every 𝔪 ∈ MaxSpec 𝑅 (see [Cru22b, Lemma A.4]).
Therefore, Tor𝐵𝑖 (Hom𝐴(𝑀,𝑄), 𝐷𝑄) = 0 for 1 ≤ 𝑖 ≤ 𝑛 − 2. By Theorem 3.1.4, the result follows. �

Remark 3.2.6. The condition 𝐷𝑄 ⊗𝐴 𝑀 ∈ 𝑅-proj implies both conditions required in Theorem 3.2.5
and 𝐷𝑄 ⊗𝐴𝑄 ∈ 𝑅-proj implies that Q has a base change property (see, for example, the first part of the
proof of [Cru22b, Theorem 6.14.].)
Remark 3.2.7. We can, of course, drop the condition ♮𝑉 
 𝑉 in Proposition 3.1.7 by doing first the
field case and then consider the integral case using Theorem 3.2.5.

Combining Theorem 3.2.5 with Lemma 3.2.3, we obtain that, in most applications, the computations
of relative dominant dimension with respect to a module over a commutative ring can be reduced to
computations of relative dominant dimension with respect to a module in the setup of finite-dimensional
algebras over algebraically closed fields.

Considering the condition 𝐷𝑄 ⊗𝐴 𝑀 ∈ 𝑅-proj may seem unnatural, but projective modules and
characteristic tilting modules of split quasi-hereditary algebras do satisfy such a condition. The following
result suggests that there are many modules with such a condition (see also [CPS96, 1.5.2(e), (f)]).
Lemma 3.2.8. Let 𝑄 ∈ 𝐴-mod∩𝑅-proj. If Ext1𝐴(𝔪)

(𝑄(𝔪), 𝑄(𝔪)) = 0 for every maximal ideal 𝔪 of R,
then 𝐷𝑄 ⊗𝐴 𝑄 ∈ 𝑅-proj.
Proof. For each 𝔪 ∈ MaxSpec 𝑅,

Tor𝐴(𝔪)

1 (𝐷𝑄(𝔪), 𝑄(𝔪)) = Hom𝑅 (𝔪) (Ext1𝐴(𝔪) (𝑄(𝔪), 𝑄(𝔪)), 𝑅(𝔪)) = 0.

Let 𝑄• be a deleted projective A-resolution of Q. Since 𝑄 ∈ 𝑅-proj, 𝑄•(𝔪) is a deleted projective
𝐴(𝔪)-resolution of 𝑄(𝔪). Consider the Künneth Spectral sequence with 𝑃 = 𝐷𝑄 ⊗𝐴 𝑄•, (see, for
example, [Wei03, Theorem 5.6.4]) 𝐸2

𝑖, 𝑗 = Tor𝑅𝑖 (Tor𝐴𝑗 (𝐷𝑄,𝑄), 𝑅(𝔪)) = Tor𝑅𝑖 (𝐻 𝑗 (𝐷𝑄 ⊗𝐴𝑄
•), 𝑅(𝔪)).

It converges to 𝐻𝑖+ 𝑗 (𝐷𝑄 ⊗𝐴 𝑄
• ⊗𝑅 𝑅(𝔪)) = Tor𝐴(𝔪)

𝑖+ 𝑗 (𝐷𝑄(𝔪), 𝑄(𝔪)). Moreover,

𝐸2
1,0 = Tor𝑅1 (𝐷𝑄 ⊗𝐴 𝑄, 𝑅(𝔪)) = 0

for every maximal ideal𝔪 of R (see for example [Cru22b, Lemma A.3]). Hence, 𝐷𝑄⊗𝐴𝑄 ∈ 𝑅-proj. �

4. The reduced grade with respect to a module

In [GK15], Gao and Koenig compared the Auslander-Bridger grade with the dominant dimension. The
same method works also for relative dominant dimension over any ring with respect to a module if we
replace the Ext in the notion of grade by Tor, motivating the terminology: cograde. There is, however,
another modification to be considered. We are not interested in the case of grade being zero, and so we
will study (the dual notion of) reduced grade (see, for example, [Hos90]).
Definition 4.0.1. Let R be a Noetherian commutative ring and A a projective Noetherian R-algebra. Let
𝑋 ∈ 𝐴𝑜𝑝-mod∩𝑅-proj and 𝑀 ∈ 𝐴-mod∩𝑅-proj. The reduced cograde of X with respect to M, written
as rcograde𝑀 𝑋 , is defined as the value rcograde𝑀 𝑋 = inf{𝑖 > 0| Tor𝐴𝑖 (𝑋, 𝑀) ≠ 0}. Analogously, we
can define the reduced cograde of a right module with respect to a left module.

The following is based on Theorem 2.3 of [GK15].
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Theorem 4.0.2. Let A be a projective Noetherian R-algebra over a commutative Noetherian ring. Let
𝑄 ∈ 𝐴-mod∩𝑅-proj with Hom𝐴(𝑄,𝑄) ∈ 𝑅-proj and write 𝐵 := End𝐴(𝑄)𝑜𝑝 . For each 𝑄0, 𝑄1 ∈ add𝑄
and𝑌 ∈ 𝐴-mod∩𝑅-proj with an exact sequence 𝑄1

𝑓
−→ 𝑄0 → 𝑌 → 0, define 𝑋 = coker Hom𝐴( 𝑓 , 𝑄) ∈

𝐵𝑜𝑝-mod. Then, 𝑄-domdim(𝐴,𝑅) 𝑌 ≥ 𝑛 ≥ 1 if and only if rcograde𝐷𝑄 𝑋 ≥ 𝑛 + 1.

Proof. Write𝐶 := im Hom𝐴( 𝑓 , 𝑄). Applying−⊗𝐵𝐷𝑄 to the exact sequences𝐶 ↩→ Hom𝐴(𝑄1, 𝑄) � 𝑋
and Hom𝐴(𝑌, 𝑄) ↩→ Hom𝐴(𝑄0, 𝑄) � 𝐶, we get that Tor𝐵𝑖 (Hom𝐴(𝑌, 𝑄), 𝐷𝑄) 
 Tor𝐵𝑖+1(𝐶, 𝐷𝑄) 


Tor𝐵𝑖+2(𝑋, 𝐷𝑄) for all 𝑖 ≥ 1. Moreover, Tor𝐵2 (𝑋, 𝐷𝑄) 
 Tor𝐵1 (𝐶, 𝐷𝑄) 
 ker 𝜒𝑟𝐷𝑌 . Hence, by Theorems
3.1.3 and 3.1.4, the result follows once we prove that coker 𝜒𝑟𝐷𝑌 = 0 if and only if Tor𝐵1 (𝑋, 𝐷𝑄) = 0.
This is true since the following commutative diagram

𝐷𝑄0 𝐷im 𝑓 𝐷𝑄1

Hom𝐴(𝐷𝑄, 𝐷𝑄0) ⊗𝐵 𝐷𝑄 𝐶 ⊗𝐵 𝐷𝑄 Hom𝐴(𝐷𝑄, 𝐷𝑄1) ⊗𝐵 𝐷𝑄

𝜒𝑟𝐷𝑄0 
 𝑔 𝜒𝑟𝐷𝑄1 
 (8)

yields that Tor𝐵1 (𝑋, 𝐷𝑄) 
 ker 𝑔 
 coker 𝜒𝑟𝐷𝑌 , where the last bijection follows from the use of Snake
Lemma on the diagram with vertical maps 𝜒𝑟𝐷𝑌 , 𝜒

𝑟
𝐷𝑄0

and g. �

5. Fully faithfulness of Hom𝐴(𝑄,−) on subcategories of 𝐴-mod

We will now use Theorems 3.1.1 and 3.1.4 to establish relative codominant dimension with respect
to Q as a measure for the strength of the connection between A and End𝐴(𝑄)𝑜𝑝 via the functor
Hom𝐴(𝑄,−) : 𝐴-mod → End𝐴(𝑄)𝑜𝑝-mod.

5.1. 𝑄-codomdim (𝐴, 𝑅) ≥ 2 as a tool for double centralizer properties

Lemma 5.1.1. Let X be the full subcategory of 𝐴-mod∩𝑅-proj whose modules X satisfy
𝑄-codomdim(𝐴,𝑅) 𝑋 ≥ 2. Then, Hom𝐴(𝑄,−) is fully faithful on X .

Proof. By Theorem 3.1.1, 𝜒𝑋 is an isomorphism for every 𝑋 ∈ X . Fix 𝐹𝑄 = Hom𝐴(𝑄,−) and I its left
adjoint. Then, if 𝐹𝑄 𝑓 = 0 for some 𝑓 ∈ HomX (𝑀, 𝑁), we obtain 𝑓 ◦ 𝜒𝑀 = 𝜒𝑁 ◦ I𝐹𝑄 𝑓 = 0. Hence, in
such a case, 𝑓 = 0. So, 𝐹𝑄 is faithful. To show fullness, let 𝑔 ∈ Hom𝐵 (𝐹𝑄𝑀, 𝐹𝑄𝑁) with 𝑀, 𝑁 ∈ X .
Fixing ℎ = 𝜒𝑁 ◦ I𝑔 ◦ 𝜒−1

𝑀 , we get 𝐹𝑄ℎ = 𝑔. �

The next result says that the fully faithfulness of 𝐹𝑄 on add 𝐷𝐴 is related to a double centralizer
property. Such a result is exactly a version of [Rou08, Proposition 4.33] for general double centralizer
properties. This result is known in the literature for Artinian algebras (see, for example, [AS93, Corollary
2.4]).

Lemma 5.1.2. Let A be a projective Noetherian R-algebra. Let 𝑄 ∈ 𝐴-mod∩𝑅-proj satisfying
Hom𝐴(𝑄,𝑄) ∈ 𝑅-proj and denote by B the endomorphism algebra End𝐴(𝑄)𝑜𝑝 . The following as-
sertions are equivalent.

(i) The canonical map of algebras 𝐴 → End𝐵 (𝑄)𝑜𝑝 , given by 𝑎 ↦→ (𝑞 ↦→ 𝑎𝑞), is an isomorphism.
(ii) 𝐷𝜒𝑋 is an isomorphism of right A-modules for all 𝑋 ∈ (𝐴, 𝑅)-inj∩𝑅-proj.

(iii) The restriction of 𝐹𝑄 to add 𝐷𝐴 is full and faithful.

Proof. Denote by 𝜓 the canonical map of algebras 𝐴 → End𝐵 (𝑄)𝑜𝑝 and denote by 𝜔𝑋 the natural
transformation between the identity functor and the double dual 𝐷𝐷 for 𝑋 ∈ 𝐴-mod. The equivalence
(𝑖) ⇔ (𝑖𝑖) follows from the following commutative diagram
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𝐴 𝐷𝐷𝐴

End𝐵 (𝑄) Hom𝐵 (𝑄, 𝐷𝐷𝑄) Hom𝐵 (𝑄, 𝐷 Hom𝐴(𝑄, 𝐷𝐴)) 𝐷 (𝑄 ⊗𝐵 Hom𝐴(𝑄, 𝐷𝐴))

𝜓

𝜔𝐴



𝐷𝜒𝐷𝐴

Hom𝐴 (𝑄,𝜔𝑄)




Hom𝐵 (𝑄,𝐷𝜎𝑄)




𝜃




with horizontal maps being isomorphisms, where 𝜎𝑄 : Hom𝐴(𝑄, 𝐷𝐴) → 𝐷𝑄 and 𝜃 are isomorphisms
given by Tensor-Hom adjunction.

For each 𝑀, 𝑁 ∈ 𝐴-mod, consider the map 𝐹𝑀,𝑁 : Hom𝐴(𝑀, 𝑁) → Hom𝐵 (𝐹𝑄𝑀, 𝐹𝑄𝑁), given
by 𝑓 ↦→ 𝐹𝑄 𝑓 = Hom𝐴(𝑄, 𝑓 ). Observe that the maps 𝜓 and 𝐹𝐷𝐴,𝐷𝐴 are equivalent since the
isomorphisms 𝐴 
 Hom𝐴(𝐴, 𝐴) 
 Hom𝐴(𝐷𝐴, 𝐷𝐴) and Hom𝐵 (𝑄,𝑄) 
 Hom𝐵 (𝐷𝑄, 𝐷𝑄) 


Hom𝐵 (𝐹𝑄𝐷𝐴, 𝐹𝑄𝐷𝐴) are functorial (see, for example, [Cru22b, Proposition 2.2]). As 𝐹𝑀 ⊕𝑋,𝑁 is
equivalent to 𝐹𝑀,𝑋 ⊕ 𝐹𝑋,𝑁 and 𝐹𝑀,𝑋 ⊕𝑁 is equivalent to 𝐹𝑀,𝑋 ⊕ 𝐹𝑀,𝑁 for every 𝑀, 𝑋, 𝑁 ∈ 𝐴-mod it
follows that (𝑖𝑖𝑖) ⇔ (𝑖). �

Remark 5.1.3. Let (𝐴, 𝑃,𝑉) be an RQF3-algebra over a commutative Noetherian ring R. If
domdim(𝐴,𝑅) 𝐴 ≥ 2, then the Schur functor Hom𝐴(𝑃,−) : 𝐴-mod → End𝐴(𝑃)𝑜𝑝-mod is fully faithful
on (𝐴, 𝑅)-inj∩𝑅-proj (see [Cru22b, Theorem 4.1] with Lemma 5.1.2).

Remark 5.1.4. Let A be a finite-dimensional algebra so that domdim 𝐴 ≥ 2. Let P be a faithful
projective-injective A-module. The Schur functor Hom𝐴(𝑃,−) : 𝐴-mod → End𝐴(𝑃)𝑜𝑝-mod is fully
faithful on 𝐴-proj and on 𝐴-inj if and only if A is a Morita algebra (see [Cru22a]).

Following the work developed in [MS08, 2.2], we will see in the following lemma that every split
quasi-hereditary algebra has a (partial) tilting module with a double centralizer property. In the worst
case scenario, this (partial) tilting module coincides with the characteristic tilting module.

Lemma 5.1.5. Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary algebra and let T be a characteristic tilting
module of A. Then, there is an exact sequence 0 → 𝐴 → 𝑀 → 𝑋 → 0, where 𝑀 ∈ F (Δ̃𝐴) ∩ F (∇̃𝐴)

and 𝑋 ∈ F (Δ̃𝐴). Moreover, there exists a (partial) tilting module 𝑄 ∈ 𝐴-mod∩𝑅-proj such that
𝐷𝑀 ∈ add𝑄 and 𝑄-domdim(𝐴, 𝑅) ≥ 2. In particular, there exists a double centralizer property on Q.

Proof. Denote by 𝑅(𝐴) the Ringel dual End𝐴(𝑇)𝑜𝑝 . Let 𝑃 � 𝑇 be a right projective presentation of T
over 𝑅(𝐴). Then, 𝑃 ∈ F (Δ̃𝑅 (𝐴)𝑜𝑝 ). Note that 𝑇 
 Hom𝐴(𝐴,𝑇) 
 Hom𝐴𝑜𝑝 (𝐷𝑇, 𝐷𝐴) ∈ F (Δ̃𝑅 (𝐴)𝑜𝑝 ).
Since F (Δ̃𝑅 (𝐴)𝑜𝑝 ) is resolving, so the kernel of 𝑃 → 𝑇 belongs to F (Δ̃𝑅 (𝐴)𝑜𝑝 ). Since Hom𝐴𝑜𝑝 (𝐷𝑇,−)
gives an exact equivalence between F (∇̃𝐴𝑜𝑝 ) and F (Δ̃𝑅 (𝐴)𝑜𝑝 ), there exists an exact sequence of right
A-modules 0 → 𝐾 → 𝑀 ′ → 𝐷𝐴 → 0, where 𝑀 ′ is a (partial) tilting module and 𝐾 ∈ F (∇̃𝐴𝑜𝑝 ).
Applying D, we obtain the desired exact sequence. By [Rou08, Proposition 4.26], since 𝐷𝐾 ∈ F (Δ̃𝐴),
there exists an exact sequence 0 → 𝐷𝐾 → 𝑀 ′′ → 𝐾 ′′ → 0, where 𝑀 ′ is a (partial) tilting module and
𝐾 ′ ∈ F (Δ̃𝐴). Put 𝑄 = 𝐷𝑀 ′ ⊕ 𝑀 ′′. Hence, Q is (partial) tilting module, and the (𝐴, 𝑅)-exact sequence
0 → 𝐴 → 𝐷𝑀 ′ → 𝑀 ′′ remains exact under Hom𝐴(𝑄,−). This means that 𝑄-domdim(𝐴, 𝑅) ≥ 2. By
Corollary 3.1.6 and Lemma 5.1.2, the second assertion follows. �

5.2. 𝑄-codomdim(𝐴,𝑅) 𝑀 controlling the behavior of Hom𝐴(𝑄,−)

To address how the relative dominant dimension with respect to a module Q can be used as a tool to
deduce what extension groups are preserved by the functor Hom𝐴(𝑄,−), the following result is crucial.

Lemma 5.2.1. Let 𝑀 ∈ 𝐴-mod. Suppose that Tor𝐵𝑖 (𝑄, 𝐹𝑄𝑀) = L𝑖 I(𝐹𝑄𝑀) = 0 for 1 ≤ 𝑖 ≤ 𝑞.
For any 𝑋 ∈ {𝑌 ∈ 𝐴-mod | Ext𝑖>0

𝐴 (𝑄,𝑌 ) = 0}, there are isomorphisms Ext𝑖𝐴(I𝐹𝑄𝑀, 𝑋) 


Ext𝑖𝐵 (𝐹𝑄𝑀, 𝐹𝑄𝑋), 0 ≤ 𝑖 ≤ 𝑞, and an exact sequence

0 → Ext𝑞+1
𝐴 (I𝐹𝑄𝑀, 𝑋) → Ext𝑞+1

𝐵 (𝐹𝑄𝑀, 𝐹𝑄𝑋) → Hom𝐴(Tor𝐵𝑞+1(𝑄, 𝐹𝑄𝑀), 𝑋)

→ Ext𝑞+2
𝐴 (I𝐹𝑄𝑀, 𝑋) → Ext𝑞+2

𝐵 (𝐹𝑄𝑀, 𝐹𝑄𝑋). (9)
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Proof. Let 𝑋 ∈ 𝐴-mod such that Ext𝑖>0
𝐴 (𝑄, 𝑋) = 0. The desired isomorphism for 𝑖 = 0 follows

immediately by Tensor-Hom adjunction. To obtain the result for higher values, we will use Theorem 10.49
of [Rot09]. Fix 𝑓 = Hom𝐴(−, 𝑋) and 𝑔 = 𝑄 ⊗𝐵 −. So, f is a contravariant left exact and g is covariant.
We note that 𝑔𝑃 is f -acyclic for any 𝑃 ∈ 𝐵-proj. In fact, R 𝑗>0 𝑓 (𝑔𝑃) = Ext 𝑗>0

𝐴 (𝑔𝑃, 𝑋) = 0, since
𝑔𝑃 = 𝑄 ⊗𝐵 𝑃 ∈ add𝐴𝑄. So, for each 𝑎 ∈ 𝐵-mod, there is a spectral sequence 𝐸

𝑖, 𝑗
2 = (R𝑖 𝑓 ) (𝐿 𝑗𝑔) (𝑎)

which converges to R𝑖+ 𝑗 ( 𝑓 ◦ 𝑔) (𝑎). By Tensor-Hom adjunction, 𝑓 ◦ 𝑔(𝑁) = Hom𝐴(𝑄 ⊗𝐵 𝑁, 𝑋) 


Hom𝐵 (𝑁,Hom𝐴(𝑄, 𝑋)) = Hom𝐵 (−, 𝐹𝑄𝑋) (𝑁) for every 𝑁 ∈ 𝐵-mod. Hence, the spectral sequence
𝐸
𝑖, 𝑗
2 = Ext𝑖𝐴(Tor𝐵𝑗 (𝑄, 𝑎), 𝑋) converges to Ext𝑖+ 𝑗𝐵 (𝑎, 𝐹𝑄𝑋). For each 𝑀 ∈ 𝐴-mod, fix 𝑎 = 𝐹𝑄𝑀 . By

assumption, Tor𝐵𝑖 (𝑄, 𝐹𝑄𝑀) = 0 for 1 ≤ 𝑖 ≤ 𝑞. Hence, 𝐸 𝑖, 𝑗
2 = 0, 1 ≤ 𝑖 ≤ 𝑞. By the dual of Lemma A.4

of [Cru22b], the result follows. �

5.3. Ringel duality in cover theory

As we saw, fully faithfulness of Hom𝐴(𝑄,−) on relative injectives is related to the existence of a double
centralizer property on Q. In this subsection, we explore the meaning of fully faithfulness of a functor 𝐹𝑄
on F (∇̃) for relative projective objects Q in F (∇̃). This leads us to one of our main results, connecting
Ringel duality with Rouquier’s cover theory.

Theorem 5.3.1. Let R be a commutative Noetherian ring. Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary
R-algebra with a characteristic tilting module T. Denote by 𝑅(𝐴) the Ringel dual End𝐴(𝑇)𝑜𝑝 (of A).
Assume that 𝑄 ∈ add𝑇 is a (partial) tilting module of A, and denote by B the endomorphism algebra of
Q. Then, the following assertions hold.

(a) 𝑄-codomdim(𝐴,𝑅) F (∇̃) = 𝑄-codomdim(𝐴,𝑅) 𝑇 = 𝑄-codomdim(𝐴,𝑅)

⊕
𝜆∈Λ

∇(𝜆).

(b) If 𝑄-codomdim(𝐴,𝑅) 𝑇 ≥ 𝑛 ≥ 2, then the functor 𝐹𝑄 induces isomorphisms

Ext 𝑗𝐴(𝑀, 𝑁) → Ext 𝑗𝐵 (𝐹𝑄𝑀, 𝐹𝑄𝑁), ∀𝑀, 𝑁 ∈ F (∇̃), 0 ≤ 𝑗 ≤ 𝑛 − 2.

(c) If 𝑄-codomdim(𝐴,𝑅) 𝑇 ≥ 3, then the functor 𝐹𝑄 induces an exact equivalence F (∇̃) → F (𝐹∇̃).
(d) If 𝑄-codomdim(𝐴,𝑅) 𝑇 ≥ 𝑛 ≥ 2, then (𝑅(𝐴),Hom𝐴(𝑇, 𝑄)) is an (𝑛 − 2)-F (Δ̃𝑅 (𝐴) ) split quasi-

hereditary cover of End𝐴(𝑄)𝑜𝑝 . The converse holds if R is a field.

Proof. The proof of (𝑎) is analogous to [Cru24c, Theorem 6.2.1]. Thanks to 𝐹𝑄 and D being exact on
short exact sequences of modules belonging to F (∇̃), we obtain that we can apply Lemma 3.1.8 to the
filtrations by costandard modules. Further, for every 𝑋 ∈ 𝑅-proj so that 𝑅𝑡 
 𝑋 ⊕ 𝑌 for some 𝑡 ∈ N,

𝑄-codomdim(𝐴,𝑅) ∇(𝜆) = 𝑄-codomdim(𝐴,𝑅) ∇(𝜆)
𝑡

= inf{𝑄-codomdim(𝐴,𝑅) ∇(𝜆) ⊗𝑅 𝑋,𝑄-codomdim(𝐴,𝑅) ∇(𝜆) ⊗𝑅 𝑌 }.

Therefore, 𝑄-codomdim(𝐴,𝑅)

⊕
𝜆∈Λ

∇(𝜆) = 𝑄-codomdim(𝐴,𝑅) F (∇̃). Now using the exact sequences (1)

together with Lemma 3.1.8 and the reasoning of Theorem [Cru24c, Theorem 6.2.1], assertion (a) follows.
By Proposition 2.1.2, 𝐷𝑄 ⊗𝐴 𝑄 ∈ 𝑅-proj. Any (𝐴, 𝑅)-injective module being projective over R

belongs to 𝑄⊥ (see, for example, [Cru22b, Proposition 2.10]). By Lemma 5.1.1 and Theorem 3.1.1, 𝐹𝑄
is fully faithful on F (Δ̃). By Theorem 3.1.4, Tor𝐵𝑖 (𝑄, 𝐹𝑄𝑀) = 0, 1 ≤ 𝑖 ≤ 𝑛 − 2 for every 𝑀 ∈ F (∇̃).
By Lemma 5.2.1, Ext𝑖𝐵 (𝐹𝑄𝑀, 𝐹𝑄𝑋) 
 Ext𝑖𝐴(I𝐹𝑄𝑀, 𝑋) for 0 ≤ 𝑖 ≤ 𝑛 − 2, where 𝑀, 𝑋 ∈ F (∇̃). Since
𝜒𝑀 is an isomorphism for every 𝑀 ∈ F (∇̃), (b) follows.

By the exactness of 𝐹𝑄 on F (∇̃) and according to Lemma 2.0.1, 𝐹𝑄 (∇(𝜆) ⊗𝑅 𝑋) 
 𝐹𝑄∇(𝜆) ⊗𝑅 𝑋 for
every 𝜆 ∈ Λ and 𝑋 ∈ 𝑅-proj, and the restriction of the functor 𝐹𝑄 on F (∇̃) has image in F (𝐹𝑄∇̃). By
(b), it is enough to prove that for each module M in F (𝐹𝑄∇̃), there exists 𝑁 ∈ F (∇̃) so that 𝐹𝑄𝑁 
 𝑀 .
By (b), the functor I = 𝑄 ⊗𝐵 − is exact on short exact sequences of modules belonging to F (𝐹𝑄∇̃).
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Thanks to 𝑄 ⊗𝐵 𝐹𝑄∇(𝜆) ⊗𝑅 𝑋 
 ∇(𝜆) ⊗𝑅 𝑋 for every 𝑋 ∈ 𝑅-proj and 𝜆 ∈ Λ, we obtain that I sends
F (𝐹𝑄∇̃) to F (∇̃). So, (c) follows.

Assume now that 𝑄-codomdim(𝐴,𝑅) 𝑇 ≥ 𝑛 ≥ 2. Fix 𝐵 = End𝐴(𝑄)𝑜𝑝 . By Ringel duality (see, for
instance, [Cru24b, Lemma 7.1]), for each 𝑀 ∈ F (∇̃), we have

Hom𝑅 (𝐴) (Hom𝐴(𝑇, 𝑄),Hom𝐴(𝑇, 𝑀)) 
 Hom𝐴(𝑄, 𝑀) as (𝐵, 𝑅(𝐴))-bimodules. (10)

In particular, Hom𝑅 (𝐴) (Hom𝐴(𝑇, 𝑄), 𝑅(𝐴)) 
 Hom𝐴(𝑄,𝑇) as (𝐵, 𝑅(𝐴))-bimodules. By (c), 𝐹𝑄 is
fully faithful on F (∇̃). Hence, End𝐵 (Hom𝐴(𝑄,𝑇))𝑜𝑝 
 End𝐴(𝑇)𝑜𝑝 and End𝑅 (𝐴) (Hom𝐴(𝑇,𝑄))𝑜𝑝 


𝐵. So, (𝑅(𝐴),Hom𝐴(𝑇,𝑄)) is a split quasi-hereditary cover of B. By (b) and [Cru24b, Lemma 7.1],

Ext𝑖𝐵 (Hom𝐴(𝑄,𝑇),Hom𝑅 (𝐴) (Hom𝐴(𝑇,𝑄),Hom𝐴(𝑇, 𝑀))) 
 Ext𝑖𝐵 (Hom𝐴(𝑄,𝑇),Hom𝐴(𝑄, 𝑀))


 Ext𝑖𝐵 (𝐹𝑄𝑇, 𝐹𝑄𝑀), 0 ≤ 𝑖 ≤ 𝑛 − 2,∀𝑀 ∈ F (∇̃), (11)

and these Ext groups vanish if 1 ≤ 𝑖 ≤ 𝑛 − 2. By [Cru24b, Lemma 7.1] and [Cru24c, Proposition
3.0.3, 3.0.4], the first part of (d) follows. Since the maps Hom𝐴(𝑇, 𝐷𝐴) → Hom𝐵 (𝐹𝑄𝑇, 𝐹𝑄𝐷𝐴)
and 𝐷𝑇 → Hom𝐵 (𝐹𝑄𝑇, 𝐷𝑄) are equivalent, the second assertion follows by equations (10) and (11),
together with Theorem 3.1.4 using Ext when R is a field (see [ASS06, A.4]). �

Remark 5.3.2. 𝑇-codomdim(𝐴,𝑅) F (∇̃) = 𝑇-codomdim(𝐴,𝑅) 𝑇 = +∞ for a characteristic tilting module
T. Of course, the Ringel dual is an infinite cover of itself.

Remark 5.3.3. The cover constructed in Theorem 5.3.1 makes the following diagram commutative:

F (∇̃𝐴) F (Δ̃𝑅 (𝐴) )

F (𝐹∇̃𝐴)

Hom𝐴 (𝑇 ,−)

Hom𝐴 (𝑄,−) Hom𝑅 (𝐴) (Hom𝐴 (𝑇 ,𝑄) ,−)
. (12)

Since every projective module is the image of a (partial) tilting under the Ringel dual functor, every
quasi-hereditary cover can be recovered/discovered using this approach. More precisely, every split
quasi-hereditary algebra A is Morita equivalent to the Ringel dual of its Ringel dual 𝑅(𝑅(𝐴)), and
every projective over 𝑅(𝑅(𝐴)) can be written as Hom𝑅 (𝐴) (𝑇𝑅 (𝐴) , 𝑄) for some 𝑄 ∈ add𝑇𝑅 (𝐴) , where
𝑇𝑅 (𝐴) is a characteristic tilting module of 𝑅(𝐴). Hence, every split quasi-hereditary cover can be written
in the form (𝑅(𝐴),Hom𝐴(𝑇, 𝑄)) for some split quasi-hereditary algebra A, T a characteristic tilting
module and 𝑄 ∈ add𝑇 . Further, the second part of Theorem 5.3.1(d) indicates that the quality of faithful
split quasi-hereditary covers of finite-dimensional algebras is controlled by the relative codominant
dimension of characteristic tilting modules with respect to (partial) tilting modules.

5.3.1. An analogue of Lemma 5.1.2 for Ringel duality

Lemma 5.3.4. Let R be a commutative Noetherian ring. Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary
R-algebra with a characteristic tilting module T. Denote by 𝑅(𝐴) the Ringel dual End𝐴(𝑇)𝑜𝑝 (of A).
Assume that 𝑄 ∈ add𝑇 is a (partial) tilting module of A, and fix 𝐵 = End𝐴(𝑄)𝑜𝑝 . Then, the following
assertions hold.

(a) If 𝐷𝜒𝑇 : 𝐷𝑇 → Hom𝐵 (Hom𝐴(𝑄,𝑇), 𝐷𝑄) is an isomorphism, then (𝑅(𝐴),Hom𝐴(𝑇,𝑄)) is a split
quasi-hereditary cover of B.

(b) If 𝐷𝜒𝑟𝐷𝑇 : 𝐷𝐷𝑇 → Hom𝐵 (Hom𝐴(𝐷𝑄, 𝐷𝑇), 𝐷𝐷𝑄) is an isomorphism, then Hom𝐴(𝑇, 𝑄) satisfies
a double centralizer property between 𝑅(𝐴) and B.

Proof. By projectivization, Hom𝐴(𝑇, 𝑄) ∈ 𝑅(𝐴)-proj and End𝑅 (𝐴) (Hom𝐴(𝑇, 𝑄))𝑜𝑝 
 End𝐴(𝑄)𝑜𝑝 =
𝐵. By (𝑎) and Proposition 2.1.2, we have as (𝑅(𝐴), 𝑅(𝐴))-bimodules

https://doi.org/10.1017/fms.2024.108 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.108


Forum of Mathematics, Sigma 23

𝑅(𝐴) = Hom𝐴(𝑇, 𝑇) 
 Hom𝐴𝑜𝑝 (𝐷𝑇, 𝐷𝑇) 
 Hom𝐴𝑜𝑝 (𝐷𝑇,Hom𝐵 (Hom𝐴(𝑄,𝑇), 𝐷𝑄)) (13)


 Hom𝐴𝑜𝑝 (𝐷𝑇,Hom𝐵𝑜𝑝 (𝑄, 𝐷 Hom𝐴(𝑄,𝑇))) 
 Hom𝐵𝑜𝑝 (𝐷𝑇 ⊗𝐴 𝑄, 𝐷 Hom𝐴(𝑄,𝑇)) (14)


 Hom𝐵 (Hom𝐴(𝑄,𝑇),Hom𝐴(𝑄,𝑇)). (15)

Since 𝐹𝑄𝑅(𝐴) = Hom𝑅 (𝐴) (Hom𝐴(𝑇, 𝑄),Hom𝐴(𝑇,𝑇)) 
 Hom𝐴(𝑄,𝑇), assertion (a) follows.
Now using the isomorphism 𝜒𝑟𝐷𝑇 and Proposition 2.1.2, we obtain

𝑅(𝐴) = Hom𝐴(𝑇,𝑇) 
 Hom𝐴(𝑇,Hom𝐵𝑜𝑝 (Hom𝐴(𝑇,𝑄), 𝑄)) 
 Hom𝐴(𝑇,Hom𝐵 (𝐷𝑄, 𝐷 Hom𝐴(𝑇,𝑄)))


 Hom𝐵 (𝐷𝑄 ⊗𝐴 𝑇, 𝐷 Hom𝐴(𝑇,𝑄)) 
 Hom𝐵 (Hom𝐴(𝑇,𝑄),Hom𝐴(𝑇,𝑄)).
�

We have not yet addressed the case of 𝑄-codomdim(𝐴,𝑅) 𝑇 = 1. For this case, we can recover the
Ringel dual being a cover using deformation theory.
Corollary 5.3.5. Let R be a commutative regular Noetherian domain with quotient field K. Let
(𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary R-algebra with a characteristic tilting module T. Let 𝑅(𝐴)
be the Ringel dual of A, End𝐴(𝑇)𝑜𝑝 . Assume that 𝑄 ∈ add𝑇 is a (partial) tilting module of A so that
𝑄-codomdim(𝐴,𝑅) 𝑇 ≥ 1 and 𝐾 ⊗𝑅 𝑄-codomdim(𝐾 ⊗𝑅𝐴) 𝐾 ⊗𝑅 𝑇 ≥ 2. Then, (𝑅(𝐴),Hom𝐴(𝑇, 𝑄)) is
a split quasi-hereditary cover of End𝐴(𝑄)𝑜𝑝 . Moreover, (𝑅(𝐴),Hom𝐴(𝑇, 𝑄)) is a 0-F (Δ̃) cover of
End𝐴(𝑄)𝑜𝑝 .
Proof. If 𝑄-codomdim(𝐴,𝑅) 𝑇 ≥ 2, then this is nothing more than Theorem 5.3.1. Assume that
𝑄-domdim(𝐴,𝑅) 𝑇 = 1. By Theorem 3.1.1, 𝜒𝑇 is surjective. In view of Lemma 5.3.4, it is enough
to prove that 𝐷𝜒𝑇 is an isomorphism. Since 𝑇 ∈ 𝑅-proj, 𝜒𝑇 is an (𝐴, 𝑅)-epimorphism, and therefore,
𝐷𝜒𝑇 is an (𝐴, 𝑅)-monomorphism. By assumption, 𝐾 ⊗𝑅𝑄-codomdim𝐾 ⊗𝑅𝐴 𝐾 ⊗𝑅𝑇 ≥ 2. Hence, thanks
to the flatness of K, 𝐾 ⊗𝑅 𝐷𝜒𝑇 is an isomorphism.

Denote by X the cokernel of 𝐷𝜒𝑇 . Since 𝐷𝜒𝑇 is split over R, 𝑋 ∈ add𝑅 Hom𝐵 (Hom𝐴(𝑄,𝑇), 𝐷𝑄).
As we saw, 𝐾 ⊗𝑅 𝑋 = 0. In particular, X is a torsion R-module. We cannot deduce right away
that Hom𝐵 (Hom𝐴(𝑄,𝑇), 𝐷𝑄) is projective over R, but we can embed Hom𝐵 (Hom𝐴(𝑄,𝑇), 𝐷𝑄) into
Hom𝑅 (Hom𝐴(𝑄,𝑇), 𝐷𝑄) which is projective over R due to both Hom𝐴(𝑄,𝑇) and 𝐷𝑄 being pro-
jective over R. So, Hom𝐵 (Hom𝐴(𝑄,𝑇), 𝐷𝑄) is a torsion-free R-module. However, the localization
Hom𝐵 (Hom𝐴(𝑄,𝑇), 𝐷𝑄)𝔭 is projective over 𝑅𝔭 for every prime ideal𝔭 of height one, and so𝐾⊗𝑅𝑋 = 0
yields that 𝑋𝔭 = 0 for every prime ideal 𝔭 of height one. Applying Proposition 3.4 of [AB59] to 𝐷𝜒𝑇 ,
we obtain that 𝑋𝔭 must be zero, and consequently, 𝐷𝜒𝑇 is an isomorphism. Denote by 𝐹Hom𝐴 (𝑇 ,𝑄) the
Schur functor and 𝐺Hom𝐴 (𝑇 ,𝑄) its right adjoint of this cover. Observe that Hom𝐴(𝑇, 𝐷𝐴) is a charac-
teristic tilting module of 𝑅(𝐴). Since 𝐷𝜒𝑇 is a monomorphism and

Hom𝐵 (Hom𝐴(𝑄,𝑇), 𝐷𝑄) 
 Hom𝐵 (Hom𝐴(𝑄,𝑇),Hom𝐴(𝑄, 𝐷𝐴)) (16)


 Hom𝐵 (Hom𝑅 (𝐴) (𝐹𝑇𝑄, 𝐹𝑇𝑇),Hom𝑅 (𝐴) (𝐹𝑇𝑄, 𝐹𝑇 𝐷𝐴))


 𝐺Hom𝐴 (𝑇 ,𝑄)𝐹Hom𝐴 (𝑇 ,𝑄) Hom𝐴(𝑇, 𝐷𝐴), (17)

the claim follows (see also [Cru24c, Proposition 3.1.1, Proposition 3.1.2]). �

5.4. Ringel self-duality as an instance of uniqueness of covers

We will now see how Ringel self-duality can be related to the uniqueness of covers. For the definitions
of relative Morita R-algebras and relative gendo-symmetric R-algebras, we refer to [Cru22b].
Corollary 5.4.1. Let (𝐴, 𝑃, 𝐷𝑃) be a relative Morita R-algebra. Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-
hereditary algebra, Assume that domdim(𝐴,𝑅) 𝑇, codomdim(𝐴,𝑅) 𝑇 ≥ 3 for a characteristic tilting
module T. Then, there exists an exact equivalence F (𝐹𝑃Δ̃𝐴) → F (𝐹𝑃∇̃𝐴) if and only if A is Ringel
self-dual.
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Proof. By Theorems 5.3.1 and Proposition 2.3.1, (𝐴, 𝑃) is a 1-faithful split quasi-hereditary cover of
End𝐴(𝑃)𝑜𝑝 and (𝑅(𝐴),Hom𝐴(𝑇, 𝑃)) is a 1-faithful split quasi-hereditary cover of End𝐴(𝑃)𝑜𝑝 . As
illustrated in Remark 5.3.3, F restricts to exact equivalences

F (∇̃𝐴) → F (𝐹𝑃∇̃𝐴) and F (Δ̃𝐴) → F (𝐹𝑃Δ̃𝐴).

Therefore, there exists an exact equivalence between F (𝐹𝑃Δ̃𝐴) and F (𝐹𝑃∇̃𝐴) if and only if there exists
an exact equivalence between F (Δ̃𝐴) and F (∇̃𝐴). Hence, A is Ringel self-dual. �

This is an indication that the phenomenon of Ringel self-duality behaves better the larger the dominant
dimension of the characteristic tilting module. As before, for deformations, we can weaken the conditions
on the dominant and codominant dimension of the characteristic tilting module.
Corollary 5.4.2. Let R be an integral regular domain with quotient field K. Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a
split quasi-hereditary R-algebra. Let (𝐴, 𝑃,𝑉) be a relative Morita R-algebra. Fix 𝐵 = End𝐴(𝑃)𝑜𝑝 .
Assume the following conditions hold.
(i) (𝐾 ⊗𝑅 𝐴, 𝐾 ⊗𝑅 𝑃) is a 1-faithful split quasi-hereditary cover of B;

(ii) 𝐾 ⊗𝑅 𝑃-codomdim𝐾 ⊗𝑅 𝑇 ≥ 3 for a characteristic tilting module T;
(iii) domdim(𝐴,𝑅) 𝑇 , codomdim(𝐴,𝑅) 𝑇 ≥ 2 for a characteristic tilting module T;
(iv) There exists an exact equivalence F (𝐹𝑃Δ̃𝐴) → F (𝐹𝑃∇̃𝐴).
Then, A is Ringel self-dual.
Proof. We need to show that F (Δ̃𝐴) and F (∇̃𝐴) are exact equivalent. Note that domdim𝐴(𝔪) 𝑇 (𝔪) ≥ 2
and domdim𝐴𝑜𝑝 (𝔪) 𝐷𝑇 (𝔪) = codomdim𝐴(𝔪) 𝑇 (𝔪) ≥ 2 for every 𝔪 ∈ MaxSpec 𝑅. By Theorem 5.3.1,

(𝑅(𝐾 ⊗𝑅 𝐴),Hom𝐾 ⊗𝑅𝐴(𝐾 ⊗𝑅 𝑇, 𝐾 ⊗𝑅 𝑃)) = (𝐾 ⊗𝑅 𝑅(𝐴), 𝐾 ⊗𝑅 Hom𝐴(𝑇, 𝑃))

is a 1-faithful split quasi-hereditary cover of 𝐾 ⊗𝑅 𝐵, and (𝑅(𝐴(𝔪)),Hom𝐴(𝑇, 𝑃) (𝔪)) is a 0-faithful
split quasi-hereditary cover of 𝐵(𝔪) for every 𝔪 ∈ MaxSpec 𝑅. By Proposition 2.3.1(b), (𝐴(𝔪), 𝑃(𝔪))

is a 0-faithful split quasi-hereditary cover of 𝐵(𝔪) for every 𝔪 ∈ MaxSpec 𝑅. By [Cru24c, Proposition
5.0.5, Theorem 5.0.9], (𝑅(𝐴),Hom𝐴(𝑇, 𝑃)) and (𝐴, 𝑃) are 1-faithful split quasi-hereditary covers of
B. By Remark 5.3.3 and [Cru24c, Proposition 3.1.4], there exists an exact equivalence,

F (Δ̃𝐴) → F (𝐹𝑃Δ̃𝐴)
(𝑖𝑣)
−−−→ F (𝐹𝑃∇̃𝐴) → F (∇̃𝐴). �

6. Wakamatsu tilting conjecture for quasi-hereditary algebras

Theorem 3.1.4 is the main advantage of Definition 3.0.1 compared to [KSX01, Definition 2.1] giving
a meaning to what this relative dominant dimension measures. Another point of view to be referred to
is the Wakamatsu tilting conjecture (see [Wak88]). In this context, the Wakamatsu tilting conjecture
says that if Q has finite projective A-dimension and it admits no self-extensions in any degree, then
𝑄-domdim (𝐴, 𝑅) measures how far Q is from being a tilting module. In particular, for split quasi-
hereditary algebras, this amounts to saying that for a module Q in the additive closure of a characteristic
tilting module, 𝑄-domdim (𝐴, 𝑅) measures how far Q is from being a characteristic tilting module of A.
Theorem 6.0.1. Let R be a Noetherian commutative ring and (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary
R-algebra. Assume that T is a characteristic tilting module and 𝑄 ∈ add𝐴𝑇 is a partial tilting module.

If 𝑄-domdim (𝐴, 𝑅) = +∞, then Q is a characteristic tilting module of A.
Proof. Consider first that R is a field. By assumption, 𝐷𝑄-codomdim(𝐴𝑜𝑝 ,𝑅) 𝐷𝐴 = +∞.
Hom𝐴𝑜𝑝 (𝐷𝑄,−) is exact on F (∇̃𝐴𝑜𝑝 ), and so, 𝐷𝑄-codomdim(𝐴𝑜𝑝 ,𝑅) F (∇̃𝐴𝑜𝑝 ) = +∞ by Lemma
3.1.8. By Theorem 5.3.1, (End𝐴𝑜𝑝 (𝐷𝑇)𝑜𝑝 ,Hom𝐴𝑜𝑝 (𝐷𝑇, 𝐷𝑄)) is an +∞ faithful split quasi-hereditary
cover of End𝐴𝑜𝑝 (𝐷𝑄)𝑜𝑝 . By [Cru24c, Corollary 4.2.2], End𝐴𝑜𝑝 (𝐷𝑇)𝑜𝑝 is Morita equivalent to
End𝐴𝑜𝑝 (𝐷𝑄)𝑜𝑝 . In particular, by projectization, 𝐷𝑇 and 𝐷𝑄 have the same number of indecomposable
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modules. Therefore, add𝐴𝑜𝑝 𝐷𝑄 = add𝐴𝑜𝑝 𝐷𝑇 , and so Q is a characteristic tilting module. Assume now
that R is an arbitrary Noetherian commutative ring. By Theorem 3.2.5 and the first part, 𝑄(𝔪) is a
characteristic tilting module for every 𝔪 ∈ MaxSpec 𝑅; that is, add𝑄(𝔪) = F (Δ (𝔪)) ∩F (∇(𝔪)). By
Proposition 2.1.3, the result follows. �

6.1. Measuring 𝑄-domdim(𝐴,𝑅) 𝑇 using projective resolutions

We can also try to compute 𝑄-domdim(𝐴,𝑅) 𝑇 using projective resolutions over a Ringel dual of A.
Moreover, this perspective leads us to reformulate that 𝑄-domdim(𝐴,𝑅) 𝑇 measures how much the
projective module Hom𝐴(𝑇,𝑄) controls projective resolutions of characteristic tilting modules over the
Ringel dual.
Proposition 6.1.1. Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary R-algebra with a characteristic tilting
module T. Denote by 𝑅(𝐴) the Ringel dual End𝐴(𝑇)𝑜𝑝 (of A). Suppose that 𝑄 ∈ add𝐴𝑇 is a partial
tilting module. Then, Hom𝐴(𝑇, 𝑄)-codomdim(𝑅 (𝐴) ,𝑅) 𝐷𝑇 = 𝑄-domdim(𝐴,𝑅) 𝑇 .

Proof. Observe that End𝑅 (𝐴) (Hom𝐴(𝑇, 𝑄))𝑜𝑝 
 End𝐴(𝑄)𝑜𝑝 since 𝑄 ∈ add𝑇 . Denote by B this
endomorphism algebra and by H the Ringel dual functor Hom𝐴(𝑇,−) : 𝐴-mod → 𝑅(𝐴)-mod. Note that
the maps 𝜒𝑟𝐷𝑇 and 𝜒𝐷𝑇 : Hom𝐴(𝑇,𝑄) ⊗𝐵 Hom𝑅 (𝐴) (𝐻𝑄, 𝐷𝑇) are equivalent. Indeed by Ringel duality,
Tensor-Hom adjunction and [Cru22b, Proposition 2.2], the following R-modules are isomorphic:

Hom𝐴(𝐷𝑄, 𝐷𝑇) ⊗𝐵 𝐷𝑄 
 Hom𝐴(𝑇, 𝑄) ⊗𝐵 𝐷𝑄 
 Hom𝐴(𝑇,𝑄) ⊗𝐵 Hom𝐴(𝑄, 𝐷𝐴)


 Hom𝐴(𝑇,𝑄) ⊗𝐵 Hom𝑅 (𝐴) (𝐻𝑄, 𝐻 (𝐷𝐴)) 
 Hom𝐴(𝑇,𝑄) ⊗𝐵 Hom𝑅 (𝐴) (𝐻𝑄, 𝐷𝑇),

and Tor𝐵𝑖 (Hom𝐴(𝑇,𝑄),Hom𝑅 (𝐴) (Hom𝐴(𝑇,𝑄), 𝐷𝑇)) 
 Tor𝐵𝑖 (Hom𝐴(𝑇,𝑄), 𝐷𝑄), ∀𝑖 ∈ N. (18)

The result now follows from Theorems 3.1.3, 3.1.1 and 3.1.4. �

7. Going from bigger covers to smaller covers

In this section, we explore whether the quality of a split quasi-hereditary cover is preserved by truncation
by split heredity ideals and by Schur functors between split highest weight categories.

7.1. Truncation of split quasi-hereditary covers

Theorem 7.1.1. Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary Noetherian R-algebra. Assume that
(𝐴, 𝑃) is an i-F (Δ̃) cover of End𝐴(𝑃)𝑜𝑝 for some integer 𝑖 ≥ 0. Let J be a split heredity ideal of A.
Then, (𝐴/𝐽, 𝑃/𝐽𝑃) is an i-F (Δ̃𝐴/𝐽 ) cover of End𝐴/𝐽 (𝑃/𝐽𝑃)𝑜𝑝 , where F (Δ̃𝐴/𝐽 ) = F (Δ̃) ∩ 𝐴/𝐽-mod.
Proof. Fix 𝐵 := End𝐴(𝑃)𝑜𝑝 . The map 𝐴� 𝐴/𝐽 induces the fully faithful functor 𝐴/𝐽-mod → 𝐴-mod.
Hence, End𝐴/𝐽 (𝑃/𝐽𝑃)𝑜𝑝 
 End𝐴(𝑃/𝐽𝑃)𝑜𝑝 . We wish to express 𝐵𝐽 := End𝐴/𝐽 (𝑃/𝐽𝑃)𝑜𝑝 as a quotient
of B. To see this, consider the exact sequence of (𝐴, 𝐵)-bimodules 𝛿 : 0 → 𝐽𝑃 → 𝑃 → 𝑃/𝐽𝑃 → 0.
Applying Hom𝐴(𝑃,−) to 𝛿, we get the exact sequence 𝛾 : 0 → Hom𝐴(𝑃, 𝐽𝑃) → 𝐵 →

Hom𝐴(𝑃, 𝑃/𝐽𝑃) → 0, while by applying Hom𝐴(−, 𝑃/𝐽𝑃) to 𝛿 we get the exact sequence

0 → End𝐴(𝑃/𝐽𝑃) → Hom𝐴(𝑃, 𝑃/𝐽𝑃) → Hom𝐴(𝐽𝑃, 𝑃/𝐽𝑃). (19)

Thanks to 𝐽 = 𝐽2, we have Hom𝐴(𝐽𝑃, 𝑋) = 0 for every 𝑋 ∈ 𝐴/𝐽-mod. Combining (19) with 𝛾, we obtain
the exact sequence 0 → Hom𝐴(𝑃, 𝐽𝑃) → 𝐵 → 𝐵𝐽 → 0. Since 𝛿 is exact as (𝐴, 𝐵)-bimodules, the latter
is exact as (𝐵, 𝐵)-bimodules. Thus, the functor 𝐵𝐽 -mod → 𝐵-mod is fully faithful. Denote by𝐺𝑃/𝐽𝑃 the
functor Hom𝐵𝐽 (Hom𝐴/𝐽 (𝑃/𝐽𝑃, 𝐴/𝐽),−) = Hom𝐵 (Hom𝐴/𝐽 (𝑃/𝐽𝑃, 𝐴/𝐽),−) : 𝐵𝐽 -mod → 𝐴/𝐽-mod
and 𝐹𝑃/𝐽𝑃 = Hom𝐴/𝐽 (𝑃/𝐽𝑃,−) = Hom𝐴(𝑃/𝐽𝑃,−) : 𝐴/𝐽-mod → 𝐵𝐽 -mod.

To assert that the truncated cover is a 0-F (Δ̃) cover, it is enough to compare the restrictions of
the functors 𝐹𝑃 and 𝐺𝑃 ◦ 𝐹𝑃 to F (Δ̃) ∩ 𝐴/𝐽-mod with the restriction of the functors 𝐹𝑃/𝐽𝑃 and
𝐺𝑃/𝐽𝑃 ◦ 𝐹𝑃/𝐽𝑃 to F (Δ̃𝐴/𝐽 ), respectively. For each 𝑋 ∈ 𝐴/𝐽-mod, applying Hom𝐴(−, 𝑋) to 𝛿 instead
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of Hom𝐴(−, 𝑃/𝐽𝑃) yields that 𝐹𝑃/𝐽𝑃𝑋 
 𝐹𝑃𝑋 . By applying Hom𝐵 (−, 𝐹𝑃𝑋) to 0 → 𝐹𝑃𝐽 → 𝐹𝑃𝐴 →

𝐹𝑃 (𝐴/𝐽) → 0 we obtain the exact sequence 0 → 𝐺𝑃/𝐽𝑃𝐹𝑃/𝐽𝑃𝑋 → 𝐺𝑃𝐹𝑃𝑋 → Hom𝐵 (𝐹𝑃𝐽, 𝐹𝑃𝑋).
Fixing 𝑋 ∈ F (Δ̃𝐴/𝐽 ) we obtain that Hom𝐵 (𝐹𝑃𝐽, 𝐹𝑃𝑋) 
 Hom𝐴(𝐽, 𝑋) = 0 since (𝐴, 𝑃) is a
0-F (Δ̃) cover of B. These isomorphisms are functorial, so if we denote by 𝜂𝐽 the unit of the adjunction
𝐹𝑃/𝐽𝑃 
 𝐺𝑃/𝐽𝑃 , then 𝜂𝐽𝑋 is an isomorphism for every 𝑋 ∈ F (Δ̃𝐴/𝐽 ). This shows that (𝐴/𝐽, 𝑃/𝐽𝑃) is
a 0-F (Δ̃𝐴/𝐽 ) cover of 𝐵𝐽 .

Our aim now is to compute R 𝑗 𝐺𝑃/𝐽𝑃 (𝐹𝑃/𝐽𝑃𝑋) for 𝑗 ≤ 𝑖 and every 𝑋 ∈ F (Δ̃𝐴/𝐽 ). Hence,
fix an arbitrary 𝑋 ∈ F (Δ̃𝐴/𝐽 ). Applying Hom𝐵 (−, 𝐹𝑃𝑋) to 𝛾, we obtain Ext1𝐵 (𝐵𝐽 , 𝐹𝑃𝑋) = 0
and Ext𝑙𝐵 (𝐵𝐽 , 𝐹𝑃𝑋) 
 Ext𝑙−1

𝐵 (𝐹𝑃𝐽𝑃, 𝐹𝑃𝑋) for every 𝑙 > 1. Observe that 𝐽𝑃 
 𝐽 ⊗𝐴 𝑃 as left A-
modules since 𝑃 ∈ 𝐴-proj. Moreover, 𝐽𝑃 ∈ add𝐴 𝐽, and thus, it is projective as left A-module. Thus,
Ext𝑙𝐵 (𝐵𝐽 , 𝐹𝑃𝑋) 
 Ext𝑙−1

𝐴 (𝐽𝑃, 𝑋) = 0 for every 0 < 𝑙 − 1 ≤ 𝑖. Hence, Ext𝑙𝐵 (𝐵𝐽 , 𝐹𝑃𝑋) = 0 for every
1 ≤ 𝑙 ≤ 𝑖 + 1. Let · · · → 𝑃𝑖 → · · · → 𝑃1 → 𝑃0 → 𝐹𝑃/𝐽𝑃𝐴/𝐽 → 0 be a projective 𝐵𝐽 -resolution
of 𝐹𝑃/𝐽𝑃𝐴/𝐽. Denote by Ω 𝑗+1 the kernel of 𝑃 𝑗 → 𝑃 𝑗−1, with 𝑃−1 := Ω0 = 𝐹𝑃/𝐽𝑃𝐴/𝐽. Note that
Ext𝑙𝐵 (𝑃 𝑗 , 𝐹𝑃𝑋) = 0 for 1 ≤ 𝑙 ≤ 𝑖 + 1. Taking into account that 𝐵𝐽 -mod → 𝐵-mod is a fully faith-
ful functor, applying Hom𝐵 (−, 𝐹𝑃𝑋) and Hom𝐵𝐽 (−, 𝐹𝑃𝑋) to the projective 𝐵𝐽 -resolution of 𝐹𝑃𝐴/𝐽
yields

Ext𝑙𝐵 (Ω
𝑗 , 𝐹𝑃𝑋) 
 Ext𝑙+1

𝐵 (Ω 𝑗−1, 𝐹𝑃𝑋), Ext𝑠𝐵𝐽 (Ω
𝑗 , 𝐹𝑃𝑋) 
 Ext𝑠+1

𝐵𝐽
(Ω 𝑗−1, 𝐹𝑃𝑋), (20)

for 1 ≤ 𝑙 ≤ 𝑖, 𝑠, 𝑗 ≥ 1 and the commutative diagram

Hom𝐵 (𝑃 𝑗 , 𝐹𝑃/𝐽𝑃𝑋) Hom𝐵 (Ω 𝑗+1, 𝐹𝑃/𝐽𝑃𝑋) Ext1𝐵 (Ω
𝑗 , 𝐹𝑃/𝐽𝑃𝑋) 0

Hom𝐵𝐽 (𝑃 𝑗 , 𝐹𝑃/𝐽𝑃𝑋) Hom𝐵𝐽 (Ω
𝑗+1, 𝐹𝑃/𝐽𝑃𝑋) Ext1𝐵𝐽 (Ω

𝑗 , 𝐹𝑃/𝐽𝑃𝑋) 0
. (21)

By the commutative diagram, Ext1𝐵 (Ω
𝑗 , 𝐹𝑃𝑋) is zero if and only if Ext1𝐵𝐽 (Ω

𝑗 , 𝐹𝑃𝑋) is zero. By
assumption and the previous discussion, for each 1 ≤ 𝑙 ≤ 𝑖,

0 = Ext𝑙𝐵 (𝐹𝑃𝐴/𝐽, 𝐹𝑃𝑋) = Ext𝑙𝐵 (Ω
0,𝐹𝑃𝑋) 
 Ext1𝐵 (Ω

𝑙−1, 𝐹𝑃𝑋)

= Ext1𝐵𝐽 (Ω
𝑙−1, 𝐹𝑃/𝐽𝑃𝑋) 
 Ext𝑙𝐵𝐽 (𝐹𝑃/𝐽𝑃𝐴/𝐽, 𝐹𝑃/𝐽𝑃𝑋). (22)

By [Cru24c, Proposition 3.1.5], this concludes the proof. �

Remark 7.1.2. The module 𝑃/𝐽𝑃 might not be injective even if P is.

Remark 7.1.3. It follows from the proof of Theorem 7.1.1 that if (𝐴, 𝑃) is a cover of B such that
(𝐴/𝐽, 𝑃/𝐽𝑃) is a 0-F (Δ̃𝐴/𝐽 ) cover of 𝐵𝐽 , then (𝐴, 𝑃) is a (−1)-F (Δ̃) cover of B.

This gives another reason to be interested in zero faithful split quasi-hereditary covers. These are
exactly the covers for which double centralizer properties occur in every step of the split heredity chain.
In particular, this gives another perspective on why zero faithful split quasi-hereditary covers possess
so much nicer properties compared with (−1)-faithful split quasi-hereditary covers.

7.2. Relative codominant dimension with respect to a module in the image of a Schur functor
preserving the highest weight structure

In general, the Schur functor induced from a cosaturated idempotent (see Theorem 2.1.4) does not
preserve dominant or codominant dimension. In this subsection, we relate the codominant dimension of
a characteristic tilting module T of A with 𝑒𝑃-codomdim𝑒𝐴𝑒 𝑒𝑇 , when P is a faithful projective-injective
A-module and e is a cosaturated idempotent.
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Theorem 7.2.1. Let k be a field and (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary algebra over k. Assume
that A admits a cosaturated idempotent e and suppose that P is a projective-injective faithful module.
Let 𝑀 ∈ F (∇). If codomdim𝐴 𝑀 ≥ 𝑖, then 𝑒𝑃-codomdim𝑒𝐴𝑒 𝑒𝑀 ≥ 𝑖 for 𝑖 ∈ {1, 2}.

Proof. Denote by 𝐵 = End𝐴(𝑃)𝑜𝑝 and by 𝐶 = End𝑒𝐴𝑒 (𝑒𝑃)𝑜𝑝 . Since P is a (partial) tilting module,
the map 𝐵 → 𝐶, given by multiplication by e, is surjective according to Theorem 2.1.4. Thus, C is a
quotient of B. In particular, 𝐶-mod is a full subcategory of 𝐵-mod. Again by Theorem 2.1.4, the map
Hom𝐴(𝑃, 𝑀) → Hom𝑒𝐴𝑒 (𝑒𝑃, 𝑒𝑀) is a surjective left B-homomorphism. Denote such a map by 𝜑𝑀 .
We can consider the following commutative diagram

𝑒 · (𝑃 ⊗𝐵 Hom𝐴(𝑃, 𝑀)) (𝑒𝑃) ⊗𝐵 Hom𝐴(𝑃, 𝑀) (𝑒𝑃) ⊗𝐵 Hom𝑒𝐴𝑒 (𝑒𝑃, 𝑒𝑀) (𝑒𝑃) ⊗𝐶 Hom𝑒𝐴𝑒 (𝑒𝑃, 𝑒𝑀)

𝑒𝑀 𝑒𝑀

𝑒𝛿𝐷𝑀
(𝑒 ·𝑃) ⊗𝐵𝜑𝑀 𝜒𝑒𝑀

with the composition of the upper rows being surjective (see also Remark 3.1.2). In fact, thanks to the
𝐶-mod being a full subcategory of 𝐵-mod, we have the isomorphisms

𝐷 ((𝑒𝑃) ⊗𝐶 Hom𝑒𝐴𝑒 (𝑒𝑃, 𝑒𝑀)) 
 Hom𝐶 (Hom𝑒𝐴𝑒 (𝑒𝑃, 𝑒𝑀), 𝐷 (𝑒𝑃)) = Hom𝐵 (Hom𝑒𝐴𝑒 (𝑒𝑃, 𝑒𝑀), 𝐷 (𝑒𝑃))


 𝐷 ((𝑒𝑃) ⊗𝐵 Hom𝑒𝐴𝑒 (𝑒𝑃, 𝑒𝑀)). (23)

Since domdim𝐴𝑜𝑝 𝐷𝑀 = codomdim𝐴 𝑀 ≥ 1(resp. 2) if and only if 𝛿𝐷𝑀 is surjective (resp. bijective),
we obtain that 𝑒𝛿𝐷𝑀 is surjective if 𝑖 = 1 and bijective if 𝑖 = 2. So, if 𝑖 = 1, it follows that 𝜒𝑒𝑀 is
surjective, by the commutative diagram. Assume that 𝑖 = 2. Then, (𝑒 · 𝑃) ⊗𝐵 𝜑𝑀 must be injective, and
so it is an isomorphism. This implies that 𝜒𝑒𝑀 is also an isomorphism. �

For larger values of relative dominant dimension, the most natural approach to consider is to see
when the exact sequence giving the value of dominant dimension under the Schur functor 𝑒𝐴⊗𝐴− gives
information about the relative dominant dimension of 𝑒𝐴𝑒 with respect to 𝑒𝑃.

Proposition 7.2.2. Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary algebra over a field k, e a cosaturated
idempotent of A and P a projective-injective A-module. Suppose that there exists an exact sequence

𝛿 : 0 → 𝐴 → 𝑃0 → · · · → 𝑃𝑛−1, with 𝑃𝑖 ∈ add𝐴 𝑃. (24)

Then, the chain complex Hom𝑒𝐴𝑒 (𝑒𝛿, 𝑒𝑃) is exact if and only if 𝑃 ∈ add 𝐷 (𝑒𝐴). In particular, if the
chain complex Hom𝑒𝐴𝑒 (𝑒𝛿, 𝑒𝑃) is exact, then 𝑒𝑃 is a projective-injective 𝑒𝐴𝑒-module.

Proof. Assume that 𝑃 ∈ add𝐴 𝐷 (𝑒𝐴). Then, 𝑒𝑃 ∈ add𝑒𝐴𝑒 𝐷 (𝑒𝐴𝑒); that is, 𝑒𝑃 is injective over 𝑒𝐴𝑒. It
is clear that the functor Hom𝑒𝐴𝑒 (−, 𝑒𝑃) is exact.

Conversely, suppose that 𝑒𝛿 remains exact under Hom𝑒𝐴𝑒 (−, 𝑒𝑃). Let 𝑋0 be the cokernel of 𝐴 → 𝑃0.
Consider the commutative diagram

Hom𝐴(𝑃1, 𝑃) Hom𝐴(𝑃0, 𝑃) Hom𝐴(𝐴, 𝑃)

Hom𝐴(𝑋0, 𝑃)

Hom𝑒𝐴𝑒 (𝑒𝑋0, 𝑒𝑃)

Hom𝑒𝐴𝑒 (𝑒𝑃1, 𝑒𝑃) Hom𝑒𝐴𝑒 (𝑒𝑃0, 𝑒𝑃) Hom𝑒𝐴𝑒 (𝑒𝐴, 𝑒𝑃).

(25)

The vertical maps are surjective maps due to Theorem 2.1.4. By assumption, the bottom
row of (25) is exact. Hence, the lower triangle is an epi-mono factorization. Therefore,
Hom𝐴(𝑋0, 𝑃) → Hom𝑒𝐴𝑒 (𝑒𝑋0, 𝑒𝑃) is surjective. By Snake Lemma, we obtain that the map
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Hom𝐴(𝐴, 𝑃) → Hom𝑒𝐴𝑒 (𝑒𝐴, 𝑒𝑃) is, in addition to being surjective, an injective map. Since 𝑒𝐴 has
a filtration by standard modules over 𝑒𝐴𝑒, Ext𝑖>0

𝑒𝐴𝑒 (𝑒𝐴, 𝑒𝑃). By Lemma 2.10 of [GK15], for every
𝑀 ∈ 𝐴-mod,

Hom𝐴(𝑀, 𝑃) 
 Hom𝐴(𝑀,Hom𝑒𝐴𝑒 (𝑒𝐴, 𝑒𝑃)) 
 Hom𝑒𝐴𝑒 (𝑒𝑀, 𝑒𝑃). (26)

Then, by Theorem 3.10 of [Psa14], there exists an exact sequence 0 → 𝑃 → Hom𝑒𝐴𝑒 (𝑒𝐴, 𝐷 (𝑒𝐴𝑒)) 

𝐷 (𝑒𝐴). Since P is injective, this exact sequence splits, and we obtain that 𝑃 ∈ add𝐴 𝐷 (𝑒𝐴). �

The above condition is very restrictive, since in most cases of our interest, a module𝑄 ∈ F (Δ)∩F (∇)

is projective if and only if it is injective. Still, the injective dimension gives information on a lower bound:

Corollary 7.2.3. Let k be a field and A a finite-dimensional k-algebra. Let 𝑄 ∈ 𝐴-mod with 𝑄 ∈ ⊥𝑄.
Suppose that 𝑀 ∈ ⊥𝑄 and assume that there exists an A-exact sequence 0 → 𝑀 → 𝑄1 → · · · → 𝑄𝑛,
with 𝑄𝑖 ∈ add𝑄. Then, 𝑄-domdim𝐴 𝑀 ≥ 𝑛 − idim𝐴𝑄.

Proof. Assume that 𝑛 > idim𝐴𝑄; otherwise, there is nothing to prove. Denote by 𝑋𝑖 the cokernel of
𝑄𝑖−1 → 𝑄𝑖 where by convention we consider 𝑄0 := 𝑀 . By dimension shifting,

Ext𝑖>0
𝐴 (𝑋𝑛−idim𝐴𝑄, 𝑄) 
 Ext𝑖+1>0

𝐴 (𝑋𝑛−idim𝐴𝑄+1, 𝑄) 
 Ext𝑖+idim𝐴𝑄>0
𝐴 (𝑋𝑛, 𝑄) = 0. (27)

So, the exact sequence 𝑀 ↩→ 𝑄1 → · · · → 𝑄𝑛−idim𝐴𝑄 satisfies the assumptions of Proposition
3.1.12. �

Another option is to consider the homology over End𝑒𝐴𝑒 (𝑒𝑃) by viewing it as a quotient of End𝐴(𝑃).

Remark 7.2.4. The surjective map 𝜓 : 𝑘𝑆𝑑 � End𝑆𝑘 (𝑛,𝑑) (𝑉 ⊗𝑑) (see Subsection 8.1) may not be
a homological epimorphism if 𝑛 < 𝑑. Indeed, by [dlPX06, Proposition 2.2(a)], 𝜓 is a homolog-
ical epimorphism if and only if ker𝜓 is an idempotent ideal and Tor𝑘𝑆𝑑𝑖>0 (ker𝜓, 𝑘𝑆𝑑/ker𝜓) = 0.
Fix 𝑛 = 2, 𝑑 = 3 and k a field of characteristic three. Then, ker𝜓 is the ideal generated by
𝑎 := 𝑒 + (132) + (123) − (12) − (13) − (23). As 𝑎2 = 0, ker𝜓 is not an idempotent ideal. So, such
a method does not work for Schur algebras.

This means that we should use another approach to obtain lower bounds of codominant dimension
with respect to 𝑒𝑃 using the codominant dimension with respect to P. We can use, instead, truncation
of covers. This is fruitful for values of Hemmer-Nakano dimension greater than or equal to zero, but
this poses no problem in our situation since the smaller cases can be treated using Theorem 7.2.1.

Theorem 7.2.5. Let (𝐴, {Δ (𝜆)𝜆∈Λ}) be a split quasi-hereditary algebra over a field k. Let e be a
cosaturated idempotent of A. If A has positive dominant dimension with faithful projective-injective 𝐴 𝑓 ,
then

𝑒𝐴 𝑓 -codomdim𝑒𝐴𝑒 𝑒𝑇 ≥ codomdim𝐴𝑇,

where T is the characteristic tilting module of A.

Proof. We can assume without loss of generality that A is a basic algebra and 𝐴 𝑓 is also basic. If
codomdim𝐴𝑇 = 1, then the result follows from Theorem 7.2.1. Assume that codomdim𝐴𝑇 ≥ 2.

By Theorem 2.1.4, 𝑒𝑇 is the characteristic tilting module of 𝑒𝐴𝑒. Hence, the endomorphism algebra
End𝑒𝐴𝑒 (𝑒𝑇)𝑜𝑝 is the Ringel dual of 𝑒𝐴𝑒 which we denote by 𝑅(𝑒𝐴𝑒). Also, by Theorem 2.1.4, there
exists an exact sequence 0 → 𝑋 → 𝑅(𝐴) → 𝑅(𝑒𝐴𝑒) → 0, where X is an ideal of the Ringel dual of
A. More precisely, X is the set of all endomorphisms 𝑔 ∈ End𝐴(𝑇) satisfying 𝑒𝑔 = 0. Fix 𝑃 = 𝐴 𝑓 . We
claim that 𝑋 Hom𝐴(𝑇, 𝑃) is the kernel of the surjective map Hom𝐴(𝑇, 𝑃) → Hom𝑒𝐴𝑒 (𝑒𝑇, 𝑒𝑃). Denote
this surjection by 𝜓. Let 𝑔 ∈ 𝑋 and 𝑙 ∈ Hom𝐴(𝑇, 𝑃); then 𝑒(𝑙𝑔) = (𝑒𝑙) (𝑒𝑔) = 0. So, it is clear that
𝑋 Hom𝐴(𝑇, 𝑃) ⊂ ker𝜓. Now, let 𝑙 ∈ Hom𝐴(𝑇, 𝑃) such that 𝑒𝑙 = 0; that is, 𝑙 ∈ ker𝜓. By assumption,
we can write 𝑖 ◦ 𝜋 = id𝑃 , where 𝜋 ∈ Hom𝐴(𝑇, 𝑃). So, 𝑒(𝑖 ◦ 𝑙) = 𝑒𝑖 ◦ 𝑒𝑙 = 0. This means that 𝑖 ◦ 𝑙 ∈ 𝑋 .
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Now 𝑙 = 𝜋 ◦ 𝑖 ◦ 𝑙 = (𝑖 ◦ 𝑙) · 𝜋 ∈ 𝑋 Hom𝐴(𝑇, 𝑃). Now, a k-basis of End𝐴(𝑇) can be constructed using
its filtration by modules Hom𝐴(Δ (𝜈),∇(𝜈)), 𝜈 ∈ Λ and the liftings of Δ (𝜆) ↩→ 𝑇 (𝜆) � ∇(𝜆) along
these filtrations (see [Cru24b, Proposition 5.5] and [KSX01]). In particular, these maps factor through
𝑇 (𝜆), 𝜆 ∈ Λ. Analogously, End𝑒𝐴𝑒 (𝑒𝑇) has a k-basis of the maps factoring through 𝑒𝑇 (𝜆) ≠ 0, 𝜆 ∈ Λ′

(see Theorem 2.1.4(ii)(II) and its notation). So, X has a basis whose maps 𝑇 → 𝑇 factor through 𝑇 (𝜆),
𝜆 ∈ Λ \ Λ′. Let 𝑔𝜆 denote the idempotent 𝑇 � 𝑇 (𝜆) ↩→ 𝑇 and 𝑔𝑒 =

∑
𝜆∈Λ\Λ′ 𝑔𝜆. Then, we showed that

𝑋 = 𝑅(𝐴)𝑔𝑒𝑅(𝐴). In particular, X has a filtration by split heredity ideals of quotients of 𝑅(𝐴).
As codomdim𝐴𝑇 ≥ 2, Theorem 5.3.1 implies that (𝑅(𝐴),Hom𝐴(𝑇, 𝑃)) is a (codomdim𝐴𝑇 − 2)-

F (Δ𝑅 (𝐴) ) cover of End𝐴(𝑃)𝑜𝑝 . By induction on the filtration of X by split heredity ideals and using The-
orem 7.1.1, we obtain that (End𝑒𝐴𝑒 (𝑒𝑇),Hom𝑒𝐴𝑒 (𝑒𝑇, 𝑒𝑃)) 
 (𝑅(𝐴)/𝑋,Hom𝐴(𝑇, 𝑃)/𝑋 Hom𝐴(𝑇, 𝑃))
is a (codomdim𝐴𝑇−2)-F (Δ𝑅 (𝑒𝐴𝑒) ) cover of End𝑅 (𝐴)/𝑋 (Hom𝐴(𝑇, 𝑃)/𝑋 Hom𝐴(𝑇, 𝑃))

𝑜𝑝 which is iso-
morphic to End𝑅 (𝑒𝐴𝑒) (Hom𝑒𝐴𝑒 (𝑒𝑇, 𝑒𝑃))

𝑜𝑝 
 End𝑒𝐴𝑒 (𝑒𝑃)𝑜𝑝 . By Theorem 5.3.1, the result follows. �

8. Applications

In this section, we will use the technology on relative dominant dimension with respect to a partial tilting
module including [Cru22b, Cru24c] to construct a split quasi-hereditary cover of certain quotients of
Iwahori-Hecke algebras. This gives a new point of view to the Schur functors from module categories of
q-Schur algebras studied in detail in [Cru24c]. This technology together with the results from [Cru24c]
will allow us to give a new proof for the Ringel self-duality of the blocks of the BGG category O.

8.1. Generalized Schur algebras in the sense of Donkin

Throughout, assume that 𝑛, 𝑑 are natural numbers, R is a commutative Noetherian ring with an invertible
element u and 𝑞 = 𝑢−2. In this subsection, we continue [Cru24c, Cru22b] studying q-Schur algebras
and Iwahori-Hecke algebras over commutative Noetherian rings using relative dominant dimensions. In
particular, we use the notation of [Cru22b, Cru24a, Cru24c].

The study of Iwahori-Hecke algebras (denoted by 𝐻𝑅,𝑞 (𝑑)) can be traced back to [Iwa64], and
there are several equivalent ways to define them (here we follow [PW91]). Properties on q-Schur
algebras (denoted by 𝑆𝑅,𝑞 (𝑛, 𝑑)) can be found in [DJ91, DJ89, Don98] and in [Gre81] for 𝑞 = 1.
For instance, the module 𝑉 ⊗𝑑 := (𝑅𝑛)⊗𝑑 admits a (𝑆𝑅,𝑞 (𝑛, 𝑑), 𝐻𝑅,𝑞 (𝑑))-bimodule structure so that
𝑆𝑅,𝑞 (𝑛, 𝑑) = End𝐻𝑅,𝑞 (𝑑) (𝑉 ⊗𝑑).

Quantum Schur–Weyl duality says that 𝜓 : 𝐻𝑅,𝑞 (𝑑) → End𝑆𝑅 (𝑛,𝑑) (𝑉 ⊗𝑑)𝑜𝑝 is a surjective map (see,
for example, [DPS98, Theorem 6.2]). If 𝑛 ≥ 𝑑, 𝑉 ⊗𝑑 is a faithful module over 𝐻𝑅,𝑞 (𝑑), and in such a
case, 𝜓 is actually an isomorphism. So this means that there are double centralizer properties:

𝑆𝑅,𝑞 (𝑛, 𝑑) = End𝐻𝑅,𝑞 (𝑑) (𝑉
⊗𝑑), 𝐻𝑅,𝑞 (𝑑) 
 End𝑆𝑅,𝑞 (𝑛,𝑑) (𝑉

⊗𝑑)𝑜𝑝 , if 𝑛 ≥ 𝑑; (28)

𝑆𝑅,𝑞 (𝑛, 𝑑) = End𝐻𝑅,𝑞 (𝑑)/ker 𝜓 (𝑉
⊗𝑑), 𝐻𝑅,𝑞 (𝑑)/ker𝜓 
 End𝑆𝑅,𝑞 (𝑛,𝑑) (𝑉

⊗𝑑)𝑜𝑝, if 𝑛 < 𝑑. (29)

The double centralizer property in (28) follows from (𝑆𝑅,𝑞 (𝑛, 𝑑), 𝑉
⊗𝑑) being a cover of 𝐻𝑅,𝑞 (𝑑) (see,

for example, [Cru22b, Theorem 7.20], [Cru24c, Proposition 2.4.4]). But if 𝑛 < 𝑑, then 𝑉 ⊗𝑑 is not
necessarily projective, and so the former pair cannot be a cover anymore in general. Our aim now
is to unify these double centralizer properties and their cohomological higher versions using relative
dominant dimension and cover theory generalizing the approach taken in [KSX01]. In our treatment,
we will take care of the quantum case and the classical case (𝑞 = 1) simultaneously having always the
integral setup in mind.

8.1.0.1. Background on q-Schur algebras.
The ring R is an Z[𝑋, 𝑋−1]-algebra by defining the map of R-algebras Z[𝑋, 𝑋−1] → 𝑅 which sends
𝑧 ∈ Z to 𝑧1𝑅 and X to 𝑢 ∈ 𝑅. Hence, all q-Schur algebras and Iwahori-Hecke algebras can be constructed
from the ones over Laurent polynomials (see, for example, [Cru22b, Lemma 7.17]):
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𝐻𝑅,𝑞 (𝑑) 
 𝑅 ⊗Z[𝑋,𝑋−1 ] 𝐻Z[𝑋,𝑋−1 ],𝑋−2 (𝑑), 𝑆𝑅,𝑞 (𝑛, 𝑑) 
 𝑅 ⊗Z[𝑋,𝑋−1 ] 𝑆Z[𝑋,𝑋−1 ],𝑋−2 (𝑛, 𝑑). (30)

The q-Schur algebra admits a split quasi-hereditary structure whose standard modules are called the
q-Weyl modules, and are indexed by the partitions of d in at most n parts ordered by the dominance
order (see, for example, [PW91, Theorem 11.5.2] and [Cru24c, Theorem 7.2.2]). We denote the standard
modules of 𝑆𝑅,𝑞 (𝑛, 𝑑) by Δ𝑆𝑅,𝑞 (𝑛,𝑑) (𝜆), 𝜆 ∈ Λ+(𝑛, 𝑑), or just by Δ (𝜆) when there are no ambiguities.
By Λ+(𝑛, 𝑑) we mean the set of all partitions of d in at most n parts. It admits a cellular structure
with the standard modules being the cell modules (ordered with the opposite of the dominance order).
Furthermore, for each 𝔪 ∈ MaxSpec 𝑅, the 𝑞𝔪-Schur algebra 𝑆𝑅 (𝔪) ,𝑞𝔪 (𝑛, 𝑑) (with 𝑛 ≥ 𝑑) belongs to
the classA defined in [FK11], where 𝑞𝔪 denotes the image of q in 𝑅/𝔪. By [Cru22b, Theorem 7.20] and
[Cru24c, Corollary 7.2.4], if 𝑛 ≥ 𝑑, the pair (𝑆𝑅,𝑞 (𝑛, 𝑑), 𝑉 ⊗𝑑) is a relative gendo-symmetric R-algebra
and domdim(𝑆𝑅,𝑞 (𝑛, 𝑑), 𝑅) = 2 domdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇 = 2 inf{𝑠 ∈ N | 1 + 𝑞 + · · · + 𝑞𝑠 ∉ 𝑅×, 𝑠 < 𝑑},
where T is the characteristic tilting module of 𝑆𝑅,𝑞 (𝑛, 𝑑).

Remark 8.1.1. For any 𝑛, 𝑑 ∈ N and any 𝑀 ∈ add𝑆𝑅,𝑞 (𝑛,𝑑) 𝑇 , we have 𝑀-domdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇 =
𝑀-codomdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇 . Indeed, this follows from applying Theorem 3.2.5 (and its dual) with
Proposition 3.1.7 to the 𝑞𝔪-Schur algebras 𝑆𝑅 (𝔪) ,𝑞𝔪 (𝑛, 𝑑), 𝔪 ∈ MaxSpec 𝑅.

8.1.0.2. Covers of Iwahori-Hecke algebras.
When 𝑛 ≥ 𝑑, the pair (𝑆𝑅,𝑞 (𝑛, 𝑑), 𝑉

⊗𝑑) is (at least) a (−1)-F (Δ̃) split quasi-hereditary
cover of 𝐻𝑅,𝑞 (𝑑) for every commutative ring R. The quality of the Schur functor 𝐹𝑉 ⊗𝑑 =
Hom𝑆𝑅,𝑞 (𝑛,𝑑) (𝑉

⊗𝑑 ,−) : 𝑆𝑅,𝑞 (𝑛, 𝑑)-mod → 𝐻𝑅,𝑞 (𝑑)-mod was completely determined for all local com-
mutative rings R in [Cru24c, Subsection 7.2.1]. The field case is due to [FK11, FM19]. In the general
case, the quality depends on whether the ground ring is partial divisible or not. For more details, we
refer to [Cru24c, Subsections 7.1 and 7.2].

8.1.0.3. Covers of quotients of Iwahori-Hecke algebras.
We now use Theorem 7.2.5 to transfer information from 𝑛 ≥ 𝑑 to the case 𝑛 < 𝑑. Let k be a
field. Put 𝑞 = 𝑢−2 for some 𝑢 ∈ 𝑘 and assume that 𝑛 < 𝑑. By [Don98, 2.2(1), 4.7 and A3.11(i)],
𝑆𝑘,𝑞 (𝑑, 𝑑) admits a cosaturated idempotent f so that 𝑓 (𝑘𝑑)⊗𝑑 
 (𝐾𝑛)⊗𝑑 as 𝑆𝑘,𝑞 (𝑛, 𝑑)-modules and
𝑆𝑘,𝑞 (𝑛, 𝑑) 
 𝑓 𝑆𝑘,𝑞 (𝑑, 𝑑) 𝑓 as k-algebras. By Theorem 2.1.4, add 𝑓 𝑇𝑑 = add𝑇𝑛 and (𝑘𝑛)⊗𝑑 ∈ add𝑇𝑛
since (𝑘𝑑)⊗𝑑 is a projective-injective of 𝑆𝑘,𝑞 (𝑑, 𝑑), where 𝑇𝑛 (resp. 𝑇𝑑) is the characteristic tilting
module of 𝑆𝑘,𝑞 (𝑛, 𝑑) (resp. 𝑆𝑘,𝑞 (𝑑, 𝑑)). When 𝑞 = 1, see also [Erd94, 3.9, 4.2]. By Proposition 2.1.3,
(𝑅𝑛)⊗𝑑 ∈ F (Δ̃) ∩ F (∇̃) for every commutative Noetherian R.

Theorem 8.1.2. Let R be a commutative Noetherian ring with an invertible element 𝑢 ∈ 𝑅 and 𝑛, 𝑑 be
natural numbers. Put 𝑞 = 𝑢−2. Let 𝑇𝑛 be a characteristic tilting module of 𝑆𝑅,𝑞 (𝑛, 𝑑). Then,

𝑉 ⊗𝑑-domdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇𝑛 ≥ inf{𝑠 ∈ N | 1 + 𝑞 + · · · + 𝑞𝑠 ∉ 𝑅×, 𝑠 < 𝑑} ≥ 1.

Proof. By [Cru24c, Corollary 7.2.4], we may assume that 𝑛 < 𝑑. By Propositions 2.1.3 and 2.1.2 and
Theorem 3.2.5,

𝑉 ⊗𝑑-domdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇𝑛 = inf{(𝑅(𝔪)𝑛)⊗𝑑-domdim(𝑆𝑅 (𝔪) ,𝑞𝔪 (𝑛,𝑑) 𝑇𝑛 (𝔪) |𝔪 ∈ MaxSpec 𝑅},

where 𝑞𝔪 is the image of q in 𝑅(𝔪). By Theorem 7.2.5, Remark 8.1.1 and the above discussion,

𝑉 ⊗𝑑-domdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇𝑛 ≥ inf{(𝑅(𝔪)𝑑)⊗𝑑-domdim(𝑆𝑅 (𝔪) ,𝑞𝔪 (𝑑,𝑑) 𝑇𝑑,𝔪 |𝔪 ∈ MaxSpec 𝑅} (31)

= inf{domdim(𝑆𝑅 (𝔪) ,𝑞𝔪 (𝑑,𝑑) 𝑇𝑑,𝔪 |𝔪 ∈ MaxSpec 𝑅} (32)

= inf{domdim𝑆𝑅 (𝔪) ,𝑞𝔪 (𝑑,𝑑) 𝑇𝑑 (𝔪) |𝔪 ∈ MaxSpec 𝑅}, (33)
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where 𝑇𝑑,𝔪 is the characteristic tilting module of 𝑆𝑅 (𝔪) ,𝑞𝔪 (𝑑, 𝑑) and add𝑇𝑑 (𝔪) = add𝑇𝑑,𝔪, 𝔪 ∈

MaxSpec 𝑅. By Theorem 6.13 of [Cru22b] and Corollary 7.2.4 of [Cru24c], it follows that

𝑉 ⊗𝑑-domdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇𝑛 ≥ inf{𝑠 ∈ N | 1 + 𝑞 + · · · + 𝑞𝑠 ∉ 𝑅×, 𝑠 < 𝑑}. �

This inequality is sharp in general since this becomes an equality in case 𝑛 ≥ 𝑑 (see [Cru24c,
Corollary 7.2.4]). We are now ready to prove one of our main results.

Theorem 8.1.3. Let R be a commutative Noetherian regular ring with an invertible element 𝑢 ∈ 𝑅
and 𝑛, 𝑑 be natural numbers. Put 𝑞 = 𝑢−2. Let T be a characteristic tilting module of 𝑆𝑅,𝑞 (𝑛, 𝑑) and
𝑅(𝑆𝑅,𝑞 (𝑛, 𝑑)) := End𝑆𝑅,𝑞 (𝑛,𝑑) (𝑇)𝑜𝑝 the Ringel dual of the q-Schur algebra 𝑆𝑅,𝑞 (𝑛, 𝑑).

Then, (𝑅(𝑆𝑅,𝑞 (𝑛, 𝑑)),Hom𝑆𝑅,𝑞 (𝑛,𝑑) (𝑇,𝑉
⊗𝑑)) is a (𝑉 ⊗𝑑-domdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇 − 2)-

F (Δ̃𝑅 (𝑆𝑅,𝑞 (𝑛,𝑑)) ) split quasi-hereditary cover of End𝑆𝑅,𝑞 (𝑛,𝑑) (𝑉 ⊗𝑑)𝑜𝑝 .

Proof. If𝑉 ⊗𝑑-domdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇 ≥ 2, the result follows from Theorems 8.1.2, 5.3.1 and Proposition
3.1.7. Assume now that𝑉 ⊗𝑑-domdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇 = 1. Theorem 8.1.2 implies that 1+𝑞 is not invertible
and 𝑑 > 1. So we need to verify, in particular, the case 1 + 𝑞 = 0 and 𝑑 > 1.

Let L be a field with an element 𝑢 ∈ 𝐿 satisfying 𝑢−2 = −1. Consider the Laurent polynomial ring
𝑅 := 𝐿 [𝑋, 𝑋−1]. The invertible elements of 𝐿 [𝑋, 𝑋−1] are of the form 𝑙𝑋 𝑧 , 𝑧 ∈ Z and 𝑙 ∈ 𝐿 and
1 + 𝑋−2 ≠ 0. So, inf{𝑠 ∈ N | 1 + 𝑞 + · · · + 𝑞𝑠 ∉ 𝐿 [𝑋, 𝑋−1]×, 𝑠 < 𝑑} = 1 with 𝑞 = 𝑋−2. Let Q be the
quotient field of 𝐿 [𝑋, 𝑋−1]. Then,

inf{𝑠 ∈ N | 1 + 𝑞 + · · · + 𝑞𝑠 ≠ 0 ∈ 𝑄, 𝑠 < 𝑑} ≥ 2.

Therefore, (𝑄𝑛)⊗𝑑-domdim𝑆𝑄,𝑞 (𝑛,𝑑) ,𝑄 𝑄 ⊗𝐿 [𝑋,𝑋−1 ] 𝑇 ≥ 2 and 𝑉 ⊗𝑑-domdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇 ≥ 1
for a characteristic tilting module T of 𝑆𝑅,𝑞 (𝑛, 𝑑). By Corollary 5.3.5, we obtain that
(𝑅(𝑆𝑅,𝑞 (𝑛, 𝑑)),Hom𝑆𝑅,𝑞 (𝑛,𝑑) (𝑇,𝑉

⊗𝑑)) is a 0-F (Δ̃𝑅 (𝑆𝑅,𝑞 (𝑛,𝑑)) ) split quasi-hereditary cover of
End𝑆𝑅,𝑞 (𝑛,𝑑) (𝑉 ⊗𝑑)𝑜𝑝. Observe that L is the residue field 𝐿 [𝑋, 𝑋−1]/(𝑋 − 𝑢−1) and the image of X
in this residue field is 𝑢−1. It follows by applying 𝐿 [𝑋, 𝑋−1]/(𝑋 − 𝑢−1)⊗𝐿 [𝑋,𝑋−1 ]− to the previous
cover together with Theorem 5.0.7 of [Cru24c] that (𝑅(𝑆𝐿,−1 (𝑛, 𝑑)),Hom𝑆𝐿,−1 (𝑛,𝑑) (𝑇,𝑉

⊗𝑑)) is a (−1)-
F (Δ̃𝑅 (𝑆𝐿,−1 (𝑛,𝑑)) ) split quasi-hereditary cover of End𝑆𝐿,−1 (𝑛,𝑑) (𝑉

⊗𝑑)𝑜𝑝 . By [Cru24c, Proposition 5.0.5],
we conclude that the result holds in all cases. �

The special case 𝑞 = 1 puts the Schur–Weyl duality between 𝑆𝑅 (𝑛, 𝑑) and 𝑅𝑆𝑑 without restrictions
on the parameters n and d into our context. Moreover, this generalizes the results of Hemmer and
Nakano in [HN04] and [FK11, Theorem 3.9] on the Schur algebra (𝑆𝑅 (𝑛, 𝑑) with parameters 𝑛 ≥ 𝑑).
In general, this formulation helps us to put the quantum Schur–Weyl duality between q-Schur algebras
and Iwahori-Hecke algebras on 𝑉 ⊗𝑑 completely in the setup of cover theory generalising the results of
[FM19, PS05]. In fact, if 𝑛 ≥ 𝑑 and k is a field with 𝑢 ∈ 𝑘 , then by ([Don93, Proposition 3.7] for 𝑞 = 1
and [Don98, Proposition 4.1.4, Proposition 4.1.5]), the Ringel dual of 𝑆𝑘,𝑞 (𝑛, 𝑑) is the opposite algebra
of 𝑆𝑘,𝑞 (𝑛, 𝑑), and we can identify the projective relative injective module Hom𝑆𝑅,𝑞 (𝑛,𝑑) (𝑇,𝑉

⊗𝑑) with
𝐷𝑉 ⊗𝑑 . In this case, quantum Schur–Weyl duality gives End𝑆𝑅,𝑞 (𝑛,𝑑) (𝑉 ⊗𝑑) 
 𝐻𝑅,𝑞 (𝑑)

𝑜𝑝. So, for 𝑛 ≥ 𝑑,
Theorem 8.1.3 is translated to (𝑆𝑅,𝑞 (𝑛, 𝑑)

𝑜𝑝, 𝐷𝑉 ⊗𝑑) being a split quasi-hereditary cover of 𝐻𝑅,𝑞 (𝑑)
𝑜𝑝.

Therefore, for 𝑛 ≥ 𝑑, this statement is nothing new, and since 𝑆𝑅 (𝑛, 𝑑) is relative gendo-symmetric, the
quality of this cover coincides with the cover (𝑆𝑅,𝑞 (𝑛, 𝑑), 𝑉 ⊗𝑑). The novelty lies in the case 𝑛 < 𝑑.

However, this formulation gives us better insights into older results present in the literature, and it
explains, in some sense, why different conventions about the Schur functor can be considered. For sim-
plicity, let us assume that 𝑞 = 1. Let 𝐻 : 𝑆𝑅 (𝑛, 𝑑)-mod → 𝑅(𝑆𝑅 (𝑛, 𝑑)) be the equivalence of categories
given by Ringel self-duality in [Don93, Proposition 3.7]. Denote by 𝐹 ′ the Schur functor associated
with the cover (𝑅(𝑆𝑅 (𝑛, 𝑑)),Hom𝑆𝑅 (𝑛,𝑑) (𝑇,𝑉

⊗𝑑)) and recall that 𝐹 = 𝐹𝑉 ⊗𝑑 is the multiplication by
an idempotent e (see, for instance, [Cru22b, 7.5, 7.6]). Then, 𝐹Δ (𝜆) = 𝑒Δ (𝜆) and by [CPS96, Lemma
1.6.12],
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𝐹 ′𝐻Δ (𝜆) 
 𝐹 ′ Hom𝑆𝑅 (𝑛,𝑑) (𝑇,∇(𝜆
′)) 
 𝐹∇(𝜆′) = 𝑒𝐷Δ (𝜆′) 𝜄 
 𝐷 (𝑒Δ (𝜆′))𝑒𝜄𝑒 
 sgn ⊗𝑅𝑒Δ (𝜆).

(34)

Here,𝜆′ is the conjugate partition of𝜆, sgn is the free module R with the 𝑆𝑑-action𝜎 ·1𝑅 = sgn(𝜎)1𝑅 and
𝑀 𝜄 is the right module M with right action 𝑚 · 𝑎 = 𝜄(𝑎)𝑚, 𝑚 ∈ 𝑀 and 𝑎 ∈ 𝑆𝑅 (𝑛, 𝑑) for the involution 𝜄
(see [Cru24a, Section 5]). The same notation is used for modules over 𝑅𝑆𝑑 . By (34), 𝐹 ′𝐻 = sgn ⊗𝑅−◦𝐹
on 𝑆𝑅 (𝑛, 𝑑)-proj. Since all functors 𝐹, 𝐻, 𝐹 ′ and sgn ⊗𝑅− : 𝑅𝑆𝑑-mod → 𝑅𝑆𝑑-mod are exact, we obtain
𝐹 ′𝐻 = sgn ⊗𝑅 − ◦𝐹 on 𝑆𝑅 (𝑛, 𝑑)-mod. This means that the cover (𝑅(𝑆𝑅 (𝑛, 𝑑)),Hom𝑆𝑅 (𝑛,𝑑) (𝑇,𝑉

⊗𝑑))

is equivalent to (𝑆𝑅 (𝑛, 𝑑), 𝑉
⊗𝑑) (in the sense of [Cru24c, Definition 4.3.1]) if 𝑛 ≥ 𝑑.

When 𝑛 < 𝑑, the Ringel dual of 𝑆𝑅 (𝑛, 𝑑) is no longer, in general, a Schur algebra; it is instead a
generalized Schur algebra in the sense of Donkin. The construction of the Ringel dual of 𝑆𝑅 (𝑛, 𝑑) is
as follows: let 𝑈Z be the Konstant Z-form of the enveloping algebra of the semi-simple complex Lie
algebra 𝔰𝔩𝑑 (C). Then, the Ringel dual of 𝑆Z(𝑛, 𝑑) is the free Noetherian Z-algebra 𝑈Z/𝐼Z, where 𝐼Z is
the largest ideal of 𝑈Z so that the simple modules of Q ⊗Z 𝑈Z/𝐼Z are isomorphic to the Weyl modules
indexed by the weights belonging to Λ+(𝑛, 𝑑) (see [Don86, 3.1] and [Don93, Proposition 3.11]). For
an arbitrary commutative ring R, 𝑅 ⊗Z 𝑈Z/𝐼Z is the Ringel dual of 𝑆𝑅 (𝑛, 𝑑) known as generalized
Schur algebra associated with 𝔰𝔩𝑑 and the set Λ+(𝑛, 𝑑). Since the Ringel dual of the Schur algebra is a
quotient of 𝑅 ⊗Z 𝑈Z, Theorem 8.1.3 suggests why Schur–Weyl duality between 𝑆𝑅 (𝑛, 𝑑) and 𝑅𝑆𝑑 can
be deduced by studying the action of the Konstant Z-form on 𝑉 ⊗𝑑 .
Remark 8.1.4. From Theorem 8.1.3, it follows that the basic algebra of End𝑆𝑅,𝑞 (𝑛,𝑑) (𝑉 ⊗𝑑)𝑜𝑝 (𝔪),
𝐴𝔪, has a cellular structure with cell modules of 𝐻 Hom𝑆𝑅,𝑞 (𝑛,𝑑) (𝑉

⊗𝑑 ,∇(𝜆)) (𝔪), 𝜆 ∈ Λ, for every
𝔪 ∈ MaxSpec 𝑅, (see [Cru24b, Theorem 7.5]) where 𝐻 : End𝑆𝑅,𝑞 (𝑛,𝑑) (𝑉 ⊗𝑑)𝑜𝑝 (𝔪)-mod → 𝐴𝔪-mod
is an equivalence of categories. If 𝑞 = 1, using the fact that all Schur algebras can be recovered using
change of rings from 𝑆Z (𝑛, 𝑑) [Cru24b, Proposition 7.6] implies that End𝑆𝑅 (𝑛,𝑑) (𝑉 ⊗𝑑)

𝑜𝑝
𝔪 is Morita

equivalent to a Noetherian algebra which has a cellular structure with cell modules labeled by 𝜆 ∈ Λ for
all 𝔪 ∈ MaxSpec 𝑅.

The existence of the quasi-hereditary cover described in Theorem 8.1.3 allows us to study the
multiplicities of simple End𝑆𝑘 (𝑛,𝑑) (𝑉 ⊗𝑑)-modules through the multiplicities of simple 𝑅(𝑆𝑘 (𝑛, 𝑑))-
modules for a field k. In particular, this explains the background for the techniques used in [Erd94] to
determine decomposition numbers in the symmetric group. For example, [Erd94, 4.5] can be deduced
using the Schur functor constructed in Theorem 8.1.3, the Ringel duality functor and BGG reciprocity.

If R is a field, the value of the cover in Theorem 8.1.3 is optimal. But, as we saw even for the case
𝑛 ≥ 𝑑, the situation can be improved in some cases. We leave as an open question to determine the
relative dominant dimension 𝑉 ⊗𝑑-domdim(𝑆𝑅,𝑞 (𝑛,𝑑) ,𝑅) 𝑇 , when 𝑛 < 𝑑 and, in particular, the optimal
value of the cover in Theorem 8.1.3.

8.2. Relative dominant dimension as a tool for Ringel self-duality

We are now going to use the results of Section 5.3 together with integral representation theory to
reprove Ringel self-duality for two classical cases. The method is particularly effective when applied
to the Bernstein-Gelfand-Gelfand category O. Such situations highlight the strength of working with
split quasi-hereditary covers whose exact categories of modules admit a filtration by summands of
direct sums of standard modules with large Hemmer-Nakano dimension. For the undefined notation and
terminology in this subsection, we refer to [Cru24c].

8.2.1. Bernstein-Gelfand-Gelfand category O
The BGG category O (see [BGG76, Hum08, Jan79] and the references therein) of a semi-simple Lie
algebra 𝔤𝐾 = 𝔫+

𝐾 ⊕ 𝔥𝐾 ⊕ 𝔫−
𝐾 over a splitting field of characteristic zero K is the full subcategory of

𝑈 (𝔤𝐾 )-Mod whose modules M are finitely generated over 𝑈 (𝔤𝐾 ), locally 𝔫+
𝐾 -finite and semi-simple

over 𝔥𝐾 ; that is, 𝑀 =
⊕

𝜆∈𝔥∗𝐾
𝑀𝜆 for weight spaces 𝑀𝜆. Here, 𝔥∗𝐾 denotes the dual vector space of 𝔥𝐾 .
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Let R be a local regular commutative Noetherian ring which is a Q-algebra. When K is an R-algebra,
using the Chevalley basis, any semi-simple Lie algebra can be deformed to a Lie algebra 𝔤𝑅 so that
𝐾 ⊗𝑅 𝔤𝑅 
 𝔤𝐾 , and the same applies to its Cartan decomposition. The BGG category O admits an
integral version O[𝜆],𝑅, introduced in [GJ81, 1.4] as follows. Let 𝜆 ∈ 𝔥∗𝑅. We denote by [𝜆] the set of
elements of 𝔥∗𝑅, 𝜇 that satisfy 𝜇 − 𝜆 ∈ Λ𝑅, where Λ𝑅 is the integral weight lattice associated to the
root system of 𝔤𝑅 relative to 𝔥𝑅. We define O[𝜆],𝑅 to be the full subcategory of 𝑈 (𝔤𝑅)-Mod whose
modules M are finitely generated over the enveloping algebra 𝑈 (𝔤𝑅), 𝑈 (𝔫+

𝑅)-locally finite and satisfy
𝑀 =

∑
𝜇∈[𝜆] 𝑀𝜇.

The category O[𝜆],𝑅 has Verma modules Δ (𝜇), 𝜇 ∈ [𝜆], and each Δ (𝜇) (𝔪) is a Verma module of
O (see [Cru24c, Subsection 7.3.8]). Since R is a local ring, O[𝜆],𝑅 decomposes into blocks following
decompositions of [𝜆] into blocks. The blocks of [𝜆] were completely determined in [GJ81, 1.8.2], and
all of them can be written in the form D = 𝑊𝜇 · 𝜇 + 𝜈 with 𝜇 ∈ 𝔥∗𝑅, 𝜈 ∈ 𝔪𝔥∗𝑅, where 𝑊𝜇 is the Weyl
group of the subroot system making 𝜇 an integral weight. For each block D of [𝜆], we define in [Cru24c,
Definition 7.3.37] a projective Noetherian R-algebra 𝐴D so that the module category 𝐴D (𝔪)-mod is
equivalent to a block of the BGG category O whose composition factors are topΔ (𝜇) with 𝜇 ∈ D and
𝜇 is the image of 𝜇 in 𝔥∗𝑅/𝔪𝔥∗𝑅. In particular, every block of the BGG category O can be obtained in
this way.

The algebra 𝐴D is a split quasi-hereditary cellular R-algebra with standard modules Δ𝐴(𝜇), 𝜇 ∈ D
(see [Cru24c, Theorems 7.3.38 and 7.3.42]). Moreover, the pair (𝐴D, 𝑃𝐴(𝜔)) is a split quasi-hereditary
cover of the commutative R-algebra 𝐶 := End𝐴D (𝑃𝐴(𝜔))

𝑜𝑝 (see [Cru24c, Theorem 7.3.44]), where the
projective module 𝑃𝐴(𝜔) is indexed by an antidominant weight (that is, 𝜔 is an antidominant weight in
𝔥∗
𝑅 (𝔪)

). Further, the pair (𝐴D, 𝑃𝐴(𝜔)) is a relative gendo-symmetric R-algebra with 2 domdim(𝐴D ,𝑅) 𝑇 =
domdim (𝐴D, 𝑅) = 2 if |D | > 1; otherwise, it is infinite (see [Cru24c, Theorem 7.3.43, Theorem
7.3.44]), where T is a characteristic tilting module of 𝐴D. Here, C is a deformation of a subalgebra of a
coinvariant algebra, in the sense that 𝐶 (𝔪) is a subalgebra of a coinvariant algebra. We can consider an
integral version of the Soergel’s combinatorial functorVD = Hom𝐴D (𝑃𝐴(𝜔),−) : 𝐴D-mod → 𝐶-mod .
This integral version has better properties than the classical one, and in particular, if D is nice enough,
VD induces a full embedding from F (Δ) to 𝐶-mod preserving also Ext groups up to a certain degree
smaller than or equal to the rank of the Cartan subalgebra (see [Cru24c, Theorem 7.3.45, Remark
7.3.47]).

8.2.1.1. Ringel self-duality of BGG category O.
The blocks of the classical BGG category O are Ringel self-dual ([Soe98, Corollary 2.3] and [FKM00,
Proposition 4]). We present now a different proof.

Theorem 8.2.1. Let R be a local regular commutative Noetherian ring which is a Q-algebra. Let D be
a block of [𝜆] for some 𝜆 ∈ 𝔥∗𝑅. The split quasi-hereditary R-algebra 𝐴D is Ringel self-dual.

Proof. Let 𝜇 ∈ D and 𝔪 ∈ MaxSpec 𝑅. Both Δ (𝜇) and ∇(𝜇) belong to 𝐴D/𝐽-mod, where J is an
ideal admitting a filtration by split heredity ideals and such that Δ (𝜇) is a projective 𝐴D/𝐽-module.
Further, since ∇(𝜇) (𝔪) is the dual of Δ (𝜇) (𝔪), its socle coincides with the top of Δ (𝜇) (𝔪). Denote
by f the nonzero 𝐴D/𝐽 (𝔪)-homomorphism Δ (𝜇) (𝔪) � topΔ (𝜇) (𝔪) ↩→ ∇(𝜇) (𝔪). As Δ (𝜇) is a
projective object in 𝐴D/𝐽-mod, there exists an 𝐴D-homomorphism 𝑓 making the following diagrams
commutative:

Δ (𝜇) Δ (𝜇) (𝔪)

∇(𝜇) ∇(𝜇) (𝔪)

𝑓 𝑓

𝐹Δ (𝜇) 𝐹Δ (𝜇) (𝔪)

𝐹∇(𝜇) 𝐹∇(𝜇) (𝔪)

𝐹 𝑓 𝐹 𝑓 , (35)

where F is the Schur functor VD = Hom𝐴D (𝑃𝐴(𝜔),−) and 𝜔 is the antidominant weight. Observe that
for any 𝑋 ∈ 𝐴D-mod, 𝐹 (𝑋 (𝔪)) = Hom𝐴D (𝑃𝐴(𝜔), 𝑋 (𝔪)) 
 Hom𝐴D (𝔪) (𝑃𝐴D (𝔪) (𝜔), 𝑋 (𝔪)) (see,
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for example, [Cru24c, Lemma 2.1.1]) and 𝐹 𝑓 is isomorphic to the map Hom𝐴D (𝔪) (𝑃𝐴(𝔪) (𝜔), 𝑓 )
which is nonzero since top 𝑃𝐴(𝔪) (𝜔) is the image of f. Moreover, 𝐹Δ (𝜇) (𝔪) 
 𝑅(𝔪) and
𝐹∇(𝜇) (𝔪) 
 𝑅(𝔪). Hence, 𝐹 𝑓 is an isomorphism. Applying 𝑅(𝔪) ⊗𝑅 − to the diagram (35), we
obtain that 𝐹 𝑓 (𝔪) is an isomorphism. Since both 𝐹Δ (𝜇), 𝐹∇(𝜇) ∈ 𝑅-proj, Nakayama’s Lemma
yields that 𝐹 𝑓 is an isomorphism. This shows that 𝐹Δ (𝜇) 
 𝐹∇(𝜇) = Hom𝐴D (𝑃(𝜔),∇(𝜇)) 


Hom𝑅 (𝐴D) (Hom𝐴D (𝑇, 𝑃(𝜔)),Hom𝐴D (𝑇,∇(𝜇))), for every 𝜇 ∈ D. Fix, for a moment, 𝑅 =
𝐾 [𝑋1, 𝑋2](𝑋1 ,𝑋2) and D to be the block 𝑊𝜇𝜇 + 𝑋1

1 𝛼1 +
𝑋2
1 𝛼2, where 𝛼1, 𝛼2 are distinct simple roots (so

we are excluding the case 𝔤 = 𝔰𝔩2), where 𝜇 ∈ 𝔥∗𝑅 is a preimage of an antidominant weight in 𝔥∗
𝑅 (𝔪)

which is not dominant without coefficients in 𝔪 in its unique linear combination of simple roots. Hence,
we are excluding the simple blocks which are trivially Ringel self-dual. By [Cru24c, Theorem 7.3.45,
Remark 7.3.47], (𝐴D, 𝑃𝐴(𝜔)) is a 1-F (Δ̃) cover of C.

Let T be a characteristic tilting module of 𝐴D. We claim that (𝑅(𝐴D),Hom𝐴D (𝑇, 𝑃(𝜔)) is a
1-F (Δ̃𝑅 (𝐴D) ) cover of C, where 𝑅(𝐴D) denotes the Ringel dual of 𝐴D. In the proof of [Cru24c,
Theorem 7.3.45] (replacing C by K), we observe that, for any prime ideal 𝔭 of R with height at most
one, 𝑄(𝑅/𝔭) ⊗𝑅 𝐴D is semi-simple because the weights in 𝑄(𝑅/𝔭) ⊗𝑅 D are both dominant and
antidominant, where 𝑄(𝑅/𝔭) is the quotient field of 𝑅/𝔭. Therefore, the Ringel dual of 𝑄(𝑅/𝔭) ⊗𝑅 𝐴D,
𝑄(𝑅/𝔭) ⊗𝑅 𝑅(𝐴D), according to Propositions 2.1.2 and 2.1.3, is semi-simple for any prime ideal 𝔭 of
R with height at most one. Therefore, 𝑄(𝑅/𝔭) ⊗𝑅 𝑃(𝜔)-codomdim𝑄 (𝑅/𝔭) ⊗𝑅𝐴D 𝑄(𝑅/𝔭) ⊗𝑅 𝑇 = +∞

and (𝑄(𝑅/𝔭) ⊗𝑅 𝑅(𝐴D), 𝑄(𝑅/𝔭) ⊗𝑅 Hom𝐴D (𝑇, 𝑃(𝜔)) is a +∞−faithful split quasi-hereditary cover of
𝑄(𝑅/𝔭) ⊗𝑅𝐶 for every𝔭 ∈ Spec 𝑅 with height at most one. By [Cru24c, Theorems 7.3.43 and 7.3.44(f)]
and Proposition 3.1.7, 𝑃(𝜔)-codomdim(𝐴D ,𝑅) 𝑇 = 1. By Corollary 5.3.5, (𝑅(𝐴D),Hom𝐴D (𝑇, 𝑃(𝜔))
is a 0-F (Δ̃𝑅 (𝐴D) ) cover of C. So, by [Cru24c, Theorem 5.1.1], the claim follows.

By [Cru24c, Corollary 4.3.6], 𝐴D is Ringel self-dual. That is, there exists an equivalence of categories
𝐻 : 𝐴D-mod → 𝑅(𝐴D)-mod preserving the highest weight structure. Applying 𝑅(𝔪) ⊗𝑅 − to H, we
obtain that 𝐴D (𝔪) is Ringel self-dual. That is, the blocks of category O over a field of characteristic
zero are Ringel self-dual. We excluded the case 𝔤 = 𝔰𝔩2. But the non-simple blocks of the category
O associated with 𝔰𝔩2 are Morita equivalent to the Auslander algebra of 𝐾 [𝑥]/(𝑥2) which is Ringel
self-dual.

Return to the general case of R being an arbitrary local regular commutative Noetherian ring which
is a Q-algebra and D an arbitrary block. Since 𝑅(𝔪) is a field of characteristic zero, 𝐴D (𝔪) is Ringel
self-dual. By [Cru24b, Lemma 7.4], 𝐴D is Ringel self-dual. �

8.2.2. Schur algebras
By [Don93, Proposition 3.7], the Schur algebras 𝑆Z(𝑑, 𝑑) are Ringel self-dual, and therefore, the Schur
algebra 𝑆𝑅 (𝑑, 𝑑) is also Ringel self-dual for an arbitrary commutative Noetherian ring R.

The approach presented in Theorem 8.2.1 can also be applied to Schur algebras. However, we have
to exclude the case of characteristic two for similar reasons why we dealt with the case 𝔰𝔩2 separately.

Theorem 8.2.2. Assume that 𝑛 ≥ 𝑑. The Schur algebra 𝑆Z[ 1
2 ]
(𝑛, 𝑑) is Ringel self-dual.

Proof. The quotient field of 𝑅 := Z[ 1
2 ] isQ. So, for 𝑆Z[ 1

2 ]
(𝑛, 𝑑), Conditions (i) and (ii) of Corollary 5.4.2

hold. By Remark 8.1.1, Condition (iii) holds since domdim𝑆
Z[ 1

2 ]
(𝑛,𝑑) ,𝑅 𝑇 = 2. For each 𝜆 ∈ Λ+(𝑛, 𝑑),

we have 𝐹∇(𝜆) 
 𝑒∇(𝜆) 
 𝑒𝐷Δ (𝜆) 𝜄 
 𝐷 (𝑒Δ (𝜆)) 𝜄 
 sgn ⊗𝑅𝑒Δ (𝜆′) using the notation of Subsection
8.1. The last isomorphism is [CPS96, Lemma 1.6.12]. Moreover, sgn ⊗𝑅𝑀 
 𝑀 for any 𝑀 ∈ 𝑅𝑆𝑑-mod
and sgn ⊗𝑅− : 𝑅𝑆𝑑-mod → 𝑅𝑆𝑑-mod is an isomorphism of categories. Therefore, for all 𝜆 ∈ Λ+(𝑛, 𝑑),
𝐹∇(𝜆) 
 sgn ⊗𝑅𝐹Δ (𝜆′), and F (𝐹∇) 
 F (𝐹Δ). So the result follows by Corollary 5.4.2. �
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