A CHARACTERISATION OF COMPACT MINIMAL HYPERSURFACES IN A UNIT SPHERE*

Qing-ming Cheng

Dedicated to Professor Hisao Nakagawa on his 60th birthday

Abstract

In this note, we show that the totally geodesic sphere, Clifford torus and Cartan hypersurface are the only compact minimal hypersurfaces in $S^{4}(1)$ with constant scalar curvature if the Ricci curvature is not less than -1 .

Let M be a compact minimal hypersurface in a unit sphere $S^{n+1}(1)$. It is wellknown that if $S \leqslant n, M$ is a totally geodesic hypersurface or Clifford torus, where S is the squared norm of the second fundamental form (see Chern, do Carmo and Kobayashi [3]). Yau [8] also characterised the totally geodesic hypersurface and Clifford torus by the sectional curvature which is not less than 0 . When $n=3$, the author and Jiang [2] proved that if the Ricci curvature is not less than $1 / 2$, then M is totally goedesic. Doi [5] proved that if the Ricci curvature $\operatorname{Ric}(M) \geqslant 0$ and the scalar curvature is constant, then M is a totally geodesic hypersurface or Clifford torus. On the other hand, we also know that the following Cartan hypersurface has constant scalar curvature and its Ricci curvature is not less than -1 :

$$
2 x_{5}^{3}+3\left(x_{1}^{2}+x_{2}^{2}\right) x_{5}-6\left(x_{3}^{2}+x_{4}^{2}\right) x_{5}+3 \sqrt{3}\left(x_{1}^{2}-x_{2}^{2}\right) x_{4}+6 \sqrt{3} x_{1} x_{2} x_{3}=2,
$$

where $\left(x_{1}, \ldots, x_{5}\right)$ is the natural coordinate system in \mathbb{R}^{5}. Hence, the known examples of 3 -dimensional compact minimal hypersurfaces in the unit sphere $S^{4}(1)$ with constant scalar curvature are only the totally geodesic sphere $S^{\mathbf{3}}(1)$, Clifford torus and Cartan hypersurface above. Their Ricci curvatures are not less than -1 . A natural problem is that if M is a compact minimal hypersurface in $S^{4}(1)$ with constant scalar curvature and its Ricci curvature is not less than -1 , then is it one of the above minimal hypersurfaces?

In this note, we give an affirmative answer for the above problem, that is, we prove the following:

[^0]Theorem. Let M be a 3 -dimensional compact minimal hypersurface in a unit sphere $S^{4}(1)$ with constant scalar curvature. If the Ricci curvature of M is not less than -1 , then M is totally geodesic, or a Clifford torus or a Cartan hypersurface.

Proof: For any point p in M, we choose a local orthonormal frame field such that $h_{i j}=\lambda_{i} \delta_{i j}$, where $h_{i j}$ is the component of the second fundamental form. We consider function $f=\sum \lambda_{i}^{3}$ which does not depend on the choice of the local orthonormal frame field. If f is constant, then M has constant principal curvatures since M is minimal and has constant scalar curvature. Hence M is an isoparametric hypersurface. According to the classification of isoparametric hypersurfaces due to Cartan when $n=3$, we know that Theorem is true. Next we will prove that f must be constant.
(a) If there exists a point p in M such that $f(p)=0$, we have, at point p,

$$
\begin{align*}
& \lambda_{1}+\lambda_{2}+\lambda_{3}=0 \tag{1}\\
& \lambda_{1}^{3}+\lambda_{2}^{2}+\lambda_{3}^{2}=S \tag{2}\\
& \lambda_{1}^{3}+\lambda_{2}^{3}+\lambda_{3}^{3}=0 \tag{3}
\end{align*}
$$

where S is the squared norm of the second fundamental form. According to the Gaussian equation, we get that S is constant since M has constant scalar curvature. From (1), (2) and (3), we have $\lambda_{1}=-\sqrt{S / 2}, \lambda_{2}=0$ and $\lambda_{3}=\sqrt{S / 2}$ at point p. From the Gaussian equation and the assumptions of the Theorem, we obtain

$$
R_{i i}=2-\lambda_{i}^{2} \geqslant-1
$$

where $R_{i i}$ is the component of the Ricci curvature tensor. Hence, at point $p, R_{11}=$ $2-S / 2 \geqslant-1$. Thus $S \leqslant 6$. Since S is constant, we know that $S=0,3$ or 6 on M from the result in [1]. Then [4, Corollary 1] due to de Almeida and Brito implies that M is isoparametric. Therefore the Theorem is valid in this case.
(b) If $f(p) \neq 0$ for any point p in M, without loss of generality, we assume $f<0$. Because M is compact, we know that there exists a point p in M such that $f(p)=\max f<0$. Therefore, at point p,

$$
\begin{aligned}
& \lambda_{1}+\lambda_{2}+\lambda_{3}=0 \\
& \lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=S \\
& \lambda_{1}^{3}+\lambda_{2}^{3}+\lambda_{3}^{3}=\max f
\end{aligned}
$$

From the following Lemma, we know that f is constnat or λ_{1}, λ_{2} and λ_{3} are distinct at point p.

Lemma. (See Okumura [6]) Let a_{1}, a_{2} and a_{3} be real numbers satisfying $\sum a_{i}=$ 0 and $\sum a_{i}^{2}=k^{2}$ for $k>0$. Then

$$
\left|\sum a_{i}^{3}\right| \leqslant k^{3} / \sqrt{6} .
$$

The equality holds if and only if two of them are equal with each other.
If f is constant, then the Theorem is valid. If λ_{1}, λ_{2} and λ_{3} are distinct at point p, from the assumptions of the Theorem and $f(p)=\max f$, we have

$$
\begin{align*}
\sum h_{i i k}=0 & \text { for any } k \tag{4}\\
\sum \lambda_{i} h_{i i k}=0 & \text { for any } k \tag{5}\\
\sum \lambda_{i}^{2} h_{i i k}=0 & \text { for any } k \tag{6}
\end{align*}
$$

where $h_{i j k}$ is the component of the covariant derivative of the second fundamental form. Therefore from (4), (5) and (6), we conclude that $h_{i i k}=0$ for any i and k since λ_{1}, λ_{2} and λ_{3} are distinct. A direct and simple computation yields

$$
\Delta f=3(3-S) f+6 \sum \lambda_{i} h_{i j k}^{2}
$$

where Δ is the Laplacian on M. Since f obtains its maximum at point p, we get

$$
(3-S) f+2 \sum \lambda_{i} h_{i j k}^{2} \leqslant 0 .
$$

Because $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$ and $h_{i i k}=0$ for any i and k, we have

$$
\begin{aligned}
\sum \lambda_{i} h_{i j k}^{2} & =(1 / 3) \sum\left(\lambda_{i}+\lambda_{j}+\lambda_{k}\right) h_{i j k}^{2} \\
& =(1 / 3) \sum_{i \neq j \neq k}\left(\lambda_{i}+\lambda_{j}+\lambda_{k}\right) h_{i j k}^{2}+\sum_{i \neq k}\left(2 \lambda_{i}+\lambda_{k}\right) h_{i j k}^{2}+\sum_{i} \lambda_{i} h_{i i i}^{2} \\
& =0
\end{aligned}
$$

Hence $(3-S) f \leqslant 0$. Thus $S \leqslant 3$ from $f(p)<0$. From the result due to Chern, do Carmo and Kobayashi [3], we obtain that M is totally geodesic or a Clifford torus.

From (a) and (b), we complete the proof of the Theorem.
Making use of the generalised maximum principle due to Omori [7] and Yau [9] and the similar proof to the one of the Theorem, we can prove the following statement.

Theorem 1. Let M be a 3-dimensional complete minimal hypersurface in $S^{4}(1)$ with constant scalar curvature. If the Ricci curvature of M is not less than -1 , then $S=0,3$ or 6 , where S is the squared norm of the second fundamental form.

References

[1] Q.M. Cheng, 'Complete minimal hypersurfaces in $S^{4}(1)$ with constant scalar curvature', Osaka Math. J. 27 (1990), 885-892.
[2] Q.M. Cheng and B. Jiang, '3-dimensional submanifolds of spheres with parallel mean curvature vector', Tsukuba J. Math. 16 (1992), 321-334.
[3] S.S. Chern, M. do Carmo and S. Kobayashi, 'Minimal submanifolds of a sphere with second fundamental form of constant length', in Functional analysis and related fields (Springer-Verlag, Berlin, Heidelberg, New York, 1970), pp. 59-75.
[4] S. de Almeida and F.G. Brito, 'Closed 3-dimensional hypersurfaces with constant mean curvature and constant scalar curvature', Duke Math. J. 61 (1990), 195-206.
[5] N. Doi, 'On compact minimal hypersurfaces in a sphere with constant scalar curvature', Nagoya Math. J. 78 (1980), 177-188.
[6] M. Okumura, 'Hypersurfaces and a pinching problem on the second fundamental tensor', Amer. J. Math. 96 (1974), 207-213.
[7] H. Omori, 'Isometric immersions of Riemannian manifolds', J. Math. Soc. Japan 19 (1967), 205-214.
[8] S.T. Yau, 'Submanifolds with constant mean curvature II', Amer. J. Math. 97 (1975), 76-100.
[9] S.T. Yau, 'Hamonic functions on complete Riemannian manifolds', Comm. Pure Appl. Math. 28 (1975), 201-228.

Institute of Mathematics
Fudan University
Shanghai 200433
Peoples Republic of China

[^0]: Received 5 March 1992
 The project supported by NNSFC.

