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ON THE CHERN CLASSES OF THE REGULAR
REPRESENTATIONS OF SOME FINITE GROUPS

by BENJAMIN M. MANN and R. JAMES MILGRAM*

(Received 10th February 1981)

In studying the cohomology of the symmetric groups and its applications in topology
one is led to certain questions concerning the representation rings of special subgroups
of yn. In this note we calculate the Chern classes of the regular representation of (Z/p)n

where p is a fixed odd prime in terms of certain modular invariants first described by L.
E. Dickson in 1911. In a later paper [9] we apply these results to study the odd primary
torsion in the PL cobordism ring. Some indications of this application are given in
Sections 10-12 where we apply the result above to obtain information about the
cohomology of Sf^. After circulation of this note in preprint form we learned that H.
Mui [10], has also proved Theorem 6.2.

1.

Recall that the regular representation R(G) of a finite group G is obtained via its
natural action as a group of automorphisms of the group ring C(G)(g E zigi = Z zgg,). In
particular, from the theory of representations of finite groups [3] we have the
decomposition

R(G)=Y (dim S(G))S(G) 1.1
S(G)

where S(G) runs over all irreducible complex representations of G.
In the case G=(Z/p)n all the irreducible representations are one dimensional and are

obtained explicitly as follows. Let

(1.2)

be the homomorphism defined by

where T is a specified generator of Zip. Then to each n-tuple I=(il... in)e{Z/p)n define
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as the homomorphism given on the jth generator 7} by

The composites

are irreducible, and indeed give all the irreducible representations of (Z/p)n.

2.

The cohomology of (Z/p)n is given by

H*((Z/pT,Z/p) = E ( e , . . . e n ) ® P { b u . . . , b n )

where dim (e;) = 1, dim (b,) = 2. Let /; denote (0.. . 010... 0) then

e,= Vfte

and

b-Vf.b (2.1)

with e,b, the canonical generators of H*(Z/p,Z/p) = E(e)(g)P(b).

It is well known that the homomorphism X^.Z/p-^Z/p defined by Xi(T) = Ti induces
the cohomology map (l,)*(e) = ie, (A,)*(fc) = ib.

From this and the Kiinneth theorem it is easy to see that

Vtui i,(e) = £(e.)
(2.2)

(Indeed b is the Bochstein of e so it suffices to check on e, and here use the maps

y defined by

together with the observation V(l<i,...,l)<PiJ{T) = l.)

Lemma 2.3. Let / = (i1,. . . , in) as in Section 1 then
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CHERN CLASSES OF SOME FINITE GROUPS 261

Proof. Let (P(il...iny(Z/p)n-y(Z/p)n be given by <?(,,...,„) 7} = (7})'J. Then V, is the
composite V(l 1 )(<?,,....„)• By the Kiinneth theorem

so 2.3 follows from 2.2.

3.

The total Chern class of the representation X in (1.2) is \+b = C{X). Moreover, if Rt

and R2 are two representations of G then

@R2) = C{Rl)C(R2). (3.1)

Thus, we have from (1.1), (2.3)

C(R(Z/PT)= n (i+M>! + . . .+iA). (3.2)
(^...i^efZ/

To calculate (3.2) explicitly we introduce

Definition 3.3. The Chern polynomial CP{R) of a representation R of dimension n is
the element

in the ring of polynomials in x with coefficients in H*(G, Z/p).
We see directly that

CP(Rt 0 R2) = CP(R1)CP(R2)

so we have

CP{R{Z/PY)= nn
(i,...!,,) 6 (Z/P)"

(3.4)

where 1 is the trivial representation.
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The general linear group GLn(Z/p) acts on {Z/pf as its group of automorphisms, and
hence by composition on the representation ring, (a(S(G)) is the composite

where G = (Z/p)n, <xeGLn(Z/p), and S is a representation) and aSl = Sa(J). Clearly, R(Z/p)n

— 1 and 1 form a basis for the set of GLn(Z/p) invariant representations of (Z/p)n.
The action of GLn(Z/p) also induces an action on H*((Z/pf,Z/p) (if a(7})

= T'{-',..., TJ,-", then u*(ek) = Z iskes and similarly for bk) and from in variance of R(Z/p)n

we have

Lemma 4.1. c,(R(Z/p)") e P(b, . . . bn)
GL"fZlP) the invariant subring of P(bx... bn\

5.

Let p(xt... x J be a polynomial in m indeterminants with coefficients in the field Z/p.
Since the pth power homomorphism is the identity on Z/p we have

(5.1)

Consequently, the determinant

Y?" v?" x
ph

A l X2 ••• x m

x"'2 x?!1 xph

x \ X2 ••• x m

cfxf ...

= D{xl....,xm,p'\p'\...,p"-) (5.2)

satisfies

, ph,..., p'") = det (a)D(xlf..., xm, p'\... (5.3)

where a e GLm(Z/p) and a(x,) = xj = I d^Xy
We need the following particular cases, which, we should note are non-zero.

Definition 5.4. Dn } = D{xu..., xn, 1, p, p2,..., p>,..., p").
In particular, Dn „ is usually written L and Dn 0 = Zf. L has an explicit factorisation

first discovered by E. H. Moore in 1896.

Lemma 5.5. (Moore [5])

I! (
a , . ••-'„>
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CHERN CLASSES OF SOME FINITE GROUPS 263

where (/', ..../„) runs over all elements in (Z/p)n with first non-zero coefficient equal to one.

Proof. (Compare [1, p. 76]). L is invariant under the special linear group SLn(Z/p)
which acts transitively on the non-zero elements of (Z/p)n. Hence, since Xj is a factor of
L it follows that a(x1)=jlxl +... +jnxn is a factor as well. Hence the product above
divides L (the factors are all relatively prime). But both sides have the same degree,
hence they differ only up to a constant factor. On the other hand, xf 'xjf .. . xn the
diagonal term occurs in both sides only once and each time with coefficient 1.

More generally xx is a factor of Dnj for all j so L is also a factor of Dnj by the
argument above and we have

Lemma 5.6. Dn j = Qn jL where Qnj is a non-zero polynomial invariant under GLn(Z/p).

6.

Dickson's main result in [1], proved by induction on n (for n = 2 the method is by
Galois theory) specifies the GLn{Z/p) invariants as

Theorem 6.1. (Dickson) P(xl... xn)
GL"(Zlp)

= f(Qn,n-U Qn,n-2> • • • > Qn.o)

(Actually, he showed P(xt ...xn)SL"(Z/p) = P(e n , n _ 1 ; . . . , Qn,,,L), but this gives (6.1)
directly.)

Here is our main result.

Theorem 6.2. The Chern polynomial for the regular representation of(Z/p)n is

CP(R(Z/pT) = x(( - 1)" " l ( - lJ'G,. ib,... b^x"'-»).
i = 0

The proof decomposes into three steps. First, we note that (6.2) is true up to some
undetermined coefficients in Z/p. Next, we verify that

These two steps are purely formal algebra. Finally, using the Steenrod pth power
operations and a mod(p) Wu formula for the Chern classes we obtain the remaining
coefficients and finish the proof.

7.

Lemma 7.1. In degrees less than p" the only elements in P(x, .. . xn)
c'-"(Z/p) are the QnJ.
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Proof. The class of least degree, according to (6.1), is 2n>n_i which has degree p"
— p"~' and since

2(p" - p-l) ^ p" > Pn -1 = dim (gn, 0)

for all p ^ 2 we have (7.1).

Consequently, the only invariants in the range of degrees involved in CP(R(Z/p)n) are
the Qn i and this gives step 1.

8.

In (3.4) we set x = 0 in CP(R(Z/pf- 1) we obtain

C P » - I = (

-iy.p"'k n

(8.1)

Now, by Wilson's theorem (p— l)\ = — l(modp) and we have

This is step 2.

9.

In H*(CPX, Z/p) = P(b) where b is the two dimensional generator, the action of the
Steenrod pth power operation P' is given by

Pi(bj)=(J
i)b

J+Kp'l). (9.1)

In particular, Pj(bp') = 0 unless j=p' in which case P"\bp') = bp'+>. Using the Cartan
formula P'(xv y) = Y!J=0P

j(x)vj P'-J(y) we have the action of P' in H*{(CPmf,Z/p)
= P(b,,..., bn).

In particular, the above remarks and (5.3) show

PjDnk = 0 if 0<j<p" and /
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but Pp*"'DnJl = Dnit_1. Thus, we have

Lemma 9.2. P^{Qn.j(bi, ••., bn)) = QnJ- ^bi,..., bn) if k=j—l and is zero otherwise for
k<n.

Next, we require

Lemma 9.3. The Chern classes cn reduced modp universally satisfy the Wu formula

where D is a decomposable polynomial in cu..., cn + (p_ 1);_ 2.

Proof. There is a map / : E 2 C P 0 0 - ^ which satisfies /*(c,) = (T2(fo''"1) for all i, and,
of course, /*(D) = 0 for any decomposable. For details see [8, Chapter 4]. Since P'
commutes with suspension and with / * , (9.3) is a consequence of (9.1).

Thus, we have

P'/'\cpl,.p,) = ̂ -/ri)cpn.pr-l = -lcpn_iy-i (9.4)

on comparing coefficients in the expansion

(x+ I)""-"'-1 =(xp""' +1)""1 ...(*"'+ l ) p - V " " ' + I )"" 1 . . . (x+ I)""1.

Now using (9.2) and (9.4) together with (8.2) the proof of (6.2) is direct.

10.

If G is a finite group of order n it has a natural embedding p:G-*£fn obtained by
regarding left multiplication by geG as a permutation of the elements of G. Also, there
is the permutation representation of Sfn

where P{a){z1... zn) = (zx-Hl),...,zx-Hn)), and we evidently have

Lemma 10.1. The composite

G^yn^U{n)

is the regular representation R(G).
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Corollary 10.2. H*(Sfn, Z/p) contains a polynomial subring SP on generators
Cpn pn ,(P), . . . , c r _ , (P ) , and ?/ maps onto

P(bu...,bn)
GL»<z"»

under the induced map

Wp, Z/p)^H*((Z/Pr, Z/p).

11.

We need more precise information about the Chern classes of the permutation
representation of 5 ^ . To this end consider the inclusion

where the p-tuple {a1,...,ap) acts by regarding a, as a permutation of the ith block of
p"'1 letters

Let q^ifpn-iy^ypn-, be projection onto the ith factor, then by inspection we have

Lemma 11.1. The representation Ppn(in-\)

is

; = i

Consequently, under the composite map
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we see that

VtxCiP) = C(R(Z/pT- >) ® ...®C(R(Z/pY-l)

since the total Chern class is multiplicative for sums of bundles.

12.

We may iterate the construction of (11.2) obtaining maps

Recall the theorem of [4], see also [6, Section 3].

Theorem 12.2. The intersection of the kernels of the maps p*, /*_, is zero.

Consequently, the images under the q>*A of C(P) completely characterise C(P) and we
have

(12.3)

13.

The constructions above and some obvious generalisations provide nearly complete
information about the parts of H*{Sf ̂  Z/p) which map onto the pure polynomial pieces
of the cohomology of the detecting groups in (12.1). However, there are many classes
which map into classes involving the exterior algebras as well. These are much more
complex and most of the work in [4] is involved in classifying them.

Some of them, though by no means all, can be obtained by a modification of the
techniques above by lifting the stabilisation of the permutation representation in the
diagram

03-1)

U(pn)

where P is the permutation representation in the modular group, and g is the Green's
representation [2]. Then use Quillen's calculation [7] of H*(GLn(Z/q), Z/p) together with
a slight extension of the techniques in Section 9 and Section 10, for appropriate q.
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