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ABSTRACT

The purpose of this paper is to show how linear programming methodology
can help us to design Bonus-Malus premium scales with some interesting the-
oretical and practical attributes. Examples of these properties are the financial
equilibrium of the system, the monotonicity and proper variability of the pre-
mium scale, and the improvement of some efficiency measures such as the
RSAL and the elasticity of the system. We will conclude that the use of the
linear programming methodology makes possible a high degree of interaction
between the designer and the mathematical model.
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1. INTRODUCTION

It is well known that a priori rating techniques may not eliminate the risk hete-
rogeneity within the policyholders’ classes, because some of the most important
risk factors may be unobservable. This fact forces many insurance companies
to adopt bonus-malus rating systems, in order to adjust the premium to the pol-
icyholders claims experience.

Bonus-Malus systems (BMS) design requires to choose the number of classes,
the transition rules between them, the initial class and the scale of premiums.
It is clear that all these decisions should be optimal choices. In this paper we
will refer only to the last problem, the calculation of the optimal set of premi-
ums. The design of optimal bonus-malus premium scales for a given set of classes
and transition rules has been addressed in the literature as early as in 1963
(see Pesonen (1963)), proposing that the premium for a given bonus-malus
class should be defined as the expected claim amount per year of an infinitely
old policy in that class. In Norberg (1976), it was proved that Pesonen’s pre-
miums minimize the expected squared rating error for a randomly chosen
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infinitely old policy. The premium scale obtained this way, called the Bayes
Scale, is the standard method for optimal BMS design and enjoys good proper-
ties, such as the financial equilibrium of the resulting BMS.

The importance of the financial equilibrium property is beyond all doubt,
as it guarantees the equivalence between expected premiums and expected claims
in the whole portfolio, and therefore the survival of the company in the long run.
Nevertheless, financial equilibrium may be not the only BMS interesting property.
In practice, it may be advisable that BMS enjoy other attributes. For example,
BMS designers may wish to obtain a smoothed BMS if they want to prevent
the bonus hunger phenomenon or even that policyholders may be tempted to
quit the company. This can be done by means of the inclusion in the BMS of
some desirable commercial features, such as the selection of the initial class and
premium, upper (or lower) bounds for the differences between two consecu-
tive premiums, or for the difference between the two extreme premiums, etc.

On the other hand, there exist in the actuarial literature several criteria that
measure the degree of fulfilment of other theoretical reasonable properties for
a given BMS. Examples of such criteria are the relative stationary average level
(RSAL) and the elasticity or efficiency of a BMS (Loimaranta (1972), De Pril
(1978), Lemaire (1985, 1995, 1998)). According to each one of these criteria
it is possible to evaluate two different existing BMS and to conclude that one
of them is “better” than the other. It could therefore be interesting to design
a BMS with appropriate values of these criteria, or at least with improved val-
uations when compared with a pre-existing BMS.

In a recent paper (Heras, Vilar and Gil (2002)), we have proposed an alter-
native method for BMS design, based on the optimization of the global asymp-
totic fairness of the system. This objective function measures the global devia-
tion between insured’s mean premiums and mean claim frequencies, once the
steady-state of the BMS is approached, and is mathematically represented by
means of a linear function. Then the optimal premium scale is obtained as the
optimal solution of some linear program.

The purpose of this paper is to show how this linear programming method-
ology becomes a useful tool when we have to design a BMS with desirable com-
mercial and/or theoretical features, like for instance those exposed in the
previous paragraphs (which can be easily represented by means of linear
constraints to be added to the main linear program). Of course, the new lin-
ear program will often be unfeasible. In such cases the designers will know the
impossibility of the existence of a BMS satisfying all the required properties,
and will proceed to make some of them less severe. In fact, if the designers can-
not satisfy all their aspirations about the good characteristics of the BMS, at
least they can aim to get a reasonable degree of compromise between them.

2. DEFINITION OF A BONUS-MALUS SYSTEM

Consider a group of policies which is homogeneous with respect to some
observable risk characteristics. Nevertheless, there remain risk differences within
the group, due to unobservable factors. As it is usual in the literature, we assume
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that the risk characteristics of each policy are summarized in the value of a
parameter L, and that the claim numbers from different years are condition-
ally independent and identically distributed given the risk parameter of the
policy. We also assume that the individual claim amounts are independent of
the claim numbers and the risk parameter, and mutually independent and iden-
tically distributed.

Following several authors (see for instance Lemaire (1985, 1995)), we iden-
tify the value of the risk parameter of a policy with its mean claim frequency.
This mean claim frequency is assumed to be stationary in time, i.e. not time
dependent. In this case, taking the mean individual claim cost as one mone-
tary unit, our objective is to calculate a pure premium for the insured as close
as possible to the (unknown) true value of his parameter. We will try to perform
this by means of a BMS. Of course, such system will be based on the number
of claims and not on their amount. In fact, almost all the real BMS around
the world are exclusively based on the number of claims (Lemaire (1985, p. 129)).

Finally, we assume that the risk parameter Λ is a random variable with known
cumulative function U(l) (the structure function). This distribution is not a
subjective distribution in the pure Bayesian sense, it has a frequency interpre-
tation as different policies will have different values of their risk parameters.

Following Lemaire (1995, p. 6), we say that an insurance company uses a
BMS when the following conditions hold:

• There exists a finite number of classes (C1,…,Cn) such that each policy stays
in one class throughout each insurance period (usually a year).

• The premium for each policy depends only on the class where it stays.

• The class for a given period is determined by the class in the preceding period
and the number of claims reported in that period (Markovian Condition).

Every BMS is determined by three elements:

• The initial class, where new policies are assigned.

• The premium scale P = (P1,…,Pn), where Pi is the premium for policies in
class Ci.

• The transition rules, that is, the rules establishing the conditions under which
a policy in class Ci is transferred to class Cj in the next period.

These transition rules are usually defined by means of transformations Tk such
that Tk(i) = j when policyholders in class Ci reporting k claims are transferred
to class Cj in the next period. Transformations Tk are usually defined by means
of matrices,

Tk = (tk
ij )

where

tk
ij = 1 if Tk(i) = j

t k
ij = 0 if Tk(i) ≠ j
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The conditional transition probability from Ci to Cj in one period, given that
L = l, can be calculated as

p pl li k
k 0

=
3

=
j !] ]g g . tk

ij

where pk(l) is the conditional probability of reporting k claims in one period
given that L = l, that is,

pk(l) = Pr[N = k / L = l ]

The conditional transition matrix, given that L = l, is defined as 

P(l) = ( pij(l))

These definitions allow us to look at the bonus-malus system as a Markov
chain. This chain is homogeneous, since we have assumed that each claim fre-
quency λ is stationary in time. The previously defined transition matrix P(l)
will be the transition matrix of the corresponding Markov chain.

If we also assume that the Markov chain is ergodic and not cyclic then it
is a regular chain, and it is well known (see for instance Kemeny and Snell (1976))
that there exists a stationary (conditional) probability distribution p̂ (l) =
(p1(l),…,pn(l)), where pi(l) is defined as the limit value (when the number of
periods tends to infinity) of the conditional probability that a policy belongs
to the class Ci, given that L = l. It can be shown that the stationary proba-
bility distribution coincides with the left eigenvector associated with the eigen-
value 1 of the corresponding transition matrix, and whose components add the
unit.

It is also possible to define the stationary (unconditional) probability dis-
tribution p̂ = (p1,…,pn) for an arbitrary policy, as the mean value of the sta-
tionary conditional probability distributions (p1(l),…,pn(l)). That is,

pi = pi# (l)dU(l)

It is clear that pi and pi(l) can be interpreted as the probabilities that an arbi-
trary policy and a policy conditioned to L = l, respectively, belong to class Ci
when stationarity is reached. The knowledge of these stationary distributions
becomes a very useful tool when designing a BMS, because it informs us about
the long term distribution of the policies. In fact, we will add to our previous set
of hypotheses the assumption that the BMS has reached, or at least approached,
its steady state.

3. ASYMPTOTIC CRITERIA FOR OPTIMAL BMS DESIGN

There are two main approaches for designing an optimal BMS based on the
long term behaviour of the policies (when the system approaches the steady
state). Both of them aim to minimize the expected rating error, that is, the
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expected difference between premiums and claims for an arbitrary policy. But
they differ in the way they calculate such a rating error.

The first approach considers an arbitrary policy in an arbitrary class when
the steady state has been reached. If the mean claim frequency is l and the class
is Ci, then the rating error should be defined as a function of the difference
(Pi – l). As mentioned in the Introduction, Norberg’s approach (1976) follows
this idea by considering a quadratic rating error function (Pi – l)2. Since the
density function of the random variable (l,Ci) can be calculated as pi(l)u(l),
the expected squared rating error to be minimized will be

2
( ) ( )P u dl p l l li i

i

n

10

-
3

=

# !^ h

It is easy to show that the optimal premiums are, for i = 1,…,n,

( ) ( )P u dp lp l l l1
i

0
=

3

i
i

#

that is, the expected claim amount of an arbitrary policy in each class (Peso-
nen (1963)). This premium scale is usually called the Bayes Scale. (See Baione,
Levantesi and Menzietti (2002), for a similar (not identical) quadratic rating
error function).

The second approach is based on the fact that when an arbitrary policy
reaches the steady state, it does not necessarily stay forever in a fixed class: it
is the probability pi(l) of (temporarily) belonging to each class Ci that remains
constant for a policy with risk parameter l in the stationary state. The policy
can change from one class to another along the class scale according to these
probabilities, and therefore the mean value of the premiums paid by that pol-
icyholder will be (see Lemaire (1985), p. 166):

�P Pp l p li
i

n

1

=
=

i! ] ]g g

According to this approach, the rating error for an arbitrary policy should be
defined as a function of the differences

�P Pp l l p l li
i

n

1

- = -
=

i! ]d ]^g n g h

Verico (2002) follows this idea by considering a quadratic rating error function.
Consequently, Verico’s optimal premiums are defined as those that minimize
another kind of expected squared rating error function, namely

P u dp l l l li
i

n

1

2

0

-
3

=
i# ! ]d ]g n g

The differences between both approaches can be expressed in terms of Bayesian
Decision Theory. In general decision problems it is well known (see, for instance,
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DeGroot (1970)) that, if the decision maker’s preferences over the possible
consequences of his decisions are consistent with some axioms of rational
behaviour, then it is possible to define a function over those consequences
(called the utility of the consequences) such that one feasible decision will be
preferred to another if, and only if, the expected utility of the possible conse-
quences is larger for the first decision than it is for the second. In decision
problems it is usual to specify the negative of the utility, and to call it the loss.
Then the decision maker should choose as optimal the decision that minimizes
the expected loss of his consequences.

The decision maker must then proceed as follows: first, he must define a
consequence for every feasible decision and every value of the random para-
meters; second, he must specify a numerical loss associated with every conse-
quence; finally, he calculates the expected loss of every feasible decision, and
chooses as optimal the decision with minimal expected loss.

In order to apply this general framework to our particular problem, let us
consider an arbitrary policy in the stationary state. On the one hand, if we
formulate a Bayesian decision problem in which the random states are the
risk parameter l of the policy and the class Ci to which the policy belongs,
the feasible decisions are the possible scales (P1,…,Pn), and the loss associated
with every state (l,Ci) and every feasible decision (P1,…,Pn) is a quadratic loss
(Pi – l)2, then the optimal decision minimizes the expected squared rating error
as defined by Norberg (1976). In other words, the optimal decision is to adopt
the Bayes Scale.

On the other hand, if we formulate a different Bayesian decision problem,
where the feasible decisions are again the scales (P1,…,Pn), the random states
are the values of l and the loss associated with every premium scale and every
value of the random parameter l is defined as 

P p l li
i

n

1

2

-
=

i! ]d g n

then the optimal decision becomes Verico’s premium scale.
It is clear that both approaches are rightful, and the decision to choose one

or another could depend on the good properties of the resulting premium
scales. In this sense, it is important to remember that Bayes Scales, which can
be considered the standard method for optimal BMS design, enjoy good prop-
erties, such as the financial equilibrium of the resulting BMS.

But let us now pay attention to another component of the Bayesian decision
problems, namely, the loss functions. Both Norberg’s and Verico’s approaches
consider quadratic loss functions. This is a very usual choice when dealing
with Bayesian estimation problems. We should not forget, however, that the
Bayesian Methodology does not force the decision maker to always choose
quadratic loss functions. For example, Box and Tiao (1973) say that “in a proper
Bayesian decision analysis, the loss function is supposed to represent a realistic
economic penalty associated with the available actions … it is easy to imagine
practical situations where the squared error loss would be inappropriate” (Box
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and Tiao (1973), pg. 309). Smith (1988) finds also difficult to justify the use of
quadratic loss functions in most applications. Instead, “in many simple deci-
sion problems it is reasonable to assume that the appropriate loss function is
piecewise linear … The simplest piecewise linear loss function is the absolute
loss function” (Smith (1988), pg. 110). See also Raiffa and Schlaifer (1961), sec-
tion 4.2, and Lee (1989), section 7.5.

These observations raise the question of the appropriateness of absolute loss
functions as realistic penalties in our BMS design problems. In our opinion, it
could be reasonable to use such absolute loss functions in this kind of decision
problems, because it allows us to distinguish between policyholders paying
more than their fair premiums, and those paying less. Instead, quadratic loss
functions imply the equal valuation of overachievements and underachievements
around the true value of the risk parameter l, and do not allow to distinguish
between policyholder’s and insurer’s extraordinary earnings.

In the next section we will use absolute instead of quadratic loss functions
when the optimal BMS design follows the second approach previously mentioned.
We will see that the resulting mathematical program becomes easy to solve,
because it is equivalent to a linear program. We will see also that this fact
allows the BMS designer to easily manage a great number of theoretical and/or
commercial characteristics to be fulfilled by the premium scales.

4. THE LINEAR PROGRAMMING APPROACH TO OPTIMAL BMS DESIGN

Consider a policy with mean claim frequency L = l. We assume that the BMS
designer should try to calculate a pure premium for that policy as close as
possible to its mean claim frequency. If we take absolute error functions in the
second approach mentioned in Section 3, then the rating error should be defined
as �P Pp l l p l lii

n

1
- = -

= i! ] ]g g . We want therefore to calculate the scale of
premiums (P1,…,Pn) that minimizes the following global rating error, which we
have called the BMS Global Asymptotic Fairness (see Heras, Vilar and Gil (2002)):

P dUp l l li
i

n

1

-
=

i# ! ] ]g g

This mathematical program is, in general, rather difficult to solve. Nevertheless,
if we assume, as it is usual in the literature, a discrete distribution for the para-
meter L (taking the values l̂ = (l1, ...,lm) with probabilities q̂ = (q1, ...,qm)), then
it becomes equivalent to both

Min P q P qp l l l lPi j
i

n

j
j

m

j
11

- = -
==

i �!! _ ]i g

and the following linear program (from hereafter, Program (P)):

Min y y qj j
j

m

j
1

++ -

=

!_ i
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s.t.
P1p1(l1) + … + Pnpn(l1) + y–

1 – y+
1 = l1

...........................................
P1p1(lm) + … + Pnpn(lm) + y–

m – y+
m = lm

y+
j , y–

j ≥ 0, ∀j = 1,…,m; Pi ≥ 0, ∀i = 1,…,n

or, equivalently,

Min ( ŷ++ ŷ –) q̂ �

s.t.
P̂ . P(l) + ŷ – – ŷ+ = l̂

P̂, ŷ+, ŷ – ≥ 0̂

where ŷ+ = (y+
1 ,…,y+

m), ŷ – = (y–
1 ,…,y–

m), and P(l) is the matrix (pi(lj)). The
optimal values of the new variables y+

j , y –
j (let us denote them as y*+

j , y* –
j ) rep-

resent the positive and negative rating errors, respectively, for a policy with
parameter lj. This fact, as well as the equivalence between the previous pro-
grams, are consequences of the fact that the optimal solution of the linear
program verifies y*+

j . y * –
j = 0,∀j (see for instance Sawaragi, Nakayama and

Tanino (1985, p. 253)), that is, only one of them can be non null, and therefore

|P̂P(l) – l̂ | = ŷ*+ + ŷ* –

It is important to remark that the linear program has been obtained as a par-
ticular case of the multiobjective technique known as Goal Programming. This
fact has an easy interpretation: by means of Goal Programming the decision
maker tries to find the values of the decision variables such that some objec-
tive functions take values as close as possible to a set of targets previously
defined. In our problem these targets are l1,…,lm, the possible values of the
parameter L, and we try to find the values of the decision variables P1,…,Pn
in order to approximate, for every policy with parameter lj, the mean value of
the premiums paid by that policyholder ( ( )P p li ji

n

1= i! ) and his real mean claim
frequency lj.

Goal Programming methodology has become one of the most important
tools for solving multicriteria optimization problems, perhaps because it is an
easy-to-handle technique with a high flexibility in fitting the characteristics of
real-world problems (see Romero (1991)). We will see below that this flexibility
allows to incorporate in our linear programming BMS all the reasonable fea-
tures mentioned in the previous section.

But we can firstly investigate some of the properties of Program (P). For
example, it is evident that it is a feasible and lower-bounded program, and
therefore it is solvable. The dual program can give us additional insight. The dual
is Program (D):

Max ul �

s.t.
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P(l) û� ≤ 0̂
– q̂ ≤ û ≤ q̂

where û = (u1,…,um) are the dual variables. Thus the dual optimal value is upper
bounded by ql � = E [L], and by the duality theorems (see Ignizio (1982), chap-
ter 8) this property holds also for the primal optimal value, that is, for the
optimal value of Program (P). The optimal global asymptotic fairness takes
then values between zero and the expectation of the risk parameter.

5. THEORETICAL AND PRACTICAL REQUIREMENTS AS LINEAR CONSTRAINTS

We will show in this section how several theoretical and practical requirements
can be easily included as new linear constraints of Program (P). In the first set
of requisites we will include the financial equilibrium property, as well as pre-
mium’s monotonicity. As commercial requirements we will consider upper and/or
lower bounds on premium variability, as well as the assignment of a pre-estab-
lished value to some premium.

– First of all, let us begin by the financial equilibrium property. It is not dif-
ficult to get a relationship between the optimal solution of our linear pro-
gram and the degree of financial equilibrium: in fact, this is measured by the
expression

P q P Ep l p Li
i

n

j j
j

m

1 1

- = -
= =

�
i! ! 6 @

where 

pi = p
j

m

1=
i! (lj)qj = p̂ (lj) q̂ �

Positive values of this expression denote a gain for the insurance company,
while negative ones denote a loss (i.e. a gain for the policyholders). This fact
allows us the introduction of the financial equilibrium condition in Program (P),
by means of the following linear constraint:

P Ep Li
i

n

1

=
=

i! 6 @

– As in the case of Bayes scales, the premiums obtained as optimal solutions
of Program (P) do not necessarily form a monotonous sequence. In order
to get that monotonicity property we only need to include some additional
linear constraints:

P1 ≤ P2 ≤ … Pn
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– On the other hand, the linear constraint

Pi = Vi

should be included if the BMS designer wants to assign a pre-established value
Vi to some premium Pi. This could be useful, for instance, if the premium asso-
ciated to the initial class must coincide with the pure premium for the whole
portfolio.

– Let us consider now the premium variability. It is clear that linear constraints
as 

Pi+1 – Pi ≥ d

introduce a lower limit d > 0 for the difference between two consecutive pre-
miums. Similarly, the constraints

0 ≤ Pn – P1 ≤ D

introduce an upper limit D > 0 for the difference between the two extreme pre-
miums. Obviously, changing the sign of the inequalities will transform upper
into lower bounds and vice versa.

As an alternative, the distance between extreme or consecutive premiums
could also be bounded on a percentage basis:

Pn ≤, ≥ rP1

Pi+1 ≤, ≥ rP1

Finally, we must remember that the previous results allow to calculate a pre-
mium scale only for some given classes and transition rules. As in the case of
Bayes scales, alternative sets of different classes and transition rules should be
evaluated and compared according to the optimal value of the objective func-
tion.

The following easy example will help us to explain how linear programming
methodology works out in practice. Let us assume three possible values of
the random parameter L (l1 = 0.05 (with probability 3

1 ), l2 = 0.1 (with proba-
bility 3

1 ) and l3 = 0.15 (with probability 3
1 )), and three bonus-malus classes (C1,

C2 and C3). Assume also the following transition rules: claim-free years are
rewarded by a one-class discount, the first claim leads to a one-class increase,
and two or more claims during the year lead to a two-class increase. Assuming
a portfolio with claims following a Poisson distribution mixed with the random
parameter L, these rules imply the following conditional stationary probability
distributions:

• If L = l1: p1(l1) = 0.9477; p2(l1) = 0.0486; p3(l1) = 0.0037
• If L = l2: p1(l2) = 0.8917; p2(l2) = 0.0938; p3(l2) = 0.0145
• If L = l3: p1(l3) = 0.8334; p2(l3) = 0.1349; p3(l3) = 0.0317
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The unconditional stationary probability distribution will be:

p1 = 0.8910; p2 = 0.0924; p3 = 0.0166

The Bayes scale is defined as the set of premiums (P1,P2,P3) that minimizes the
value of the expected squared rating error. In this case, it takes the following
values:

P1 = 0.0979; P2 = 0.1156; P3 = 0.1281

We know that Bayes scales give rise to financially balanced bonus-malus sys-
tems. It is easy to check the financial equilibrium property in this example: the
expected claims are E(L) = 0.1, while the expected premiums are P1p1 + P2p2 +
P3p3 = 0.1.

But let us imagine that this system becomes inadequate for practical purposes,
perhaps because the policyholders prefer larger differences between consecutive
and extreme premiums. It is easy to check that our Bayes scale verifies that 

. ; . ; .P
P

P
P

P
P

1 18 1 108 1 309
1

2

2

3

1

3= = =

In this case marketing reasons could recommend the construction of a new
bonus-malus system with increased values of these ratios, for example, such that 

. ; . ; .P
P

P
P

P
P

1 20 1 20 1 50
1

2

2

3

1

3$ $ =

If the BMS designer tries to calculate a new Bayes scale that minimizes the
expected squared rating error constrained to these conditions, he will have to
solve a constrained quadratic program whose optimal solution will not verify,
in general, the financial equilibrium property. For this reason, this property
should be included as a new constraint of the quadratic program. Note that,
if the system has a great number of classes, this methodology may be compu-
tationally complex.

Of course, the BMS designer could try to define new classes and/or change
the transition rules, in order to get a new Bayes scale with the desired properties.
This methodology may be successful in many cases, but may also be inadequate
when the system has a great number of classes and complex transition rules.

In that case, it may be reasonable to introduce the desired properties as lin-
ear constraints using the linear programming methodology. In this example, the
linear program (from hereafter, Program (1)) would be

MIN (y+
1 + y–

1 + y+
2 + y–

2 + y+
3 + y–

3 ) 3
1

s.t.
0.9477P1 + 0.0486P2 + 0.0037P3 + y–

1 – y+
1 = 0.05

0.8917P1 + 0.0938P2 + 0.0145P3 + y–
2 – y+

2 = 0.1
0.8334P1 + 0.1349P2 + 0.0317P3 + y–

3 – y+
3 = 0.15
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Pi ≥ 0,∀i
y+

j , y–
j ≥ 0,∀j

P2 ≥ 1.2P1

P3 ≥ 1.2P2

P3 – 1.5P1 = 0
0.8910P1 + 0.0924P2 + 0.0166P3 = 0.1

The last constraint establishes the financial equilibrium condition. The optimal
solution of this linear program is easy to find by means of the simplex method:

P1 = 0.0970; P2 = 0.1212; P3 = 0.1454

It is easy to check that all the required properties hold for this new scale.

The inclusion of additional linear constraints is not the only way of taking into
consideration new BMS properties. In fact, the objective function of Program (P)
can be modified in order to account for some new properties. For example,
this objective function assumes the equal valuation of overachievements and
underachievements around the true value of the parameter l. Nevertheless, it
could be interesting to distinguish between the policyholders’ and insurer’s
extraordinary earnings, respectively. Moreover, the objective function equally
weights the errors in all the bonus-malus classes. But it could be interesting
to make the weights dependent on the value of L: it seems clear that an error

.P p l l 0 1ii

n

1
- =

= i! ] g is less important when l = 0.15 than when l = 0.05, for
instance.

It is easy to include these last properties in our mathematical program: if we
redefine the objective function of Program (P) as

j j j jMIN y y qw w
j

m

j
1

++ + - -

=

!_ i

then it would be possible to assign different weights (even depending on the
different discrete values of L) to positive and negative rating errors.

In the example, all the weights in the objective function were equal, although
we could easily make these weights dependent on the values of the parameter L.
If, for instance, we take w+

i = w–
i = l

1

i
, then the new objective function will be

y y y y y y20 20 10 10
15
100

15
100

3
1

1 1 2 2 3 3+ + + + ++ - + - + -
b l

but the new optimal solution still remains the same: in fact, it is not necessary
to solve a new linear program, since sensitivity analysis techniques in Linear
Programming can easily be applied in order to check this property (see Ignizio
(1982), chapter 10).
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Let us remember the meaning of the linear programming premium scale: it
optimizes the BMS global asymptotic fairness, by approximating as much as
possible the mean premium paid by every policyholder to his real mean claim
frequency, while preserving restrictions such as the financial equilibrium of
the system and the commercial requirements. Moreover, the linear program-
ming scale in this example is a robust scale, in the sense that the deviations
between mean premiums and claim frequencies can be weighted according to
the different values of these mean frequencies. All these different and desirable
properties are joined together thanks to the linearity of their mathematical
formulations.

6. ELASTICITY AND RSAL AS LINEAR CONSTRAINTS

Let us turn now to the consideration of some a posteriori adequacy measures
of BMS scales, that is, measures that allow the comparison between existing
BMS in order to determine which one results to be “the best”. As we will see
in this section, two of these measures, namely Elasticity and RSAL, can be
mathematically represented by means of linear constraints using the linear
programming methodology, being therefore a priori controlled by the BMS
designer.

Loimaranta (1972) defines the Elasticity of a BMS (in fact, he calls it Effi-
ciency) for the parameter l as the elasticity of the mean stationary premium
with respect to l. If we denote P(l) = P p lii

n

1= i! ] g to such mean stationary
premium associated with a claim frequency l, the elasticity is defined as 

d
P

dP

d
dP

Pj l

l
l
l
l

l
l

l
l

$= =]
]

]

]

]
g

g

g

g

g

Ideally, the elasticity of a BMS should be close to one for the most common
values of L, that is, a relative increment of the claim frequency should lead to
a similar relative increment of the mean stationary premium. The general rule
is, however, that the elasticity is usually less than one.

Actually, the value of the elasticity could be under the BMS designer
control if he uses the linear programming methodology. In fact, the constraints
j(l) ≥ Cl are linear functions of (P1,…,Pn), so that it is possible to impose
lower bounds Cl for the elasticity values (of course, the same is valid for upper
bounds).

In the case of the easy example that illustrates our reasoning along the pre-
vious section, the elasticity should be approximated by means of a discretization.
The linear constraint

d
dP

P Cl
l

l
l

l$ $
]

]

g

g
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that is,
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can be discretized as
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In fact, the last expressions correspond to the “right elasticity constraints”. In
a similar way one can define “left elasticity constraints” as
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For example, if we want to control the right elasticity in l2 = 0.1 (the mean,
median and mode of the random parameter L), we have to add to Program (1)
the new linear constraint

P1(0.8334 – 0.8917) + P2(0.1349 – 0.0938) + P3(0.0317 – 0.0145) ≥
≥ C .

2
1 . (0.8917P1 + 0.0938P2 + 0.0145P3)

that is,

. . . . . .P C P C P C0 0583
2

0 8917
0 0411

2
0 0938

0 0172
2

0 0145
01 2 3 $- - + - + -b b bl l l

If we add these constraints to Program (1) for different values of the minimum
right elasticity C, we obtain the same optimal solution

P1 = 0.0970; P2 = 0.1212; P3 = 0.1454

for C ≤ 0.0364. We also obtain that the linear program becomes unfeasible for
the rest of the values. We can conclude that 0.0364 is the maximum value of
the right elasticity, at least if we continue keeping the commercial requirements
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that gave rise to Program (1). Notice that there is a slight improvement when
comparing with the Bayes scale, whose right elasticity value is 0.025. Of course,
a similar analysis can be done with left elasticity: its value for the linear pro-
gramming scale is 0.0323, while for the Bayes scale is 0.022.

Let us turn now to the second previously mentioned adequacy measure of a
BMS scale, the so-called Relative Stationary Average Level (RSAL).

RSAL measures the severity of the BMS, expressing the relative premium
paid by an arbitrary policyholder as a percentage, when the stationary state has
been approached. This is defined as

RSAL P P
P Pp

n

ii

n

1

11=
-

-
= i!

RSAL usually takes low values for most real BMS, indicating a high clustering
of policies in the lowest classes, although its ideal value should be close to 50%
(Lemaire (1995), p. 64). As in the case of elasticity, the value of RSAL could
be under control if the BMS designer uses the linear programming methodology,
because the constraints 

RSALmin ≤ RSAL ≤ RSALmax

are linear constraints that could be added to Program (P). For instance, the
constraint RSAL ≥ RSALmin could be expressed as 

(RSALmin + p1 – 1)P1 + p2P2 + (p3 – RSALmin) P3 ≥ 0

We know that, if the BMS designer is too optimistic taking bounds for elas-
ticities and RSAL, the resulting linear program will often become unfeasible.
This fact raises the question of the appropriate selection of those limits. That
selection could be accomplished by means of a trial and error process, taking
as starting point the observed values of elasticities and RSAL in an existing BMS.
In our example these initial values could be those associated with the Bayes
scale, namely 0.025 (right elasticity), 0.022 (left elasticity) and 0.07 (RSAL).
Therefore, we should try to find a BMS scale with higher right and left elas-
ticities and RSAL nearest to 0.5. Unfortunately, if we add to Program (1)
three new linear constraints, two of them imposing that both right and left elas-
ticities must be greater than 0.025 and 0.022, respectively, and the last one
imposing that RSAL must be greater than 0.07, then the new program becomes
unfeasible. The reason is that the commercial constraints

P2 ≥ 1.2P1; P3 ≥ 1.2P2; P3 = 1.5P1

must also take the Bayes scale values, in order to guarantee feasibility:

P2 ≥ 1.18P1; P3 ≥ 1.108P2; P3 ≥ 1.309P1
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Besides, we must include a constraint like P3 ≤ 1.5P1, in order to reject useless
solutions. If we solve the resulting linear program, the new optimal solution
obtained is

P1 = 0.0961; P2 = 0.13; P3 = 0.1441

The values of right elasticity, left elasticity and RSAL for this new premium
scale are, respectively, 0.044 , 0.041 and 0.08. And the global asymptotic fairness
is now 0.0319 (0.0326 for the Bayes scale). The new scale is financially balanced
and achieves better values for right and left elasticity, RSAL and fairness. It seems
clear that this scale could be preferred to the initial Bayes scale. Notice, however,
the poor values obtained for both elasticities in this unreal example. In the next
section we will study a more realistic example with a higher number of classes
for the structure function, where the elasticities will take much better values.

7. A NUMERICAL EXAMPLE

We will illustrate the ideas presented in the previous sections by means of a more
realistic numerical example. We will assume a portfolio with claims following
a Poisson distribution mixed with the following discrete structure function:
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li 0.033 0.066 0.099 0.132 0.165 0.198 0.231 0.264 0.297 0.330

qi 0.28770 0.21179 0.23174 0.06609 0.08872 0.02623 0.03636 0.01126 0.01592 0.00510

li 0.363 0.396 0.429 0.462 0.495 0.528 0.561 0.594 0.627 0.660

qi 0.00732 0.00240 0.00348 0.00116 0.00171 0.00058 0.00085 0.00029 0.00043 0.00078

This function is obtained by applying the discretization method explained in
Vilar (2000) to the continuous structure function

expu
h

g
h

g
l

l p l
l

2 2/3 2

2

= -
-

]
^

fg
h
p

with g = 0.101081 and h = 0.062981. This is the density function of an inverse
Gaussian distribution, taken from Lemaire (1995, pp. 35-37).

We have chosen the following transition rules:

CLASS AFTER CLAIMS

0 1 2 3 >3

Class
10 9 10 10 10 10
9 8 10 10 10 10
8 7 10 10 10 10
7 6 9 10 10 10
6 5 8 10 10 10
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The following expressions are the efficiency measures associated with the Bayes
scale and with the linear programming scale, respectively, for a discrete struc-
ture function:
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In the terminology of the previous sections, Qc and Qm correspond to the
expected squared rating error and the global asymptotic fairness, respectively.

In the following tables we will summarize the most important properties of
the Bayes scale and some linear programming scales for this example. In each
case we will show the premium values and the ratio between the premiums of
consecutive classes and the premiums of extreme classes. We will also calculate
the values of Qc and Qm for each scale.

The first table shows these results for the Bayes scale (BS):
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0 1 2 3 >3

Class

5 4 7 9 10 10
4 3 6 8 9 10
3 2 5 7 9 10
2 1 4 6 7 9
1 1 3 5 6 8

TABLE 1: THE BAYES SCALE

i BS BS
BS

i

i 1+

1 0.0824 1.481
2 0.1222 1.046
3 0.1278 1.356
4 0.1734 1.088
5 0.1887 1.240
6 0.2324 1.118
7 0.2620 1.159
8 0.3039 1.115
9 0.3391 1.117

10 0.3789 BS
BS

1

10 = 4.6

Qc 0.00415
Qm 0.04036
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The properties of the Bayes scale seem reasonable, although we think that it
is possible to improve some of them by means of the linear programming
methodology. Let us see several examples:

1. Some BMS designers may judge unacceptable the variability of the penal-
ties or ratios between some consecutive premiums (notice, for instance,
that the ratio between the two first premiums (1.481) is much bigger than the
next one (1.046)). In the same way, the ratio between extreme premiums
(4.6) may be judged excessive. In Table 2 we obtain scales whose ratios have
better properties. Both scales LP1 and LP2 enjoy the financial equilibrium
property. Moreover, every penalty must vary between a minimum value of
1.05 and a maximum value of 1.30, so that the constraints 1.05 ≈ Pi ≤ Pi+1 ≤
1.3 ≈ Pi hold for both scales. Finally, the maximum premium for the scale
LP2 must be, at most, three times the value of the minimum premium, that
is, the additional constraint P10 ≤ 3P1 holds for the scale LP2. The ratio
between extreme premiums for the scale LP1 takes the same value as the
Bayes scale (4.6).
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TABLE 2: SMOOTHED BMS WITH LESS PREMIUM VARIABILITY

i LP1 LP

LP

,

,

i

i

1

1 1+
LP2 LP

LP

,

,

i

i

2

2 1+

1 0.0802 1.3 0.0846 1.3
2 0.1043 1.3 0.1100 1.3
3 0.1356 1.3 0.1430 1.3
4 0.1764 1.3 0.1859 1.07
5 0.2293 1.3 0.1989 1.05
6 0.2981 1.07 0.2088 1.05
7 0.3190 1.05 0.2192 1.05
8 0.3350 1.05 0.2302 1.05
9 0.3517 1.05 0.2417 1.05

10 0.3696 LP

LP

,

,

1 1

1 10
= 4.6 0.2538 LP

LP

,

,

2 1

2 10
= 3

Qc 0.00429 0.00440
Qm 0.03822 0.04251

Notice that the global asymptotic fairness Qm improves when we consider the
scale LP1 (0.03822) instead of the Bayes scale (0.04036), although this is not
the case for the scale LP2. Perhaps this fact suggests to make smoother the last
LP2-constraint relating to the values of the extreme premiums. Finally, notice
that the Bayes scale gets the best score with respect to the expected squared
rating error Qc (as was to be expected).

2. It could seem reasonable that the class with an associated premium nearest
to the expected loss of the portfolio should be chosen as the BMS initial class.
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In our example, the mean value of the discrete structure function is 0.10100.
In the particular case of the Bayes scale, this fact suggests to choose the first
or second class as initial class. Assuming the last option, this gives one “bonus”
class and eight “malus” classes for the Bayes scale. Because of commercial
requirements, some BMS designers may wish to increase the number of “bonus”
classes. If, for instance, they want to get two “bonus” classes, this could be
accomplished by adding to the linear program the additional constraint P3 =
0.10100.

Taking also into consideration the LP1-constraints, this gives rise to the new
scale LP3 :
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TABLE 3: BMS WITH AN INCREASED NUMBER OF BONUS CLASSES

i LP3 LP

LP

,

,

i

i

3

3 1+

1 0.08797 1.09
2 0.09619 1.05
3 0.10100 1.3
4 0.13130 1.3
5 0.17070 1.3
6 0.22191 1.3
7 0.28848 1.27
8 0.36705 1.05
9 0.38540 1.05

10 0.40467 LP

LP

,

,

3 1

3 10
= 4.6

Qc 0.00487
Qm 0.04031

Notice that the global asymptotic fairness Qm slightly improves when we take
the scale LP3 (0.04031) instead of the Bayes scale (0.04036).

In fact, real-world BMS usually choose starting premiums higher than the
expected losses, since they assume that most of the new policies are inexperi-
enced drivers. Of course, linear programming methodology allows to choose
any premium value for the starting class, and not necessarily the expected loss
as in the preceding example.

3. Next, we will try to improve the RSAL and Elasticity values of the Bayes
scale by means of the linear programming methodology. The RSAL value
and the elasticity (evaluated at the mean value 0.10100) for the Bayes scale
are, respectively, 0.062 and 0.2006, so that we have to add two new linear
constraints:

RSAL ≥ 0.062
Elasticity ≥ 0.2006
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To make sure that the new linear program is feasible, we will add as new con-
straints the Bayes scale properties relating to the ratios between premiums
(and, of course, the financial equilibrium property):

1.05 ≈ Pi ≤ Pi+1 ≤ 1.5 ≈ Pi, i = 1,…,9
P10 ≤ 4.6 ≈ P1

Then we obtain the new LP4 scale:
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TABLE 4: BMS WITH IMPROVED RSAL AND ELASTICITY

i LP4 LP

LP

,

,

i

i

4

4 1+

1 0.0743 1.5
2 0.1115 1.5
3 0.1672 1.5
4 0.2509 1.067
5 0.2679 1.05
6 0.2813 1.05
7 0.2959 1.05
8 0.3102 1.05
9 0.3257 1.05

10 0.3420 LP

LP

,

,

4 1

4 10
= 4.6

Qc 0.00464
Qm 0.0351

The new LP4-RSAL value is 0.099, and the new LP4-elasticity value is 0.3183.
We have therefore improved both values. Moreover, the LP4-global asymptotic
fairness takes the value 0.0351, much better than the same value for the Bayes
scale (0.04036).

Notice that it is not necessary in this example to consider the right and left
elasticities, since the continuous structure function is available. Nevertheless,
we could obtain the same conclusions if we worked with both elasticities in the
discrete case. For the Bayes scale, right and left elasticities (evaluated at 0.1212,
near the mean value 0.1010) take the values 0.2243 and 0.1693, respectively.
Then we should add to the linear program the new constraints

Right – Elasticity ≥ 0.2243
Left – Elasticity ≥ 0.1693

but we will obtain again as optimal solution the scale LP4. And the new values
of LP4 right and left elasticities (evaluated at 0.1115) are now 0.3483 and 0.2742,
respectively.

4. Finally, in the next table we remove the financial equilibrium condition keep-
ing commercial, elasticity and RSAL constraints:

https://doi.org/10.2143/AST.34.2.505152 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.2.505152


The new LP5-premiums have increased their values in approximately 4.5%, and
lead to a positive profit for the insurance company. The global asymptotic fair-
ness takes the best value (0.0343) of all the preceding cases. LP5-RSAL and
elasticity take the same values as in the scale LP4.

8. CONCLUSIONS

In the preceding sections we have shown how linear programming methodology
for BMS design is able to take into account a great number of theoretical
properties and commercial requirements that could be interesting to manage
in practical problems. Some of them can be mathematically represented by
means of linear constraints. Examples of these properties are the financial equi-
librium of the system, the monotonicity and variability of the premium scales,
the selection of the initial class and even the improvement of BMS efficiency
measures such as the RSAL and Elasticity. These properties (with the excep-
tion of financial equilibrium and premium monotonicity) are not taken into
consideration by other classical methods for BMS design. Moreover, the linear
programming methodology is based in an alternative measure (the global
asymptotic fairness) which evaluates the global deviation between mean pre-
miums and mean claim frequencies. The selection of appropriate weights in this
fairness measure makes possible to account for other interesting properties,
such as differentiate between policyholders’ and insurers’ extraordinary earn-
ings, for instance. Finally, it is clear that this methodology allows a high degree
of interaction between the BMS designer and the mathematical model. Indeed,
when the initial aspirations of the BMS designer become unattainable, the use
of this methodology usually allows to get a reasonable degree of compromise
between them.
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TABLE 5: BMS WITHOUT FINANCIAL EQUILIBRIUM CONDITION

i LP5 LP

LP

,

,

i

i

5

5 1+

1 0.0777 1.5
2 0.1165 1.5
3 0.1748 1.5
4 0.2623 1.067
5 0.2801 1.05
6 0.2941 1.05
7 0.3088 1.05
8 0.3242 1.05
9 0.3404 1.05

10 0.3575 LP

LP

,

,

5 1

5 10
= 4.6

Qc 0.00476
Qm 0.0343
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