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Abstract

Objective: This study aims to develop a curve-fitting approach for long-term COVID-19
mortality projections and evaluate its effectiveness as a scalable, data-driven tool for pandemic
forecasting.
Methods: The basic characteristics of a dynamic curve-fitting approach capable of generating
long-term projections are described. To demonstrate its utility, the model was retrospectively
applied using mortality data from the start of the pandemic, January to June 2020 (6-month
data), to project into the period between June 2020 and April 2021 (11-month projections).
Results: For scenarios with the best fit, the difference between observed and projected total
deaths varied in the projection period between 7.7% and 28.2%.
Discussion: When the COVID-19 pandemic started in early 2020, there was lack of under-
standing regarding its long-term impact. Available mathematical models were complex and
typically provided short- and mid-term projections. The approach described generates long-
term projections that are relatively easy to implement and can be enhanced to include other
parameters such as vaccine impact or virus variants. The method could prove to be a valuable
tool during a future pandemic.

Introduction

On 3rd ofDecember 2019, the first COVID-19 cases were reported inWuhan, China.1 On 30th of
January 2020, with 7,828 cases reported worldwide (99% in China), the WHO Director-General
declared the novel coronavirus outbreak as a Public Health Emergency of International Con-
cern.2 On 11th of March 2020, with more than 118,000 cases and 4,291 deaths in 114 countries,
the WHO declared COVID-19 a global pandemic.3 During the early months of the COVID-19
pandemic, there was substantial uncertainty regarding the likely scale and trajectory of the
outbreak, which made long-term projections particularly challenging.4 The rapid escalation of
the pandemic (that required rapid response), along with initial underestimations by some
officials, highlights the need to have readily available models that can project the pandemic’s
long-term impact and guide policy-makers.

During the COVID-19 pandemic, mathematical models were used to assess the impact of
different Public Health Intervention (PHI) measures or to predict the extent or duration of the
disease.4 Different types of models have been published projecting the COVID-19 mortality over
time.5 Most of the models presented in the literature were Susceptible-Infected-Recovered (SIR)
or its extension Susceptible-Exposed-Infected-Recovered (SEIR) compartment-type models.5–7

Other approaches included the empirical fitting of the cumulative curves (limited growth
models) and simulating disease transmission in the community.6–8

Most infectious disease models generate short- andmid-term projections (up to 4-5 months).
For example, information on demographics, social behaviors, and PHI measures can be used as
input for the mathematical compartmental models to predict the peak or the end of an epidemic
wave but it becomes more complex to project further into the future. Similarly, limited growth
models rely on the “infection growth rate,” which fluctuates over time, making it difficult to
accurately estimate long-term. A review of COVID-19 mortality projection models, published in
July 2020, found seven models that provided projections of more than 4 weeks, with a maximum
forecasting period of 4 months.5 A paper published on May 2021 used an approach combining
the output of sixmodels to project COVID-19 outcomes in theUSAover a period of 6months.9 A
2022 publication describes a Bayesian dynamic model that can be used for long-term projections
up to 12 months.10

While short-term projections were critical formanaging immediate healthcare resource needs
such as hospitalizations, ICU capacity, and healthcare workforce allocation, there was also an
urgent need for long-term projections, spanning 6 months to a year or more.4 Early in the
pandemic, decision-makers in public health and government agencies required long-term
forecasts to anticipate future waves, guide vaccine distribution planning, and develop sustainable
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public health interventions. Within the private sector, organiza-
tions relied on these projections for workforce management, eco-
nomic impact assessments, and operational continuity. Specifically,
in the pharmaceutical industry, long-term projections were crucial
for clinical trial operations, manufacturing and supply chain plan-
ning, and workforce logistics, ensuring the continued development
and distribution of essential treatments and vaccines. Two early
publications attempted to predict the overall impact of COVID-19
pandemic with some predicting a worst-case scenario of 2 million
and 500,000 deaths in the USA and UK, respectively, by the end of
the pandemic.11,12 Based on assumptions on infection rate, mor-
tality rates, and herd immunity level, it is possible to obtain crude
estimates of the overall impact of a pandemic. However, it is
challenging to provide mortality projections at specific timepoints.
For example, at the start of the pandemic (early 2020), it was
difficult to estimate the total number of COVID-19-related deaths
that might occur in a given country by the end of 2021.

Due to the relatively limited global spread of previous corona-
virus outbreaks (e.g., SARS and MERS), past influenza pandemics
served as the primary reference point for understanding potential
COVID-19 pandemic curves. Previous analyses of historical influ-
enza pandemics suggested that pandemics are likely to manifest in
multiple epidemic waves over time.13 Similarities and differences
between past influenza pandemics and the COVID-19 pandemic
were discussed at the time with a reasonable assumption around
COVID-19 epidemiology being the manifestation of epidemic
waves.13 Using, as an assumption, the occurrence of epidemic
waves, the current work describes a dynamic curve-fitting model
for projecting long-term mortality of the COVID-19 pandemic.
The methodology is straightforward and can be easily applied
across different countries and regions. It was later extended to
incorporate assumptions such as the uptake and impact of
COVID-19 vaccines and change in virus variants. Herein, the main
framework of the approach is presented.

Methods

Data Source

Daily mortality statistics from the Institute for Health Metrics and
Evaluation (IHME) were used as input data.14 The IHME website
included free-to-download data from multiple countries and was
updated regularly. For the use case described within this paper, the
30th April 2021 update was used, with the data being truncated to
1st of June 2020 for the early projections.14 Apart from providing
longer-term projections, the IHME data were selected because they
were not limited to hospitalized patients. Instead, they were derived
from multiple data sources, including Johns Hopkins University
mortality statistics and supplemented by government websites for a
number of locations and subnational estimates.15 A 2022 paper
showed that compared with other data sources, the Johns Hopkins
University COVID-19 data were among the most reliable.16 This
comprehensive and reliable measure of COVID-19-related mortal-
ity was particularly valuable, especially during the early pandemic
phase where infection data were highly variable.

Time Period and Country Selection

For this study, we analyzed COVID-19 mortality data from 4th
February 2020 to 1st June 2020 to project into the period 2nd June
2020 to 30th April 2021. The timeframes were chosen to cover the
first major epidemic wave and validate projections over an extended

period before widespread vaccination significantly altered mortality
trends. Data from France, Germany, Italy, Spain, the UK, and the
USA were used as mortality data from these countries were initially
released by IHME.

Curve-Fitting Methodology

The approach presented in this study focuses on projecting the
timing and distribution of future pandemic waves while accounting
for potential seasonal variations in transmission. A wave is defined
as a period in which daily reported deaths rise, peak, and then
decline to a local minimum before increasing again. Seasonal
factors, such as increased indoor activities during colder months,
can influence the frequency and intensity of the waves. A wave is
considered to have concluded once daily deaths stabilize at a low
point before a new surge begins. The curve-fitting approach for
generating long-term mortality projections can be described as
follows:

Step 1: Fitting a curve to the observed data
A curve can be fitted on an observed epidemic wave (Wi) based on
mortality data.

A skew-normal distribution of the following form can be used:

f xð Þ= 2
s
φ

x�m
s

� �
ϕ λ

x�m
s

� �
, (1)

where bm, bs, bλ are the location, scale, and skewness parameters,
respectively. The standard normal density function is denoted by φ
and the cumulative normal distribution function by Φ.17 The
resulting distribution can be weighted based on the total number
of observed deaths N, i.e., N × f xð Þ.

As an example, the Spain COVID-19 daily deaths were used.
The time period covers the first deaths in earlyMarch 2020 until the
1st of June 2020.14 The observed (IHME smoothed data) daily
deaths and the fitted skew-normal distribution ( bm= 22Mar2020,bs= 25:9, bλ = 3:9) are shown in Figure 1a. The skewness parameter ofbλ > 0shows that there is a steep increase in deaths and a slow decline
in time.

Step 2: Distance between future epidemic waves
The timing of the peak of a future epidemic wave can be calculated
based on the average distance between past epidemic peaks. Assum-
ing there are k = i�1 observed waves, the timing of the future wave
peak, Wi peak, can be estimated as:

Wipeak=Wi�1peak+
1

i�1

Xi�1

k= 1

Wkpeak�Wk�1peakð Þ (2)

At the start of the pandemic, when there was limited past data, an
assumption was made that the next epidemic wave will commence
upon the completion of the previous wave, i.e., upon lifting the PHI
measures. A simple way to express this mathematically is to limit
the overlap between the wave distributions.

Following from Equation (1), the cumulative distribution can be
expressed as:

F xð Þ= 2
Z 0

�∞

Z x�m
s

�∞
ϕ2 u1,u2ð Þdu1du2, (3)

where φ2(u1, u2) is a bivariate normal distribution with correlation
ρ= λffiffiffiffiffiffiffiffi

1 + λ2
p .17
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Assuming, for example, a small proportion of overlap α, the tails
x1 and x2 of the Wave i distribution can be calculated by solving the
formulas:

F x1ð Þ= α=2

F x2ð Þ= 1�α=2

An alternative way to obtain estimates of x1 and x2 is to simply
calculate the (α/2)th and (1� α/2)th percentiles, respectively, of the
skew-normal distribution.

Assuming there are i = 1,..,n future waves, the location of the
peak of a future wave, Wipeak, can be calculated as:

Wipeak=Wi�1peak+ x2�Wi�1peakð Þ+ Wi�1peak�x1ð Þ (4)

Figure 1. Step-by-step fitting COVID-19 long-term mortality projections.
1a Fitting curve to observed data (example of Spain daily deaths).
1b Adding future epidemic waves.
1c Accounting for change in the susceptible population.
1d Seasonality effect.
1e Uncertainty intervals.
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Using Equations (3) and (4), future epidemic waves were
projected for the period 1st of June 2020 until 30 April 2021
based on the Spain COVID-19 example above. Under the
assumption of a 1% (α = 0.01) overlap between distributions,
there was an 83-day time period between wave peaks (Figure 1b).

Step 3: Accounting for change in the susceptible population
As the number of infections increases, the susceptible population
will tend to decrease, resulting in smaller future epidemic waves
(assuming no reinfection).

Assuming a proportion of the population, pHE, will achieve herd
immunity once (100 × pHE)% of adults have been infected, the herd
immunity threshold (HIT) can be calculated as:

HIT = adult population × pHE (5)

Assuming a COVID-19 mortality ratio (MR), the HIT will be
achieved when the total deaths are:

HITdeaths =HIT ×MR (6)

Assuming we want to predict the size of second wave, W2size,
following the end of the first epidemic wave, a “susceptible ratio
(SR),” SR2, can be calculated as:

SR2 =
CW1

HITdeath
, (7)

whereCW1 denotes the cumulative deaths following the endofWave1.
The size of Wave 2 (W2size) can then be adjusted allowing for

the change in the susceptible population as follows:

W2size= 1�SR2ð Þ ×W2size (8)

For i = 1,..,n subsequent waves, Equation (8) can be generalized as:

Wi+ 1size = 1�SRi+ 1ð Þ×Wi+ 1size, (9)

where SRi+ 1 =
CWi

HITdeath
.

The impact of the reduced susceptible population following each
projected wave can be viewed in Figure 1c assuming the Spanish
population will achieve herd immunity once 80% of adults have
been infected (pHE = 0.8) with a mortality ratio of MR = 0.01.

Step 4: Seasonality effect
A seasonality effect can also be incorporated (assumes transmission
of infectious disease will increase during winter months due to
increased indoor activity). Assuming a seasonality effect expressed
as a proportion pSE, that would equate to an impact 0 to 2 × pSE on
the epidemic waves.

For a subsequent Wave i, the size can be adjusted allowing for
seasonality effect as follows:

Wisize =
1�pSEð Þ×Wisize, if 1 Jun≤Wipeak≤ 31 Aug

1 + pSEð Þ×Wisize, if 1 Dec≤Wipeak≤ 28 Feb

�
(10)

Equation (10) is only valid for countries within the Northern Hemi-
sphere. For regions in the Southern Hemisphere, the seasonality effect
should be adjusted by shifting the time frameof increased transmission
to June-August, corresponding to the winter months in that hemi-
sphere. Similarly, the lower transmission period should be adjusted to
December-February, aligning with the summer season. A paper at the
time predicted that COVID-19 may exhibit seasonal patterns similar
to influenza, with higher transmission in winter months.12

Assuming a 15% (or pSE = 0.15) seasonality effect based onmodel
assumption published in early 2020, that would equate to an impact

of 0% to 30% on the epidemic waves.12 The impact of seasonality can
be viewed in Figure 1d. The peak of Wave 2 occurs in June so the
wave size is reduced by 15%, compared toWave 1.Waves 4 and 5 fall
during winter months, and the wave size is inflated by 15%. There is
no change for Wave 3 as the peak occurs in September.

Step 5: Uncertainty intervals
Uncertainty intervals (UI) can be calculated by combining two
sources of variation:

UI =UIpIR ×UIpUI , (11)

where UIpIR denotes the uncertainty around infection rate, i.e., size
of waves andUIpUI the increase of uncertainty with time, say, i.e., for
each subsequent wave.

Assuming the infection rate uncertainty can be quantified as pIR
then for i�1 observed waves:

UIpIR = 1 ± pIR
� �

×Wisize (12)

The uncertainty increases for each projected wave,Wi (denoted by
pUI) as follows:

UIpUI = 1 ± 1� ið Þ× pUI
� 	

×Wisize (13)

Using Spain as an example, the uncertainty in the infection was
expressed based on a predefined parameter, pIR = 0.3, which repre-
sents the expected variability in the infection rate due to factors such
as changes in PHI measures and population behavior. Additionally,
the uncertainty was assumed to increase with each wave, modeled as
pUI= 0.2 to reflect growing unpredictability in long-termprojections.
Figure 1e shows the combined UI around the projections.

Pandemic Scenarios

Based on a review analyzing epidemiological trends from the 1918-
1919, 1957-1958, and 2009-2010 influenza pandemics, three dif-
ferent pandemic wave scenarios were selected13:

• Scenario 1—Equal epidemic waves: Assuming that subsequent
waves will follow patterns similar to those observed in the first
wave, including social mixing behavior and PHI measures.
Under this scenario, a series of approximately equal waves will
occur in both size and duration.

• Scenario 2—Large second wave: Assuming PHI measures will
be relaxed following the first wave or there will be reduced
adherence to these measures, or both. In a similar pattern to
what was observed during the 1889 and 1918 flu pandemics, a
mild first wave is followed by a larger second wave and then
smaller subsequent waves.

• Scenario 3—Small subsequent waves: Assuming strict PHI
measures and public adherence to these measures. A large first
wave is followed by small subsequent waves.13,18

Figure 2 shows the three pandemic wave scenarios for Spain. For
Scenario 2, the second wave was set to be four times the size of the
initialwave. For Scenario 3, the subsequentwaveswere assumed to be
half the size of the first wave. These assumptions were based on an
early paper modeling the impact of intervention methods on basic
reproduction number R0.

12

Assessment of the Projecting Model

The projecting methodology and its assumptions were retrospect-
ively validated by comparing estimates against the observed
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deaths occurring during the same period. COVID-19 mortality
daily data were used from France, Germany, Italy, Spain, the UK,
and the USA.2 A skew-normal distribution was fitted to daily
deaths occurring between 2nd February 2020 and 1st of June 2020
(first wave). The distance between future waves was set a priori as
1% overlap between fitted distributions. The proportion of adult
population infected at the herd immunity level was set as pHE = 0.8
and the COVID-19mortality rate asMR = 0.01. A 15% seasonality
effect was assumed. Three scenarios were considered as discussed
above.

The model performance was assessed using the following out-
comes: (1) the difference in the total number of deaths between
projected and observed data during the 11-month period and
(2) the number of projected epidemic waves (vs. actual waves that
occurred). The assumption related to the distance between future
epidemic waves was also assessed in a sensitivity analysis using
wave distribution overlaps of 5% and 0.1%.

Software

The data manipulation and analysis were carried out using Stata
16.1 (StataCorp).

Results

Table 1a shows that four epidemic waves were projected for the six
countries during the period June 2020 to April 2021. For Scenario
1, the highest projected COVID-19 mortality was in the USA
(354,394; UI: [139,658, 652,270]) followed by the UK (145,214;
UI: [57,670, 267,682]) and Spain (103,345; UI: [40,165, 193,496]).
Germany had the lowest projected mortality (32,483; UI: [12,088,
61,745]). In Scenario 2, the projected deaths were higher than in
Scenario 1, with as many as 569,654 deaths (UI: [308,738, 897,939])
estimated for the USA. Conversely, Scenario 3 projected lower
deaths than Scenarios 1 and 2, with Germany having the smallest
estimate at 16,510 deaths (UI: [6,096, 31,344]) (Table 1b).

For the period June 2020 to April 2021, the highest number of
deaths was observed in the USA (461,302) followed by the UK
(99,782). The lowest number of deaths was observed in Germany
(72,966). Comparing with the period prior to June 2020 (timepoint
from which projections were made), Germany reported 8.6 times
more deaths due to a large secondwave. Following a large first wave,
the UK and Spain took stricter PHI measures and recorded 2 and
1.4 times more deaths, respectively, for the period June 2020 to
April 2021 compared to the period prior to June 2020 (Table 1c).

Figure 2. Different pandemic scenarios (based on Spain daily deaths).
2a Scenario 1—Equal waves.
2b Scenario 2—Large second wave.
2c Scenario 3—Small subsequent waves.
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The epidemic curve by country can be viewed in Supplementary
material (Figure S1).

For Scenario 1, the smallest differences between projected
and actual deaths were observed in France and Italy followed
by the USA. For France, the projected deaths (84,415; UI:
[32,412, 158,542]) for the period June 2020-April 2021 were
7.7% (6,068) higher than the observed deaths. For Italy, the
projected deaths (92,191; UI: [39,045, 165,964]) were 7.7%
(6,616) higher than the observed deaths. The projected deaths
for the USA (354,394; UI: [139,658, 652,270]) were 23.2%
(106,908) lower than observed deaths for the same period. For
Scenario 2, there were 23.5% (108,352) higher projected deaths
in the USA (569,654; UI: [308,738, 897,939]) compared to actual

deaths. In Germany, the projected deaths (52,400; UI: [26,578,
86,620]) were 28.2% (20,565) lower than the observed deaths.
For Scenario 3, the projected deaths for Spain (57,291; UI:
[21,385, 108,634]) were 14.1% (7,098) higher than the observed
deaths. In the UK, the projected deaths (80,771; UI: [30,704,
150,209]) for the period June 2020 to April 2021 were 19.1%
(19,012) lower than the observed deaths for the same time period
(Table 1b).

A sensitivity analysis examining the time interval between
successive epidemic waves showed that for Scenarios 1 and 2, the
0.1% overlap between fitted wave distributions (representing the
longest interval between waves) produced projections that were
more closely aligned to the observed deaths. For Scenario 3, the

Table 1. Assessment of projections for the period June 2020 to April 2021

(a) Number of waves

Countries Observed Projected

France 3 4

Germany 2 4

Italy 3 4

Spain 2 4

UK 2 4

USA 3 4

(b) Projected deaths (June 2020 to April 2021)

Scenario 1—Equal waves
Scenario 2—Large

second wave
Scenario 3—Small
subsequent waves

Countries Projected

Observed—
Projected

Projected

Observed—
Projected

Predicted

Observed—
Projected

n (%) n (%) n (%)

France 84,415 (32,412,
158,542)

�6,068 (7.7%) 131,483 (70,592,
210,014)

�53,136 (67.8%) 44,451 (16,713, 83,790) +33,897 (43.3%)

Germany 32,483 (12,088, 61,745) +40,483 (55.5%) 52,400 (26,578,
86,620)

+20,565 (28.2%) 16,510 (6,096, 31,344) +56,456 (77.4%)

Italy 92,191 (39,045,
165,964)

�6,616 (7.7%) 149,231 (86,797,
225,587)

�63,657 (74.4%) 49,358 (20,360, 89,299) +36,217 (42.3%)

Spain 103,345 (40,165, 193,496) �53,151 (105.9%) 148,618 (85,208,
227,553)

�98,424 (196.1%) 57,291 (21,385,
108,634)

�7,098 (14.1%)

UK 145,214 (57,670, 267,682) �45,432 (45.5%) 212,486 (123,471,
320,386)

�112,703 (112.9%) 80,771 (30,704,
150,209)

+19,012 (19.1%)

USA 354,394 (139,658,
652,270)

+106,908 (23.2%) 569,654 (308,738,
897,939)

�108,352 (23.5%) 186,333 (71,670,
341,574)

+274,969 (59.6%)

Note: Smallest differences by country in bold.

(c) Observed deaths

Countries Prior to Jun 2020 Jun 2020 to Apr 2021 Increase magnitude

France 24,985 78,347 3.1

Germany 8,481 72,966 8.6

Italy 33,557 85,575 2.6

Spain 34,678 50,194 1.4

UK 50,849 99,782 2.0

USA 108,337 461,302 4.3
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most accurate projections were produced for the shortest dis-
tance between waves (5% overlap) (Table 2).

Limitations

One key limitation of the method presented is the assumption of
regularly/equally spaced pandemic waves. While the assumption of
wave-like transmission patterns was based on historical pandemics,
it wasmade early in the COVID-19 outbreak in the absence of long-
term observational data. This limitation reflects the reality that
many early modeling assumptions had to be made based on sig-
nificant uncertainty and limited empirical evidence.

The model is based on three further assumptions: (1) minimal
overlap between epidemic waves, (2) no reinfection, and (3) increased
transmission during winter months. Our approach initially assumed
minimal overlap, particularly when predicting the second wave of the
pandemic, due to the limited data available at the time. However, in

principle, the degree of overlap between waves can be estimatedmore
accurately whenmultiple past waves are available, allowing for amore
data-driven approach to forecasting future wave patterns. Nonethe-
less, we acknowledge that epidemic waves can overlap, reinfections
occur, and seasonality effects may vary by region. Future refinements
of the model could incorporate reinfection dynamics, more complex
wave-overlap patterns, and region-specific seasonal adjustments to
improve accuracy.

In response to the urgent need within Amgen for long-term
projections during the early stages of the COVID-19 pandemic,
this methodology was developed in April 2020. From May 2020,
dynamic projections were generated using this approach, which
informed cross-functional decision-making. A visualization plat-
form was developed to present updated projections across mul-
tiple countries and regions, with data refreshed regularly in
alignment with IHME updates. This tool was used to support
strategic planning, including manufacturing and supply chain

Table 2. Varying distance between waves (i.e., different levels of overlap)

(a) Scenario 1—Equal waves

Difference (Observed—Projected) n (%)
Countries 0.1% overlap 1% overlap 5% overlap

France +15,718 (20.1%) �6,068 (7.7%) �21,732 (27.7%)

Germany +49,552 (67.9%) +40,483 (55.5%) +33,167 (45.5%)

Italy +9,174 (10.7%) �6,616 (7.7%) �29,046 (33.9%)

Spain �29,609 (59.0%) �53,151 (105.9%) �71,565 (142.6%)

UK �11,615 (11.6%) �35,836 (35.9%) �68,340 (68.5%)

USA +193,340 (41.9%) +106,908 (23.2%) +7,401 (1.6%)

Note: Smallest differences by country in bold.

(b) Scenario 2—Large second wave

Difference (Observed—Projected) n (%)

Countries 0.1% overlap 1% overlap 5% overlap

France �35,676 (45.5%) �53,136 (67.8%) �57,655 (73.6%)

Germany +29,135 (39.9%) +20,565 (28.2%) +15,008 (20.6%)

Italy �52,785 (61.7%) �63,657 (74.4%) �70,854 (82.8%)

Spain �84,849 (169.0%) �98,424 (196.1%) �89,228 (177.8%)

UK �93,530 (93.7%) �107,267 (107.5%) �120,701 (121.0%)

USA �36,969 (8.0%) �108,352 (23.5%) �186,204 (40.4%)

Note: Smallest differences by country in bold.

(c) Scenario 3—Small subsequent waves

Difference (Observed—Projected) n (%)

Countries 0.1% overlap 1% overlap 5% overlap

France +45,844 (58.5%) +33,897 (43.3%) +24,591 (31.4%)

Germany +61,104 (83.7%) +56,456 (77.4%) +52,640 (72.1%)

Italy +45,340 (53.0%) +36,217 (42.3%) +22,129 (25.9%)

Spain +7,307 (14.6%) �7,098 (14.1%) �21,300 (42.4%)

UK +39,629 (39.7%) +24,9251 (25.0%) +2,689 (2.7%)

USA +321,672 (69.7%) +274,969 (59.6%) +219,278 (47.5%)

Note: Smallest differences by country in bold.
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continuity, clinical trial site management and recruitment priori-
tization, and office reopening or closure decisions. The model’s
simplicity and adaptability made it especially valuable during the
early phases of the pandemic, when timely insights were essential
for operational readiness.

The model assumes a uniform approach across different coun-
tries, which does not fully account for the heterogeneity in socio-
demographic, cultural, and behavioral factors, as well as variations
in PHI measures. This simplification was necessary to ensure
scalability and usability in data-limited settings. However, we
acknowledge that country-specific adaptations, such as integrating
PHI stringency levels or mobility data, could enhance model accur-
acy in future iterations.

In the examples provided within this paper, projections were
produced for six countries. This method is most applicable to
regions where public health policies and population characteristics
are relatively uniform. For instance, while we produced single
projections for the USA as a whole, differences in PHI measures
across states suggest that a state-level modeling approach may be
more appropriate in capturing localized variations in transmission
and mortality trends.

Themethod was designed for ease of implementation, making it
suitable for long-term mortality projections without requiring
complex infectious disease modeling. However, this simplicity also
presents a limitation, as the model relies on curve-fitting tech-
niques, making it less adaptable to sudden shifts in pandemic
behavior. Socio-demographic characteristics (e.g., age, education,
ethnicity), social factors (e.g., population mixing, adherence to PHI
measures), and PHI measures are implicitly captured via the infec-
tion rate or epidemic wave.While this makes the approach scalable,
it limits the model’s ability to account for sudden changes in
transmission drivers.

The model accounts for a gradual reduction in the Re over time
due to increasing population immunity, whichmanifests to smaller
subsequent waves. However, it does not explicitly capture increases
in Re driven by the emergence of more transmissible variants as
observed during COVID-19 and in the 1918 influenza pandemic.19

To incorporate these dynamics, the model includes alternative
pandemic scenarios, such as Scenario 2, which reflects a substan-
tially larger second wave potentially driven by relaxed public health
interventions, reduced adherence, or variant emergence. In prac-
tice, during the COVID-19 pandemic, we adjusted the wave size
parameters as new information about emerging variants became
available. Although this scenario-based structure provides flexibil-
ity, future model enhancements could incorporate explicit param-
eters for variant-driven changes in transmissibility or virulence to
improve long-term forecasting accuracy.

To better understand and model the complexity of the infor-
mation that determines the infection rate, it is possible to use other
types of models that can predict PHI and social mixing impact in
the shorter term. For example, IHME was providing its 3-4 month
projections based on a combination of curve-fitting and SEIR
models.8 These estimates were particularly useful, especially at
the earlier stages of the pandemic, to better estimate the shape,
size, and position of future waves.

A key limitation of the model is that it does not explicitly
account for the decline in the effective reproduction number (Rt)
across successive waves as the susceptible population decreases. In
reality, this decline would result in a progressively slower rise in
cases and deaths in later waves. While this effect could be incorp-
orated by applying a multiplicative adjustment to the dispersion
parameter, ensuring that the transmission dynamics reflect the

shrinking susceptible population, this adjustment has not been
implemented in the current model. As a result, the model may
overestimate the growth rate of subsequent waves, particularly in
later stages of the pandemic.

Discussion

In the early days of COVID-19 pandemic, organizational leaders
within Amgen requested projections on the long-term course of
the pandemic so they could assess its impact on company activ-
ities. These activities included, but were not limited to clinical
trial operations, manufacturing supply chains, field staff engage-
ment with healthcare professionals, and on-site vs. remote work
options. In a similar way to Amgen, the broader pharmaceutical
industry and private sector at large also sought projections and
forecasts of COVID-19 progression to navigate its impact on
various operations. Importantly, there was also a need for pro-
jections by public health decision makers so long-term planning
could be made on hospital beds and ICU beds, hospital staff,
vaccine supplies, etc.

Complex mathematical models were developed to guide policy
during COVID-19 pandemic. These models accounted for popu-
lation structure, social mixing patterns, and adherence to PHI
measures among other factors and were typically designed to
provide short- to medium-term forecasts up to a maximum of
3-4 months.5 However, simpler mathematical models have proven
valuable in capturing key epidemic dynamics, offering transpar-
ency, and allowing broader accessibility for decision-makers.20 It
would not be possible to use such models for long-term projections
as they are sensitive to changes in parametric assumptions, which
becomes challenging when projecting over long periods of time. In
a similar fashion to weather/climate forecasting, in which there are
different types of models for short-term forecasting of weather or
longer-term modeling of climate,21 we propose herein a simpler
model for longer-term pandemic projections. Although a simpler
mathematical model would not fully capture the complexity of a
pandemic, it could be useful for producing long-term projections
with corresponding uncertainty, as it may be less sensitive to
changes in parametric assumptions over time. Compared to trad-
itional infectious disease models such as SIR or SEIR, our curve-
fitting approach offers a simpler and more scalable method for
long-term projections, particularly in data-limited settings.

Three scenarios were created based on literature from past
pandemics. For the six countries included, there were two coun-
tries with a scenario of <10% difference between observed and
projected deaths (France 7.7%; Italy 7.7%). There were two coun-
tries with a scenario of observed and projected differences 10-20%
(Spain 14.1%; UK 19.1%) and two countries with a scenario of
20-30% difference (USA 23.2%; Germany 28.2%). The examples
highlight the importance of incorporating multiple projection
scenarios.

The amount of past information (duration, number, and timing
of waves) was an important factor determining the accuracy of
projections. Early in the pandemic, early 2020, there was consider-
able uncertainty surrounding the timing of the next wave. There-
fore, a pragmatic approachwas used setting a small overlap between
waves (1%) based on the belief that a new epidemic wave will occur
soon after the PHI measures are withdrawn. For the countries
included, the number of projected waves was overestimated, e.g.,
Germany (Figure 3a and 3b). An alternative exemplar would
include projections from a later date, for example, October 2020
(rather than June 2020). In October, the emergence of a second
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wave in Germany removed the need to “predict” the gap between
waves, since by then it could be quantified. Instead, the position of
the second wave can be estimated based on the observed data.
Figure 3c shows the projected wave for Scenario 2 (large second
wave) is close to the observed data. This example demonstrates that
as time progresses, the model can be improved by including more
time-varying information.

A skew-normal distribution was selected to model the distribu-
tion of the wave to allow for a steep increase in infection rate due to
the highly infectious nature of the virus followed by a steady
decrease after the introduction of strict PHI measures.22 As the
aim was to scale across multiple countries, the same distribution
was used throughout. In practice, other types of distributions could
be considered that could provide improved fit.

The relatively wide UI produced by this approach reflects the
inherent challenges of generating long-termprojections in a dynamic
pandemic environment. These intervals capture multiple layers of
uncertainty over time, including changes in PHI measures, public
adherence, and the emergence of new variants. Rather than indicat-
ing a limitation, the width of the UI is a necessary trade-off for
adopting a simple, scalable, and transparent modeling framework.
While narrower intervals may be achievable with more complex,
data-intensive models, this approach is designed to inform early-

stage scenario planning where data may be limited. In this context,
the UI provides a useful tool for contingency planning, enabling
decision makers to prepare for a range of potential outcomes.

Different outcomes could potentially be used with this approach
such as daily infections, hospital admissions, or occupants of ICU
beds. Mortality data were used as they were considered more
reliable than reported case numbers for cross-country comparisons
and tracking epidemics. This is because case numbers were affected
by variations in testing and lack of uniform criteria for confirming
infections (particularly at the start of the pandemic).8 If available,
assumptions on case fatality rate or hospitalization fatality rates
could be utilized to calculate these outcomes from the mortality
results.

As the COVID-19 pandemic evolved, the emergence of vaccines
and viral variants significantly influenced transmission dynamics.
The impact of these factors was quantified by the anticipated
changes in infection rate, which in turn affected the size of future
epidemic waves. Vaccination reduces the susceptible population,
thereby lowering overall transmission potential, while the effect-
iveness of vaccines lowers the mortality rate. The emergence of
more transmissible or immune-evasive variants can increase the
infection rate, potentially leading to larger or more prolonged
waves. By adjusting the infection rate parameter within the model,

Figure 3. Example of Germany daily deaths.
3a Observed deaths for the period until April 2021.
3b Projected deaths for the period June 2020 to April 2021.
3c Scenario 2 projections for the period October 2020 to April 2021.
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these evolving factors can be incorporated, allowing for more
realistic long-term projection scenarios.

Conclusions

During the COVID-19 pandemic, there was a great need from
public health leaders to understand its overall impact, both short-
and long-term. During the pandemic, most mathematical models
were focused on predicting mortality for time periods up to 3-4
months. The curve-fitting approach presented here was developed
during the early months of 2020 to project the long-term impact of
COVID-19 on population mortality. The scenarios selected had
differing levels of accuracy in different countries, which can be
attributed to the different social, political, economic, and public
health effects influencing country decisions over PHI put in place
during the course of the pandemic. The novel curve-fitting
approach described is easy to implement and can be adapted and
evolved over time. It could prove to be a valuable decision-making
tool during a future pandemic.
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