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Abstract. A closed Riemann surface which can be realized as a three-sheeted
covering of the Riemann sphere is called trigonal, and such a covering is called a
trigonal morphism. If the trigonal morphism is a cyclic regular covering, the Riemann
surface is called a cyclic trigonal Riemann surface. Using the characterization of cyclic
trigonality by Fuchsian groups, we find the structure of the space of cyclic trigonal
Riemann surfaces of genus 4.

1. Introduction. A closed Riemann surface X which can be realized as a three-
sheeted covering of the Riemann sphere is said to be trigonal, and such a covering will
be called a trigonal morphism. This is equivalent to the fact that X is represented by a
curve given by a polynomial equation of the form:

y3 + yb(x) + c(x) = 0.

If b(x) ≡ 0 then the trigonal morphism is a cyclic regular covering and the Riemann
surface is called cyclic trigonal. Trigonal Riemann surfaces and their generalizations
have been recently studied (see [2, 3, 15]).

By Lemma 2.1 of ref. [1], if the surface X has genus g ≥ 5 then the trigonal
morphism is unique. The Severi–Castelnouvo inequality is used in order to prove such
uniqueness, but this technique is not valid for small genera.

Using the characterization of trigonality by means of Fuchsian groups [6], we
obtain all possible cyclic trigonal Riemann surfaces of genus 4. The space of cyclic
trigonal Riemann surfaces of genus 4 consists of two open balls of (complex-)
dimension 3 (see [10]). The singularity of the space consists of the trigonal Riemann
surfaces with automorphisms group containing the group generated by the trigonal
morphism. These singularities are naturally stratified according to their full group of
automorphisms. In this paper, we find the stratification of the moduli space of cyclic
trigonal Riemann surfaces of genus 4 into smooth locally closed subvarieties, the
equisymmetric strata [4] such that each stratum consists of equisymmetric surfaces.
Two closed Riemann surfaces X, X of genus g are called equisymmetric if their
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automorphisms groups determine conjugate subgroups of the mapping class group of
genus g. The equisymmetric strata are in one-to-one correspondence with topological
equivalence classes of orientation-preserving actions of a finite group G on a surface
X . Two finite groups G′ ≤ G can induce the same stratum if they are quotient groups
of a pair of Fuchsian groups �′ ≤ �, where �′ is a non-maximal Fuchsian group [14].

2. Trigonal Riemann surfaces and Fuchsian groups. Let Xg be a compact Riemann
surface of genus g ≥ 2. Xg can be represented as a quotient Xg = D/� of the unit disc
D under the action of a (cocompact) Fuchsian group �. The algebraic structure of �

and the geometric structure of Xg = D/� are given by the signature of �

s(�) = (g; m1, . . . , mr). (1)

Given a subgroup �′ of index N in a Fuchsian group �, one can calculate the
structure of �′ by Theorem 1.

THEOREM 1. [13]. Let � be a Fuchsian group with signature (1) and canonical
presentation (2). Then � contains a subgroup �′ of index N with signature

s(�′) = (h; m′
11, m′

12, . . . , m′
1s1

, . . . , m′
r1, . . . , m′

rsr
), (2)

if and only if there exists a transitive permutation representation θ : � → �N satisfying
the following conditions:

(1) The permutation θ (xi) has precisely si cycles of lengths less than mi, the lengths
of these cycles being mi/m′

i1, . . . , mi/m′
isi

.
(2) The Riemann–Hurwitz formula

μ(�′)/μ(�) = N. (3)

μ(�), μ(�′) the hyperbolic areas of the surfaces D/�, D/�′, respectively.

Given a Riemann surface X = D/�, with � a surface Fuchsian group, a finite
group G is a group of automorphisms of X if and only if there exists a Fuchsian group
� and an epimorphism θ : � → G with ker(θ ) = �.

Let � be a Fuchsian group with signature (1). Then the Teichmüller space T(�) of
� is homeomorphic to a complex ball of dimension d(�) = 3g − 3 + r (see [12]). Let
�′ ≤ � be Fuchsian group, the inclusion mapping α : � → �′ induces an embedding
T(α) : T(�) → T(�′) defined by [r] 	→ [rα] (see [12, 14]). The modular group Mod (�)
of � is the quotient Mod (�) = Aut(�)/Inn(�). The moduli space of � is the quotient
M(�) = T(�)/Mod (�) endowed with the quotient topology.

A Fuchsian group � such that there does not exist any other Fuchsian group
containing it with finite index is called a finite maximal Fuchsian group. To decide
whether a given finite group can be the full group of automorphism of some compact
Riemann surface, we will need all pairs of signatures s(�) and s(�′) for some Fuchsian
groups � and �′ such that �′ ≤ � and d(�) = d(�′). The full list of such pairs of
signatures was obtained by Singerman in [14].

DEFINITION 2. A Riemann surface X is said to be trigonal if it admits a three-
sheeted covering f : X → �̂ onto the Riemann sphere. If f is a cyclic regular covering
then X is called cyclic trigonal. The covering f will be called the (cyclic) trigonal
morphism.
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The following result gives us a characterization of cyclic trigonal Riemann surfaces
using Fuchsian groups:

THEOREM 3. [6]. Let Xg be a Riemann surface, Xg admits a cyclic trigonal morphism

f if and only if there is a Fuchsian group � with signature (0;

g+2︷ ︸︸ ︷
3, . . . , 3) and an index three

normal surface subgroup � of �, such that � uniformizes Xg.

By Lemma 2.1 of [1], if the surface Xg has genus g ≥ 5, then the trigonal morphism
is unique. In this case, the cyclic trigonal morphism f is induced by a normal subgroup
C3 in Aut(Xg) (see [10]).

Our aim is to show the structure of the space M3
4, its equisymmetric stratification.

To do that we will find, by means of Fuchsian groups, the classes of actions of finite
groups on cyclic trigonal surfaces X4 of genus 4.

3. Strata of cyclic trigonal Riemann surfaces of genus 4. Two closed Riemann
surfaces X, X of genus 4 are called equisymmetric if their automorphisms groups
determine conjugate subgroups of the mapping class group of genus 4. The
equisymmetric strata are in one-to-one correspondence with topological equivalence
classes of orientation-preserving actions of a finite group G on a surface X . Each
(effective and orientable) action of a finite group G on a surface X4 is determined by an
epimorphism θ : � → G from the Fuchsian group � such that ker(θ ) = �, where X4 =
D/� and � is a surface Fuchsian group. The group � has signature as in Lemma 4.
Two finite groups G′, G (G′ ≤ G) can induce the same stratum if they are quotient
groups of pair of Fuchsian groups �′ ≤ �, where �′ is a non-maximal Fuchsian
group [14]. In this case G′ is not the full automorphisms group of the Riemann
surface X .

Two actions ε, ε′ of G on a Riemann surface X are (weakly) topologically
equivalent if there is a w ∈ Aut(G) and an h ∈ Hom+(X) such that ε′(g) = hεw(g)h−1.

Paraphrasing it in terms of groups: two epimorphisms θ1, θ2 : � → G define two
topologically equivalent actions of G on X if there exist automorphisms φ : � → �,
w : G → G such that θ2 = wθ1φ

−1. With other words, let B be the subgroup of
Aut(�) induced by orientation-preserving homeomorphisms. Then two different
epimorphisms θ1, θ2 : � → G define the same class of G-actions if and only if they
lie in the same B × Aut(G)-class (see [4, 5, 11]).

We need now an algebraic characterization of B. Since we are interested in trigonal
Riemann surfaces, we consider the groups

� = 〈x1, x2, . . . , xr| x1x2 . . . xr = 1〉. (4)

� is the fundamental group of the punctured surface X0 obtained by removing
the r branch points of the quotient Riemann sphere X/G. B can be identified with a
certain subgroup of the mapping class group of X0.

Now, any automorphism φ ∈ � can be extended to an automorphism φ ∈ � such
that for 1 ≤ j ≤ r, φ(xj) is conjugate to some (xj). The induced representation B → �r

preserves the branching orders.
We are interested in finding elements of B × Aut(G) that make our epimorphisms

θ1, θ2 : � → G equivalent. We can produce the automorphism φ ∈ B ad hoc. In
our case the only elements of B we need are compositions of φij : xj → xj+1 and
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xj+1 → x−1
j+1xjxj+1, where we write down only the action on the generators moved by

the automorphism φij .
We use Theorems 1 and 3 to find cyclic trigonal Riemann surfaces. Let G be the

full automorphisms group of the surface X4.
Algorithm. Let X4 = D/� be a Riemann surface of genus 4 uniformized by the

surface Fuchsian group �, X4 admits a cyclic trigonal morphism f if and only if there is a
maximal Fuchsian group � with signature (0; m1, . . . , mr), a trigonal automorphism ϕ :
X4 → X4, such that 〈ϕ〉 ≤ G and an epimorphism θ : � → G with ker(θ ) = � a surface
group and such that θ−1(〈ϕ〉) is a Fuchsian group with signature (0; 3, 3, 3, 3, 3, 3).

REMARK. The condition � to be a surface Fuchsian group imposes that the order
of the image under θ of an elliptic generator xi of � is the same as the order of xi and
θ (x1)θ (x2) . . . , θ (xr−1) = θ (xr)−1. Now, let θ : � → G be such an epimorphism and let
|G| = N. Then s(�) = (0; m1, . . . , mr), where mi runs over the divisors of N. Applying
the Riemann–Hurwitz formula we have that

2(g + N − 1) =
r∑
1

N
(mi − 1)

mi
. (5)

Equation (5) and the list of maximal signatures [14] yield the following list of allowed
signatures for genus 4. It is well-konown that a surface of genus 4 has automorphisms
group of order divisible by 2, 3 or 5.

LEMMA 4. Let X4 = D/� be a Riemann surface of genus 4 uniformized by the
surface group �, X4 admitting a cyclic trigonal morphism f . Then the Fuchsian group �

uniformizing the orbifold X/G must have one of the following signatures:

|G| s(�) |G| s(�) |G| s(�)

3 (0; 3, 3, 3, 3, 3, 3) 6 (0; 2, 6, 6, 6) 6 (0; 2, 2, 3, 3, 3)
6 (0; 2, 2, 2, 3, 6) 6 (0; 2, 2, 2, 2, 2, 2) 6 (0; 3, 3, 6, 6)a

9 (0; 9, 9, 9)a 9 (0; 3, 3, 3, 3)a 12 (0; 4, 6, 12)
12 (0; 2, 2, 2, 2, 2) 12 (0; 2, 3, 3, 3) 12 (0; 2, 2, 3, 6)
12 (0; 6, 6, 6)a 12 (0; 3, 12, 12)a 12 (0; 2, 2, 4, 4)a

15 (0; 5, 5, 5)a 15 (0; 3, 5, 15)a 18 (0; 2, 2, 2, 6)
18 (0; 3, 6, 6)a 18 (0; 2, 9, 18)a 18 (0; 2, 2, 3, 3)a

24 (0; 4, 4, 4)a 24 (0; 3, 4, 6) 24 (0; 2, 2, 2, 4)
24 (0; 2, 6, 12)a 24 (0; 3, 3, 12)a 24 (0; 2, 8, 8)a

27 (0; 3, 3, 9)a 30 (0; 2, 5, 10)a 36 (0; 2, 4, 12)
36 (0; 2, 2, 2, 3) 36 (0; 3, 3, 6)a 36 (0; 3, 4, 4)a

36 (0; 2, 6, 6)a 45 (0; 3, 3, 5)a 48 (0; 2, 3, 24)
48 (0; 2, 4, 8)a 54 (0; 2, 3, 18) 60 (0; 2, 3, 15)
60 (0; 2, 5, 5)a 72 (0; 2, 4, 6) 72 (0; 2, 3, 12)
72 (0; 3, 3, 4)a 90 (0; 2, 3, 10) 108 (0; 2, 3, 9)
120 (0; 2, 4, 5) 144 (0; 2, 3, 8)

aNon-maximal signature.

Using the notation of the Algorithm mentioned above, here we calculate all
possible classes of epimorphisms θ : � → G inducing cyclic trigonal Riemann surfaces.
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We separate the cases according to the order of the group G. Observe that, if �′ is a non-
maximal Fuchsian group in the group � with no possible epimorphisms θ ′ : �′ → G′,
then there are no epimorphisms θ : � → G. We use Theorem 1 to calculate θ−1(〈ϕ〉).

(1) |G| = 3. There are two classes of epimorphisms θ : � → C3 = 〈a|a3 = 1〉 where
s(�) = (0; 3, 3, 3, 3, 3, 3): θ1(x2i) = a and θ1(x2i−1) = a−1, 1 ≤ i ≤ 3, and θ2(xi) = a,
1 ≤ i ≤ 6.

The cyclic trigonal Riemann surfaces of genus 4 form a space M3
4 of (complex)

dimension d(�) = 3. This space consists of two disconnected components C1 and C2.
The connected component C1 is given by actions θ1, where half the stabilizers of the
fixed points rotate in opposite directions. The component C2 is given by actions θ2,
where the stabilizers of all the fixed points rotate in the same direction (see also [10]).

(2) |G| = 6.

(i) First, consider the signature s(�1) = (0; 2, 6, 6, 6). There are epimorphisms
θ : � → C6 = 〈a|a6 = 1〉. Applying Theorem 1 to θ−1(〈a2〉) we obtain
s(θ−1(〈a2〉)) = (1; 3, 3, 3) and the surfaces D/Ker(θ ) are not trigonal.

(ii) Signature s(�2) = (0; 2, 2, 3, 3, 3). There are epimorphisms from �2 onto
both D3 and C6. In each case, each of θ (x3), θ (x4) and θ (x5) induces two
cone points in D/Ker(θ ). Thus s(θ−1(C3)) = (0; 3, 3, 3, 3, 3, 3), therefore
these surfaces are trigonal. Now, there is one natural epimorphism
θ : �2 → C6 = 〈a|a6 = 1〉. Finally, there is one class of epimorphisms
θ : �2 → D3 = 〈a, s|a3 = s2 = (sa)2 = 1〉 equivalent to θ (x1) = s, θ (x2) =
sa, θ (x3) = a, θ (x4) = a2 applying a suitable conjugation in D3 and the
elements φ2

2,3φ
2
2,3φ3,4φ

2
2,3 ∈ B. Therefore there are two strata, with (complex)

dimension 2, of cyclic trigonal Riemann surfaces of genus 4 with six
automorphisms: one stratum, lying in C1, is determined by the unique class
of actions of D3, the second stratum, in C2, is determined by the unique
action of C6.

(iii) Signature s(�3) = (0; 2, 2, 2, 3, 6). There are epimorphisms θ : �3 → C6.
By Theorem 1 the surfaces D/Ker(θ ) are not trigonal since s(θ−1(〈a2〉)) =
(1; 3, 3, 3).

(iv) The signature s(�4) = (0; 2, 2, 2, 2, 2, 2) does not induce trigonal surfaces
since the orders of the elliptic elements of �4 are relative prime to 3.

(v) Fuchsian groups with signature s(�5) = (0; 3, 3, 6, 6) are non-maximal.
The epimorphisms θ : �5 → C6 extend to epimorphisms θ : � → C6 × C2

and θ : � → D6, where s(�) = (0; 2, 2, 3, 6), which are studied in case 4(iii).

(3) |G| = 9

(i) Fuchsian groups with signature s(�1) = (0; 9, 9, 9) are non-maximal. The
epimorphisms θ : �1 → C9 extend to epimorphisms θ : � → C18, where
s(�) = (0; 2, 9, 18).

(ii) Groups with signature s(�2) = (0; 3, 3, 3, 3) are non-maximal. The
epimorphisms θ : �2 → C3 × C3 extend to epimorphisms θ : � → G18,
where s(�) = (0; 2, 2, 3, 3). These epimorphisms are studied in cases 6(iv)
and 10(ii).

(4) |G| = 12.

(i) Signature s(�1) = (0; 4, 6, 12). There are equivalent epimorphisms θ : � →
C12 = 〈a|a12 = 1〉. Applying Theorem 1 we obtain s(θ−1(〈a4〉)) = (1; 3, 3, 3)
and the surface D/Ker(θ ) is not trigonal.
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(ii) Signature s(�2) = (0; 2, 3, 3, 3). There are epimorphisms θ : �2 → A4

equivalent to θ (x1) = s, θ (x2) = a, θ (x3) = as and θ (x4) = sas. Since any
element of order 3 in A4 leaves just one coset fixed when acting on the 〈a〉,
〈sa〉, 〈as〉 or the 〈sas〉-cosets, thus θ−1(C3) has signature (1; 3, 3, 3) and the
corresponding surfaces are not trigonal.

(iii) Signature s(�3) = (0; 2, 2, 3, 6). There are epimorphisms from �3 onto
both D6 and C6 × C2. In each case, θ (x3) induces four cone points and
θ (x4) induces two cone points in D/Ker(θ ). Thus, these surfaces are
trigonal. Now, there is one epimorphism θ : �3 → C6 × C2. There is,
up to conjugation in D6, one epimorphism θ : �3 → D6 = 〈a, s|a6 = s2 =
(sa)2 = 1〉 defined by θ (x1) = s, θ (x2) = sa3, θ (x3) = a2. Therefore there are
two strata, with (complex) dimension 1, of cyclic trigonal Riemann surfaces
of genus 4 with 12 automorphisms: one stratum, lying in C1, is determined
by the action of D6, the second stratum, in C2, is determined by the action
of C6 × C2.

(iv) Signature s(�4) = (0; 2, 2, 2, 2, 2) as in case 2(iv).
(v) Fuchsian groups with signature s(�5) = (0; 6, 6, 6) are non-maximal. The

epimorphisms θ : �5 → C6 × C2 extend to epimorphisms θ : � → C3 ×
D4, where s(�) = (0; 2, 6, 12), and the epimorphism φ1 : 
1 → C3 × A4,
with s(
1) = (0; 3, 3, 6). This epimorphism is studied in case 15(i).

(vi) Groups with signature s(�6) = (0; 3, 12, 12) are non-maximal. The
epimorphisms θ : �6 → C12 extend to epimorphisms θ : � → C3 × D4,
where s(�) = (0; 2, 6, 12), studied in case 7(vi).

(vii) The signature s(�7) = (0; 2, 2, 4, 4) as case 2(iv).

(5) |G| = 15.

(i) Signature s(�1) = (0; 5, 5, 5). There is no epimorphism θ : �1 → C15.
(ii) Signature s(�2) = (0; 3, 5, 15). There is, up to conjugation in C15, one

epimorphism θ : �2 → C15 defined by θ (x1) = a5, θ (x2) = a2. By Theorem
1, s(θ−1(C3)) = (0; 3, 3, 3, 3, 3, 3). There is a unique cyclic trigonal surface
T4 of genus 4 with Aut(T4) = C15.

(6) |G| = 18.

(i) Signature s(�1) = (0; 2, 2, 2, 6). There is no group of order 18 generated by
three involutions containing elements of order 6 [9].

(ii) Signature s(�2) = (0; 2, 9, 18). The epimorphism θ : �2 → C18 = 〈a | a18〉
is defined as θ (x1) = a9, θ (x2) = a2. By Theorem 1, θ−1(〈a6〉) has signature
(1; 3, 3, 3), inducing non-trigonal surfaces.

(iii) Groups with signature s(�3) = (0; 3, 6, 6) are non-maximal. The
epimorphisms θ1 : �3 → C6 × C3 and θ2 : �3 → C3 × D3 extend to
an epimorphism θ : � → C6 × D3, where s(�) = (0; 2, 6, 6). This
epimorphism is studied in case 10(v).
There is an epimorphism θ3 : �3 → C3 × D3 which extends to an
epimorphism φ2 : � → D3 × D3, with s(�) = (0; 2, 6, 6). This last
epimorphism extends to the one studied in case 15(ii).

(iv) Signature s(�4) = (0; 2, 2, 3, 3). We consider epimorphisms θ1,2 : �4 →
C3 × D3, θ1(x1) = sai, θ1(x2) = saj, i = j ∈ {0, 1, 2}, θ1(x3) = ai−jb, θ1(x4) =
b2; θ2(x1) = s, θ2(x2) = sa, θ2(x3) = ab, θ2(x4) = ab2 and θ3 : �4 → (C3 ×
C3) � C2 = 〈a, b, s|a3 = b3 = s2 = (sa)2 = (sb2) = [a, b] = 1〉 defined as
θ3(x1) = sa, θ3(x2) = sb, θ3(x3) = ab, θ3(x4) = b2. Epimorphisms θ2 and
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θ3 extend to epimorphisms θ : � → D3 × D3, with S(�) = (0; 2, 2, 2, 3)
studied in case 10(ii).

Epimorphisms θ1 : �4 → C3 × D3 induced one equisymmetric stratum. Now, by
Theorem 1, θ1(x3) leaves no fixed points when acting on the 〈b〉- or 〈a〉-cosets and three
fixed points when acting on the 〈ab〉- or 〈a2b〉-cosets. Again θ1(x4) leaves six fixed points
when acting on the 〈b〉-cosets, and no fixed points on the 〈a〉-, 〈ab〉- or 〈a2b〉-cosets.
Then s(θ−1

1 (〈b〉)) = (0; 3, 3, 3, 3, 3, 3). Thus, the surfaces D/Ker(θ1) form one stratum,
in C2, of cyclic trigonal Riemann surfaces with unique central trigonal morphism.

(7) |G| = 24.

(i) Signature (0; 2, 2, 2, 4) as in case 4(vii).
(ii) Signature s(�2) = (0; 3, 4, 6). There are epimorphisms θ : �2 → 〈2, 3, 3〉 =

Q � C3 = 〈a, s, t|a3 = t4 = s4 = (st)4 = 1, s2 = t2, a2sa = t, a2ta = st〉, for
instance θ (x1) = sta, θ (x2) = s and θ (x3) = s2a2. Now, the group 〈2, 3, 3〉
contains just one conjugacy class of subgroups of order 3, and one
conjugacy class of elements of order 6, with representatives sta and s2a2,
respectively. The action of sta on the 〈a〉-cosets induces two fixed points,
while the action of s2a2 yields one fixed point. Thus s(θ−1(〈a〉)) is (1; 3, 3, 3)
and the corresponding surface is not trigonal.

(iii) The signature s(�3) = (0; 4, 4, 4) admits no epimorphism (see [9]).
(iv) The signature s(�4) = (0; 3, 3, 12) admits no epimorphisms (see [9]).
(v) The signature s(�5) = (0; 2, 8, 8) admits no epimorphism (see [9]).

(vi) Groups with signature s(�6) = (0; 2, 6, 12) are non-maximal. The
epimorphisms θ : �6 → D4 × C3 extend to epimorphisms θ : � → C3 ×
�4, where s(�) = (0; 2, 3, 12) that are studied in case 15(i).

(8) |G| = 27. The signature s(�) = (0; 3, 3, 9) admits no epimorphisms.
(9) |G| = 30. As case 5(i).

(10) |G| = 36.

(i) Signature (0; 2, 4, 12). There is no group of order 36 generated by elements
of orders 2 and 4 with product of order 12.

(ii) Fuchsian groups �2 with signature (0; 2, 2, 2, 3). The surfaces D/Ker(θ )
form a connected uniparametric subvariety 36M3

4 of M3
4, lying in C1,

where θ : �2 → D3 × D3 defined by θ (x1) = s, θ (x2) = tb, θ (x3) = sta
and θ (x4) = a2b, D3 × D3 = 〈a, b, s, t|a3 = b3 = s2 = t2 = [a, b] = [s, b] =
[t, a] = (sa)2 = (tb)2 = 1〉 (see [7, 8]).

(iii) The signature s(�3) = (0; 3, 3, 6) is studied in case 15(i).
(iv) The signature s(�4) = (0; 3, 4, 4) is studied in case 15(ii).
(v) Groups with signature s(�5) = (0; 2, 6, 6) are extensions of groups with

signature s(
) = (0; 3, 6, 6). First of all, the non-maximal groups with
signature (0; 2, 6, 6) are subgroups of groups � with signature s(�) =
(0; 2, 4, 6). They are studied in case 15(ii).

The maximal group �5 with signature (0; 2, 6, 6) is defined by an
extension of both θ1 : �3 → C6 × C3 and θ2 : �3 → C3 × D3 in case 6(iii)
to θ : �5 → C6 × D3 = 〈a, b, s, t|a3 = b3 = s2 = t2 = (st)2 = [a, b] = [s, b] = [t, a] =
(sa)2 = [t, b] = 1〉 defined by θ (x1) = sa2, θ (x2) = tab2 and θ (x3) = stab. Applying
Theorem 1 to the action of θ (�5) on the 〈b〉-, 〈a〉-, 〈ab〉- and 〈a2b〉-cosets we
obtain s(θ−1(〈b〉)) = (0; 3, 3, 3, 3, 3, 3). Thus, the Riemann surface Z4 = D/Ker(θ ) is a
cyclic trigonal Riemann surface admitting a unique central trigonal morphism in the
component C2 of M3

4.
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(11) |G| = 45. As case 5(i).
(12) |G| = 48.

(i) Signature s(�1) = (0; 2, 3, 24) as case 7(iv).
(ii) Signature s(�2) = (0; 2, 4, 8) as cases 7(iii) and (l7v) (see [14]).

(13) |G| = 54. As case 8 (see [14]).
(14) |G| = 60.

(i) The signature (0; 2, 3, 15) admits no epimorphism.
(ii) The signature s(�2) = (0; 2, 5, 5) does not induce trigonal surfaces.

(15) |G| = 72.
(i) Consider Fuchsian groups �1 with signature (0; 2, 3, 12). There is one

cyclic trigonal Riemann surface X4 with unique trigonal morphism. X4 is
uniformized by Kerθ1, where θ1 : �1 → �4 × C3, with θ1(x1) = s, θ1(x2) =
ab, θ1(x3) = a2sb (see [7]).

(ii) Consider Fuchsian groups �2 with signature (0; 2, 4, 6). There is one
cyclic trigonal Riemann surface Y4 with two trigonal morphisms. Y4 is
uniformized by Kerθ2, where θ2 : �2 → (C3 × C3) � C4, with θ2(x1) = s,
θ2(x2) = ta, θ2(x3) = stb (see [7]).

(iii) The signature (0; 3, 3, 4) is as case 7(iii) (see [14]).
(16) |G| = 90. As case 5(i).
(17) |G| = 108. As case 8 (see [14]).
(18) |G| = 120. As case 14(ii).
(19) |G| = 144. As cases 7(iii)) and (v) (see [14]).
We summarize the above results in the following:

REMARK 5. [7]. There is a connected uniparametric family of Riemann surfaces
X4(λ) of genus 4 admitting two cyclic trigonal morphisms. The surfaces X4(λ) have G =
Aut(X4(λ)) = D3 × D3 and the quotient Riemann surfaces X4(λ)/G are uniformized
by the Fuchsian groups � with signature s(�) = (0; 2, 2, 2, 3).

THEOREM 6. The space M3
4 of cyclic trigonal Riemann surfaces of genus 4 form a

disconnected subspace of dimension 3 of the moduli space M4. M3
4 is the union of C1

and C2.
(1) The subspace 6M3

4, determined by the Fuchsian groups �′′ with s(�′′) =
(0; 2, 2, 3, 3, 3), formed by Riemann surfaces of genus 4 with automorphisms
group of order 6 is a disconnected space of dimension 2 consisting of two
connected components C6

1 and C6
2 consisting of trigonal Riemann surfaces with

automorphisms groups D3 and C6, respectively. C6
i ⊂ Ci.

(2) The subspace 12M3
4, determined by the Fuchsian groups �′ with s(�′) =

(0; 2, 2, 3, 6), formed by Riemann surfaces of genus 4 with automorphism
group of order 12 is a disconnected space of dimension 1 consisting of two
connected components C12

1 and C12
2 consisting of trigonal Riemann surfaces with

automorphisms groups D6 and C12, respectively. C12
i ⊂ Ci.

(3) There is one cyclic trigonal Riemann surface T4 determined by the Fuchsian group
�4 with s(�4) = (0; 3, 5, 15) and automorphisms group C15. T4 ∈ C2.

(4) The subspace 18M3
4, determined by the Fuchsian groups �′′′ with s(�′′′) =

(0; 2, 2, 3, 3), formed by Riemann surfaces of genus 4 with automorphisms group
of order 18 is a connected space of dimension 1 consisting of trigonal Riemann
surfaces with automorphisms group D3 × C3. 18M3

4 ⊂ C2.
(5) The connected subspace 36M3

4 of M3
4 formed by Riemann surfaces X4(λ) of genus

4 with automorphisms group of order 36 is a space of dimension 1 determined by
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the Fuchsian groups � with s(�) = (0; 2, 2, 2, 3). The automorphisms group of
the Riemann surfaces is D3 × D3 and the surfaces admit two trigonal morphisms.
36M3

4 ⊂ C1.
(6) There is one cyclic trigonal Riemann surface Z4 determined by the Fuchsian group

�3 with s(�3) = (0; 2, 6, 6) and automorphisms group C6 × D3. Z4 ∈ C2.
(7) There are exactly two cyclic trigonal Riemann surfaces X4 and Y4 of genus 4 with

automorphisms groups of order 72.
(i) X4 has one cyclic central trigonal morphism, Aut(X4) = �4 × C3 and X4/�4 ×
C3 uniformized by the Fuchsian group �1 with s(�1) = (0; 2, 3, 12). X4 ∈ C2.
(ii) Y4 has two trigonal morphisms, Aut(Y4) = (C3 × C3) � D4 and Y4/(C3 ×
C3) � D4 uniformized by the Fuchsian group �2 with s(�2) = (0; 2, 4, 6). Y4 ∈ C1.

The strata 18M3
4, 36M3

4, C12
1 and C12

2 are punctured Riemann surfaces.
Furthermore, the structure of the space M3

4 is given in the following theorem.
We find the inclusion relations between the different strata in the equisymmetric
stratification of M3

4.

THEOREM 7. The different equisymmetric strata in Theorem 6 satisfy the following
inclusion relations:

(1) The space 12M3
4 is a subspace of 6M3

4. Furthermore C12
i ⊂ C6

i , i = 1, 2.
(2) The space 18M3

4 is a subspace of C6
2 ⊂ 6M3

4.
(3) The space 36M3

4 is a subspace of C6
1 ⊂ 6M3

4.
(4) The surface Z4 given in Theorem 6 (case 6) belongs to 18M3

4

⋂
C12

2 .
(5) The surface X4 given in Theorem 6 (case 7(i)) belongs to the space 12M3

4.
(6) The surface Y4 given in Theorem 6 (case 7(ii)) belongs to 36M3

4

⋂
C12

1 .

Proof.
(1) In fact the Riemann surfaces D/�′′ with s(�′′) = (0; 2, 2, 3, 3, 3) are double

coverings of the the Riemann surfaces D/�′ with s(�′) = (0; 2, 2, 3, 6).
Consider the map φ′′ : �′ → �2 defined by φ′′(x′

1) = (1, 2), φ′′(x′
2) = φ′′(x′

3) =
1d , φ′′(x′

4) = (1, 2). By Theorem 1, φ′′(x′
1) induces no cone points, φ′′(x′

2) induces
two cone points of order 2, φ′′(x′

3) two cone points of order 3 and φ′′(x′
4) one of

order 3. Thus φ′′ is the required monodromy of the covering D/�′′ → D/�′,
with �′′ = φ′′−1(Stb(1)).

(2) In fact the Riemann surfaces D/�′′ with s(�′′) = (0; 2, 2, 3, 3, 3) are three-
sheeted coverings of the the Riemann surfaces D/�′′′ with s(�′′′) =
(0; 2, 2, 3, 3). Consider the map φ′′′ : �′′′ → �3 defined by φ′′′(x′′′

1 ) = (1, 2),
φ′′′(x′′′

2 ) = (2, 3), φ′′′(x′′′
3 ) = 1d , φ′′′(x′′′

4 ) = (1, 2, 3). By Theorem 1, φ′′′(x′′′
1 ) and

φ′′′(x′′′
2 ) induce one cone point of order two each, φ′′′(x′′′

3 ) induces three
cone points of order 3 and φ′′′(x′′′

4 ) no cone point. Thus, φ′′′ is the required
monodromy of the covering D/�′′ → D/�′′′, with �′′ = φ′′′−1(Stb(1)). The
monodromy φ′′′ yields the action of C3 × D3 on the 〈b, s〉-cosets, where b, s as
in case 6(iv).

(3) In fact the Riemann surfaces D/�′′ with s(�′′) = (0; 2, 2, 3, 3, 3) are six-sheeted
coverings of the Riemann surfaces D/� with s(�) = (0; 2, 2, 2, 3). Consider the
maps φ1 : � → �2 defined by φ1(x1) = φ1(x2) = (1, 2), φ1(x3) = φ1(x4) = 1d

and φ2 : 
 → �3 defined by φ2(y1) = (1, 2), φ2(y2) = (1, 3), φ2(y3) = (1, 2, 3),
φ2(y4) = 1d , where 
 = φ−1

1 (Stb(1)). By Theorem 1, s(
) = (0; 2, 2, 3, 3). Now
φ2(y1) and φ2(y2) induce one cone point of order 2 each, and φ2(y4) induces
three cone points of order 3. Therefore the composition map φ2 · φ1 is the
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required monodromy of the covering D/�′′ → D/�. Again �′′ = φ−1
2 (Stb(1)).

The monodromy φ2 · φ1 yields the action of D3 × D3 on the 〈ab, st〉-cosets,
where ab, st are defined in case 10(ii).

The space 36M3
4 belongs to the subvariety C6

1 ⊂ 6M3
4 consisting of the

Riemann surfaces with half the stabilizers of the cone points rotating in opposite
directions since 〈ab, st〉 = D3.

(4) First of all, a Riemann surface D/�′ with s(�′) = (0; 2, 2, 3, 6) is a three-
sheeted covering of the Riemann surface Z4 = D/�3 with s(�3) = (0; 2, 6, 6).
Consider the representation φ : �2 → �3 defined by φ(y1) = (1, 2), φ(y2) =
(2, 3), φ(y3) = (1, 2, 3). By Theorem 1, φ(y1) induces one cone point of order 2,
φ(y2) induces one cone point of order 3 and one cone point of order 6 and φ(y3)
induces one cone point of order 2. Then s(�′) = s(φ−1(Stb(1))) = (0; 2, 2, 3, 6).
Thus, the map φ is the required monodromy of the covering D/�′ → D/�3.
The monodromy φ yields the action of C6 × D3 on the C6 × C2-cosets, where
C6 × C2 = 〈b, s, t〉 as in case 10(v).

Secondly, a Riemann surface D/�′′′ with s(�′′′) = (0; 2, 2, 3, 3) is a double
covering of the the Riemann surface Z4. By Theorem 1, the map τ : � → �2

defined by τ (x1) = 1d , τ (x2) = τ (x3) = (1, 2) is the required monodromy of the
covering D/�′′′ → D/�3 with � = τ−1(Stb(1)). Notice that τ (x1) induces two
cone points of order 2, and τ (x2) and τ (x3) one cone point of order 3 each.
The monodromy τ yields the action of C6 × D3 on the C3 × D3-cosets, where
C3 × D3 = 〈a, b, s〉 as in case 10(v).

(5) A Riemann surface D/�′ with s(�′) = (0; 2, 2, 3, 6) is a six-sheeted
covering of the Riemann surface D/�1 with s(�1) = (0; 2, 3, 12). Consider
the representation φ : �1 → �6 defined by φ(x1) = (2, 4)(3, 5), φ(x2) =
(1, 2, 3)(4, 5, 6), φ(x3) = (1, 5, 6, 2)(3, 4). By Theorem 1, φ(x1) induces two cone
points of order 2, φ(x2) induces no cone points and φ(x3) induces one cone
point of order 3 and one of order 6, then s(�′) = s(φ−1(Stb(1))) = (0; 2, 2, 3, 6).
Thus, the map φ is the required monodromy of the covering D/�′ → D/�1.
The monodromy φ yields the action of �4 × C3 on the C6 × C2-cosets, where
C6 × C2 = 〈b, s, (as)2〉 as in case 15(i).

(6) First of all, a Riemann surface D/�′ with s(�′) = (0; 2, 2, 3, 6) is a six-sheeted
covering of the Riemann surface Y4 = D/�2 with s(�2) = (0; 2, 4, 6). Consider
the representation φ : �2 → �6 defined by φ(y1) = (1, 4)(2.3)(5, 6), φ(y2) =
(2, 4, 5, 6)(1, 3), φ(y3) = (1, 2, 5)(3, 4). By Theorem 1, φ(y1) induces no cone
points, φ(y2) induces one cone point of order 2 and φ(y3) induces one cone
point of order 3, one cone point of order 6 and one of order 2, then s(�′) =
s(φ−1(Stb(1))) = (0; 2, 2, 3, 6). Thus, the map φ is the required monodromy of
the covering D/�′ → D/�2. The monodromy φ yields the action of (C3 ×
C3) � D4 on the D6-cosets, where D6 = 〈a, s, t2〉 as in case 15(ii).

Secondly, a Riemann surface D/� with s(�) = (0; 2, 2, 2, 3) is a double
covering of the the Riemann surface Y4 = D/�2 with s(�2) = (0; 2, 4, 6). By
Theorem 1, the map τ : � → �2 defined by τ (x1) = 1d , τ (x2) = τ (x3) = (1, 2) is
the required monodromy of the covering D/� → D/�2 with � = τ−1(Stb(1)).
Notice that τ (x1) induces two cone points of order 2, τ (x2) the third cone point
of order 2 and τ (x3) one cone point of order 3. The monodromy τ yields the
action of (C3 × C3) � D4 on the D3 × D3-cosets, where D3 × D3 = 〈a, b, s, t2〉
as in case 15(ii). �
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REMARK. The Riemann surfaces D/�′ with s(�′) = (0; 2, 2, 3, 6) cannot be
coverings of the the Riemann surfaces D/� with s(�) = (0; 2, 2, 2, 3). Hence the space
36M3

4 is not a subspace of C12
2 ⊂ 12M3

4.
The surface X4 does not belong to 18M3

4 since the group C3 × D3 is not a subgroup
of the group �4 × C3.
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