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Abstract

This paper proposes to solve the vortex gust mitigation problem on a 2D, thin flat plate using onboard measurements.
The objective is to solve the discrete-time optimal control problem of finding the pitch rate sequence that minimizes
the lift perturbation, that is, the criterion J =

P
t∣CL,t∣, where CL is the lift coefficient obtained by the unsteady vortex

lattice method. The controller is modeled as an artificial neural network, and it is trained to minimize J using deep
reinforcement learning (DRL). To be optimal, we show that the controller must take as inputs the locations and
circulations of the gust vortices, but these quantities are not directly observable from the onboard sensors. We
therefore propose to use a Kalman particle filter (KPF) to estimate the gust vortices online from the onboard
measurements. The reconstructed input is then used by the controller to calculate the appropriate pitch rate. We
evaluate the performance of this method for gusts composed of one to five vortices. Our results show that
(i) controllers deployed with full knowledge of the vortices are able to mitigate efficiently the lift disturbance
induced by the gusts, (ii) the KPF performs well in reconstructing gusts composed of less than three vortices, but
shows more contrasted results in the reconstruction of gusts composed of more vortices, and (iii) adding a KPF to the
controller recovers a significant part of the performance loss due to the unobservable gust vortices.

Impact Statement

The development of urban aerial mobility has gained significant momentum in recent years, with notable
initiatives such as Airbus’ plan to introduce aerial taxis for the Paris 2024 Olympic Games and Amazon’s
exploration of drone delivery services. Within this emerging field, one critical challenge lies in mitigating
disturbances experienced by aerial vehicles. The onboard systems must detect aerological perturbations and
minimize their impact on the aerodynamic loads (e.g., lift, drag). We propose a new comprehensive framework
harnessing data-driven techniques for detecting perturbations and optimizing control actions to effectively
mitigate atmospheric disturbances. This research has far-reaching implications for urban air mobility, as it
contributes to ensure safe and reliable operations in the presence of disturbed urban aerological conditions.

1. Introduction

Urban air mobility (UAM) is promised to have a flourishing future in the coming years (Johnson et al.,
2018; Straubinger et al., 2020). Johnson et al. (2018) draw the guidelines for future NASA research for
UAM development. Among other challenges, such as electric/hybrid propulsion efficiency, safety, and
structural integrity, the issue of disturbance rejection by the onboard flight control system is central to
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UAMdevelopment. Current research describes any type of aerodynamic disturbance of an air vehicle as a
gust. Jones et al. (2022) proposed to categorize gusts into three types: (i) streamwise gusts, (ii) transverse
gusts, and (iii) vortex gusts. Streamwise gusts are perturbations parallel to the inflow, transverse gusts are
perturbations perpendicular to the inflow, and vortex gusts are bi-directional perturbations stemming from
a vortex singularity of circulation Γg.

The gust mitigation literature focuses mainly on transverse gusts, yet it is worth noting that these three
types of gusts present specific issues that require dedicated mitigation methods.

Firstly, streamwise gusts induce a time-dependant change in effective Reynolds number, which is not
critical at high Reynolds numbers but may induce a strongly non-linear lift response to the perturbation at
low to moderate Reynolds numbers. This can be viewed as a quasi-steady effect. Moreover, this effect
may be modulated by the presence of a streamwise pressure gradient (supported by the temporal
perturbation) that affects flow separation, laminar-to-turbulent transition, and reattachment of the
separated shear layer, if any, at low and moderate Reynolds numbers. Furthermore, added mass effects
and unsteady effects resulting from feedback effects of the developing wake on the airfoil also come into
play, typically by introducing attenuation and phase lag to the quasi-steady lift response. The latter are
however general to all types of gusts.

Secondly, in addition to added mass and wake effects, as well as potential changes in effective
Reynolds numbers, transverse gusts induce a modification of the effective Angle of Attack (AoA) of
the vehicle. For example, a transverse gust with an upwash~v impinging an airfoil flying at a zero incidence
and velocityU∞ yields an effective AoA perturbation ~v=U∞ at first order (Von Karman and Sears, 1938).
The main strategy proposed in the literature consists of actively pitching the airfoil to reject the gust-
induced disturbance (Andreu-Angulo and Babinsky, 2020, 2021, 2022; Sedky et al., 2020a, 2020b,
2022). For instance, Andreu-Angulo and Babinsky (2021) determine the adequate AoA temporal
sequence αtf gt∈ 1,T½ � to mitigate a transverse gust according to low-order models, by minimizing the lift
coefficient at each time step, independently of the consequences of choosing αt on future lift coefficients.
Alternatively, Poudel et al. (2021) investigate an open-loop control strategy using oscillating airfoils to
mitigate long-lived transverse gusts.

Thirdly, vortex gusts introduce new challenges that could previously be ignored for the mitigation of
the two other gust types, which we discuss below:

• Transverse gusts are described by a predefined spatial distribution of upwash disturbances, which
are convected at a fixed velocity towards the airfoil, that is, the airfoil pitchmotion does not affect the
incoming flow perturbation. This made the minimization of the current lift coefficient at every time
step by Andreu-Angulo and Babinsky (2021) a reasonable approximation of an optimal control
sequence. Conversely, the sequence of AoAs of an airfoil moving through a gust of vortices affects
the vortices’ future positions, which, in turn, requires accounting for the future system’s evolution
when choosing αt, making the vortex gust control more delicate (Jones et al., 2022).

• The main effect of transverse gusts on the lift is due to the modification of the AoA, so that only the
upwash perturbation at the leading edge is required to establish the proper control law. This
information can be obtained by a simple velocity measurement on the airfoil, yet accurate estima-
tions of AoA in turbulent flows are still an open challenge in practice (Gavrilovic et al., 2018). In
contrast, vortices have long-distance effects via their induced velocity on the geometry (Biot–Savart
law). This suggests that the position and circulation of the vortices—which are parameters that
cannot be directlymeasuredwith only onboard sensors (da Silva andColonius, 2018; Le Provost and
Eldredge, 2021)—should be known to compute an optimal control.

While experimental control of a wing in disturbed flow by DRL has been investigated by Renn and
Gharib (2022), methods to mitigate vortex gusts are still scarce in the literature. On the one hand,
Herrmann et al. (2022) propose a feedforward and feedback strategy controlling the flap of the trailing
edge tomitigate the vortex-induced disturbances. On the other hand, Kazarin et al. (2021) aim to solve the
robust control problem, which consists of controlling the roll and yaw behavior of an aircraft subjected to
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unknown and bounded vortex disturbances. However, none of them address the question of the vortex
estimation from the onboard measurements. Specifically, Herrmann et al. (2022) estimate experimentally
the vortices by a velocity sensor upstream of the airfoil, while Kazarin et al. (2021) consider the vortex
gust as an unknown disturbance. To address simultaneously the two difficulties encountered when
mitigating vortex gusts, the main objective of our work is to develop a new closed-loop non-linear
controller. It is built as an artificial neural network (ANN) that actively pitches a flat plate to mitigate the
unsteady lift induced by a vortex gust. To do so, the flow behavior is modeled according to the unsteady
vortex lattice method (UVLM). The present work proposes to learn this ANN controller using a deep
reinforcement learning (DRL) (Sutton and Barto, 2018) method. DRL is meant to compute optimal
controllers for fully observable systems, that is, it requires observing the positions and circulations of the
gust vortices at each control time step. To circumvent this issue, a Kalman particle filter (KPF) is proposed
on top of the DRL controller to estimate the full state from only onboard measurements.

This paper is organized as follows: Section 2 covers related works which put our contribution in
perspective. Section 3 introduces the gust mitigation problem, as well as the UVLM model. Section 4
describes the optimal control problem underlying the mitigation of a vortex gust, as well as the DRL and
the KPF algorithms used for its resolution. Finally, in Section 5, we evaluate the performance of the DRL-
trained controller, taking the vortices estimated by the KPF as input.

2. Related work

2.1. Deep reinforcement learning for optimal control

In the present work, we model the unsteady lift response to the gust-induced disturbance using the
unsteady vortex lattice method (UVLM) (Katz and Plotkin, 2001). The controller is based on an artificial
neural network (ANN) (Goodfellow et al., 2016), which is trained tomitigate the vortex gust throughDRL
(Sutton and Barto, 2018). In a DRL approach, the ANN controller is optimized to mitigate the vortex gust
through interactions with the UVLM model. The interaction follows a discrete time evolution. At each
interaction step, the controller observes the environment’s state st. Then, it computes an action at, which is
applied to the flat plate, triggering a transition in the UVLM model from a state st to st + 1. Finally, the
controller receives a reward rt depending on the new state of the environment st + 1. Based on a collection
of samples st,at,rt,st + 1ð Þf g, the DRL algorithm optimizes the controller parameters such that the state-

control sequence ðs0,a0,…,st,at,…,sTf ,aTf Þ minimizes the criterion J =
PTf

t = 0rt, where Tf is the final
time of the simulation. This optimization procedure allows us

• to assess the performance loss due to vortex unobservability. AlthoughDRL theory clearly states
that st must be a Markov state, that is, contain vortex circulations and vortex positions, we are
nevertheless able to train the controller with inputs limited to on-board measurements (non-Markov
state) but with no guarantee on the control law optimality.

• to evaluatemultiple levels of control law complexity. DRL allows us tomodel the control function
as either a simple linear combination of its input or as a complex nonlinear function, modeled as
an ANN.

The potential application of ANNs for unsteady fluid dynamics has been established since late 1990
(Faller and Schreck, 1997). In the last few years, ANNs have solved many fluid-related tasks (Brenner
et al., 2019; Brunton et al., 2020; Garnier et al., 2021; Brunton and Kutz, 2022). For instance, DRL has
been used for a large variety of fluid control tasks, such as reducing the drag coefficient of the flow around
a cylinder (Rabault et al., 2019), or diminishing the effort of swimmers leveraging the wake generated by
the swimmer ahead (Novati et al., 2017). Regarding aerodynamics and flight control, DRL has been used
to solve a variety of aerodynamic control problems. For instance, Waldock et al. (2018) showed that DRL
agents are able to manage a landing autonomously, and Bøhn et al. (2019) showed that DRL algorithms
have a better ability than standard linear controllers to control the pitch, roll, and yaw of an unmanned
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aerial vehicle. For the specific question of gust mitigation, DRL offers three advantages over the control
method described above. First, DRL is designed to optimize a sequence of actions, which is precisely one
of the main difficulties when mitigating a vortex gust compared with transverse perturbations. Second,
DRL is able to learn a controller directly from the UVLMmodel, whereas traditional approaches use low-
order models to derive the controller (e.g., Andreu-Angulo and Babinsky, 2021). Third, ANNs allow for
an efficient approximation of strongly nonlinear control laws as well as linear control functions.

2.2. Partial observation and state estimation

In the perspective of a real-world deployment, the DRL-trained controller must have full access to the
environment state st, yet some quantities of st, namely the circulations and locations of the gust vortices
in the present problem, are not directly measurable with the onboard sensors. This is known as the
problem of partial observability, which may lead to performance loss of the controllers (Gunnarson
et al., 2021, Paris et al., 2021). The DRL community proposes adding a recurrent ANN (Rumelhart
et al., 1986; Elman, 1990; Sherstinsky, 2020) on top of the ANN controller architecture to recover the
performance loss due to partial knowledge of the environment state. Hausknecht and Stone (2015),
Meng et al. (2021), and Yang and Nguyen (2021) show that this method does indeed recover the
performance obtained, compared to when the ANN controller has full access to the environment state.
In the specific context of vortex estimation, several strategies are investigated in the literature to
determine vortex parameters from the onboard measurements (da Silva and Colonius, 2018; Daraka-
nanda et al., 2018; Hou et al., 2019; Fukami et al., 2020; Le Provost and Eldredge, 2021), but these
works focus mostly on configurations with downstream wake vortices, rather than incoming gust
vortices. A first approach is to learn the correspondence between the unknown vortices and the
measurement using end-to-end machine learning techniques (Hou et al., 2019; Fukami et al., 2020).
A second considers the vortex parameters as the internal variables xt of a known transition model
_xt = f xtð Þ, and attempts to estimate them from the sensor measurements yt = h xtð Þ using Kalman filters
(KFs) (da Silva and Colonius, 2018, Darakananda et al., 2018; Le Provost and Eldredge, 2021). Here f
is the UVLM model, and h is the operator computing the pressure on the flat plate. This filtering
problem consists in finding an estimation sequence bx0,…,bxtð Þ of x0,…,xtð Þ so that the associated
measurement sequence by0, ::bytð Þ= h bx0,a0ð Þ,…,h bxt,atð Þð Þ fits the actual sequence of measurements
y0, ::,ytð Þ. In the UVLM framework, f and h are both non-linearly dependant on xt, so the classical
KF derived by Kalman and Bucy (1961) is not well suited for the present application. To overcome this
issue, Julier and Uhlmann (2004) propose the unscented KF that is able to handle the complete non-
linear model. Nevertheless, the computational cost of this approach becomes quickly untractable when
the state dimension increases (da Silva and Colonius, 2018; Le Provost and Eldredge, 2021). The
alternative to make the computation tractable lies in discretizing the internal state space with a set of
particles. KPF (Ristic et al., 2003; Elfring et al., 2021) pairs each particle with its so-called likelihood
probability, i.e., the probability that the particle corresponds to the actual state xt. In the present study, a
particle represent a possible description of the gust, i.e. it is a set Γg,xg,1,…,xg,Nv

� �
, where Γg and xg,i

are espectively a possible circulation and location for the i-th vortex. At each time step, the KPF
computes bxt as the average of the particles. Concurrently, Evensen (1994) assumes that the probability
distribution of xt remains Gaussian at any time, and introduces the ensemble KF (EnKF). Because the
Gaussian probability distribution is defined by its two first moments, the EnKF only computes the
particles’mean and covariance to computebxt. The works aiming at estimating wake vortices conducted
by Le Provost and Eldredge (2021), da Silva and Colonius (2018) and Darakananda et al. (2018) use
EnKF because the number of vortices to estimate is consequent (only the EnKF remains tractable in
such a situation). In our work, we prefer to use a KPF to estimate the gust vortices because it is known to
achieve better estimation accuracy (Pham, 2001; Weerts and El Serafy, 2006; Le Provost and Eldredge,
2021) than EnKF if the number of particles is high enough. It implies that the number of gust vortices to
estimate in our configuration remains small compared to that studied by Le Provost and Eldredge
(2021).
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3. Problem statement

3.1. The gust mitigation problem

We consider a two-dimensional aerodynamic profile, modeled as a flat plate, flying through a vortex gust
consisting ofNv vortices. The flat plate quarter chord is at coordinates 0,0ð Þ around which rotation can be
performed (see Figure 1). Let c, α and _α be respectively the chord, the incidence and the pitch rate of the
flat plate,U∞ the uniform flow velocity parallel to the ex direction and ρ the fluid density. The gust vortices
are modeled according to the so-called Kaufmann model (Kaufmann, 1962; Bhagwat and Leishman,
2002). It aims at adding a viscous core rc in a potential vortex, with rc set to 0:2c here. The Kaufmann
vortices then behave as potential vortices away from the core, while the fluid inside the viscous core
undergoes a solid-like rotation. In this work, the gust consists of Nv,x trains of Nv,z Kaufmann vortices,
with each train being spaced byΔx and each vortex having the same circulation Γg.We denote the position
of the j-th vortex of the i-th train as xg,i,j = xg,i,j,zg,i,j

� �
. Such a vortex induces a velocity perturbation at the

point x= x,zð Þmodeled asVg,i,j =Vg,i,jeθ where eθ is the unit vector normal to x�xg,i,j oriented clockwise,
and Vg,i,j is given as

Vg,i,j xð Þ= Γg

2π
Rg

R2
g + r

2
c

where Rg =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xg,i,j
� �2

+ z� zg,i,j
� �2q

: (1)

We define the so-called radius of influence RI of a vortex as the maximum distance such that the vortex-
induced velocity is, arbitrarily, greater than 0:03U∞. In the following, we denote the discrete convective
time t∗ = tU∞=c, the normalized gust vortex circulation Γ∗

g =Γg= cU∞ð Þ, the normalized spacing between
the vortices Δ∗

x =Δx=RI , the flat plate’s lift L, the lift coefficient CL = L= 1=2ρU2
∞c

� �
, the normalized lift

coefficient C∗
L =CLcU∞=Γg, the normalized incidence α∗ = αcU∞=Γg and its temporal derivative

_α∗ = _αcU∞=Γg.
In this work, we consider six types of vortex gusts, classified in three categories:

• The one-vortex gust, the two-vortices gust, the three-vortices gust, and the five-vortices gust
(Figure 2a–d). We refer to these gusts as 1, 2, 3, and 5, respectively. These gusts are composed of
vortices of circulation Γg. For each of the gusts, the i-th vortex is initialized to the coordinate
xg,i,1 = �RI �0:25c� i�1ð ÞΔx,Δzð Þ where i≤ 5 and Δz is randomly chosen uniformly in
�0:1c,0:1c½ �.

• The 2×3-vortices gust (Figure 2e). This gust is composed of two trains of three vortices of
circulation Γg that are initialized at coordinates xg,i,j = �RI �0:25c� i�1ð ÞΔx, j�1ð Þ0:1c+Δzð Þ
where i≤ 2, j≤ 3 andΔz is randomly chosen uniformly in �0:1c,0:1c½ �.We refer to this gust as 2×3 in
the following.

• The 3×2-vortices gust (Figure 2f). This gust is composed of three trains of two vortices of circulation
Γg that are initialized at coordinates xg,i,j = �RI �0:25c� i�1ð ÞΔx, ± 0:1c+Δzð Þ where i≤ 3, j≤ 2
and Δz is randomly chosen unifomly in �0:1c,0:1c½ �. We refer to this gust as 3×2 in the following.

Figure 1. Geometry of the problem.
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The objective of this paper is to mitigate the lift perturbations induced by each of these gusts
parameterized by Γ∗

g and Δ∗
x . These parameters are chosen uniformly in �0:5,0:5½ � and 1,1:3½ � respect-

ively. RI is evaluated with the maximum value of Γ∗
g, i.e. Γ

∗
g = 0:5, which corresponds to RI=c≈ 3 (Eq. 1).

The control is performed by pitching the flat plate around its quarter chord, at a control frequency 1=dt, so
that the criterion J described as follows is minimal:

J =
X

0< t∗ < T∗
f

∣CL,t∗ �CL,target∣, (2)

where T∗
f is the final convective simulation time, and the desired lift coefficient is here chosen as

CL,target = 0 for the sake of simplicity.

3.2. Environment modeling

The temporal evolution of the gust-induced lift is computed using the UVLM (Katz and Plotkin, 2001). It
is a medium-fidelity tool, valid under the assumption of an incompressible potential flow, which in
particular, involves an infinite Reynolds number. Themethod approximates the overall flow as the sum of
the incident flowU∞ and the induced velocities due to a discrete set of vortex singularities. Among these
vortices, Nv are the gust vortices, N are located along the flat plate’s chord (bound vortices), and Nw are
shed from the Trailing Edge (TE). In the following, we refer to the set of flat plate, wake and gust vortices
as P, W and G respectively. We respectively denote by Γi, xi the circulation and the position of the i-th
profile vortex, and by Γw,j, xw,j the circulation and the position of the j-th wake vortex. The flow induced
by a single gust vortex is modeled as in Eq. 1, whereas the flow induced by the i-th vortex of the profile
(resp. of the wake) Vi xð Þ (resp. Vw,i xð Þ) is obtained using the Biot-Savart law:

Vi xð Þ= � Γi

4π

Z
x�xið Þ× dl
x�xik k3 : (3)

At each time step, we seek the circulation of the profile vortices so that the non-penetration condition is
satisfied: X

i∈P

Vi xð Þ+
X
i∈W

Vw,i xð Þ+
X
i∈G

Vg,i xð Þ +U∞

 !
�n =Vr xð Þ �n, (4)

Figure 2. Sketch of the vortex gusts. Panels (a–d) represent the one-vortex gust, the two-vortices gust, the
three-vortices gust and the five-vortices gust, respectively. Panel (e) represents the 2×3-vortices gust, and

(f) represents the 3×2-vortices gust.
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with x∈P and n is the normal to the flat plate. Vr is the velocity induced by the pitch motion about the
quarter chord: Vr xð Þ= _αey × x�xQC

� �
where xQC = 0,0ð Þ is the coordinate of the quarter chord.

The circulation of the profile vortices Γ= Γið Þi≤N is computed by recasting Eq. 4 into a linear system:

AΓ= � U∞ +
X
j∈W

Vw,j xið Þ+
X
j∈G

Vg,j xið Þ�Vr xið Þ
 !

�n
" #

i∈P

, (5)

with A the so-called influence matrix, whose size is N,Nð Þ, and the components ai,j represent the velocity
induced by the j-th profile vortex on the i-th profile vortex projected along n. Once Γ is computed, the
conservation of the circulation (Kelvin condition) is enforced by shedding a new wake element from the
trailing edge. Its circulation γw is given according to the Kelvin equation:X

i∈P

Γi + γw +
X
j∈W

Γw,j = 0: (6)

Note that the wake (and gust) circulations remain constant during the simulation because the viscous
dissipation of the vortices is neglected.

The transition between time t∗ and time t∗ + dt∗ is performed by advecting the wake vortices and the
gust vortices by the total flow velocity V xð Þ=U∞ +

P
i∈PVi xð Þ+Pi∈WVw,i xð Þ+Pi∈GVg,i xð Þ using a

first-order difference scheme:

c
U∞

∂xw,i∈W

∂t∗
=V xw,i∈Wð Þ, (7)

c
U∞

∂xg,i∈G

∂t∗
=V xg,i∈G

� �
: (8)

Finally, the lift is computed according to Katz and Plotkin (2001) as:

L= ρU∞
X
i∈P

Γi + ρ
Z c

LE

∂

∂t
Γ x, tð Þdxez, (9)

where Γ x, tð Þ= R xLEγ x0, tð Þdx0, γ being the circulation density, and the integration of ∂

∂tΓ x, tð Þ is performed
according to the Simpson’s method.

In the present work, the number of profile vortices isN = 10 and the convection time increment is set to
dt∗ = 0:1. In Appendix A, we assess our UVLM solver on several test cases consisting of (i) an impulsive
pitch motion, (ii) a sinusoidal pitch motion, and (iii) an interaction of the (uncontrolled) airfoil with a
vortex disturbance.

4. Methods

We aim to solve the optimal control problem by finding the control law for the flat plate’s pitch rate _α that
minimizes the optimality criterion J defined in Eq. 2, when the profile flies through the vortex gusts
described in Section 3. In addition, the inputs of the control law are limited to an observation vector ot∗
composed of onboard measurements:

ot∗ = ΓLE,t∗ ,αt∗ , _αt∗ ,U∞ð Þ, (10)

where ΓLE,t∗ refers to the circulation at the Leading Edge (LE) at time t∗. According to Katz and Plotkin
(2001), ΓLE,t∗ is related to a pressure measurement as ΓLE,t∗ = cΔPLE,t∗= ρU∞Nð Þ, where ΔPLE,t∗ is the
pressure difference between the upper and lower surface at the flat plate’s LE.We consider that at time
t∗ = 0, the profile has no wake, no circulation, no initial pitch rate and that the angle of attack is set at 0∘.
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4.1. Resolution of the gust mitigation problem

Wemodel this optimal control problem as a finite horizon deterministic Markov decision problem (MDP)
(Puterman, 2014). At each discrete time t∗, the controller takes a new _αt∗ based on the state of the
environment st∗ , that triggers the transition of the environment state from st∗ to st∗ + dt∗ according to the
UVLMmodel described in Section 3.2. To ensure the problem is a MDP, the Markovian property should
be satisfied. It implies that determining st∗ + dt∗ requires only the knowledge of st∗ and _αt∗ , regardless of
previous values of s and _α. Thus, according to the UVLM model equations (Eqs. 5–8), st∗ must contain:

st∗ = Γw,i,xw,ið Þi∈W , Γg
�

,xg,iÞi∈G ,U∞,αt∗ , _αt∗
� �

: (11)

Note that the airfoil vortices Γið Þi≤N are not part of the environment state, since they are computed from st∗
according to Eq. 5. After each transition, the controller observes a user-defined reward of this transition:
rt∗ st∗ , _αt∗ð Þ= � ∣CL,t∗ �CL,target∣. The resolution of this finite-horizon MDP consists of finding the

decision function _α sð Þ such that the induced trajectory ds0 = s0, _α s0ð Þ,…,sT∗
f
, _α sT∗

f

� �� �
minimizes J.

The MDP described above is solved using DRL (Sutton and Barto, 2018) where the control function,
i.e the flat plate controller, is an artificial neural network (ANN) (Goodfellow et al., 2016). The input of the
ANNcontroller is the state of the environment st∗ and it outputs a pitch rate _αt∗ . TheDRL algorithm chosen
here is the twin delayed deep deterministic policy gradient algorithm (TD3) (Fujimoto et al., 2018). In
parallel to the ANN controller, TD3 learns the value function J s0ð Þ also as an ANN. Here, these ANNs are
fully-connected networks, composed of zero, one, or two hidden layers of 400 neurons each. To optimize
its behavior, the ANN controller undergoes a variety of simulated gusts, that is, the gust parameters Γ∗

g and
Δ∗
x are randomly and uniformly initialized in �0:5,0:5½ � and 0:1,1:6½ �. At each convective time increment

dt∗ = 0:1, the ANN controller takes a new _αt∗, triggering a transition in the MDP. The result of this
transition is gathered by the algorithm as a sample st∗ , _αt∗ ,rt∗ ,st∗ + dt∗ð Þ. Then, based on a random batch
from the samples collected so far, the parameters of bothANNs are optimized using the stochastic gradient
descent algorithm on the TD3 loss functions. The ANN controller being deterministic, a Gaussian
exploration noise of mean zero and constant standard deviation σn is added to the ANN controller output.
In this case, a training run lasts approximately between 8 hours, for the one-vortex gust and 24 hours, for
the five-vortex gust, on two CPUs.

4.2. Estimation of non-observable quantities

The ANN controller trained using TD3 must take as input the environment state vector st∗ (Eq. 11), but
some variables of st∗ , namely Γg,xg,i

� �
i∈G, Γw,i,xw,ið Þi∈W are not part of the available onboard meas-

urements (Eq. 10). To render the problem more realistic, and because the impact of the wake on the
dynamics of the environment can be assumed to be negligible compared to that of the gust, Γw,i,xw,ið Þi∈W

is not estimated in the present work. We estimate Γg,xg,i
� �

i∈G from ot∗ (Eq. 10) using a KPF (Ristic et al.,

2003; Elfring et al., 2021). We denote by bΓg,bxg,i� �
i∈G

the estimate of the circulation and position of the

gust vortices. We also denote bst∗ the environment state estimated by the KPF:

bst∗ = bΓg,bxg,i� �
i∈G

,ΓLE,αt∗ , _αt∗
	 


: (12)

This bst∗ vector features the state variables measured by the onboard measurements as well as the KPF

estimate of the gust vortices. As stated in the introduction, the KPF computes bΓg,bxg,i� �
i∈G

as the internal

variables of a system of first-order differential equations: d bΓg,bxg,i� �
i∈G

=dt = f bΓg,bxg,i� �
i∈G

, _αt∗
� �

, that

corresponds here to the dynamics described by the UVLM (Section 3.2). This system of equations

is paired with a measurement operator h that computes the circulation bΓLE at the LE, if bΓg,bxg,i� �
i∈G
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were the actual vortices: bΓLE = h bΓg,bxg,i� �
i∈G

� �
. According to Eq. 8, the non-viscous flow assumption

and the above wake simplification, f is given as follows:

dbΓg=dt = 0,d bxg,i� �
i∈G=dt =U∞ +

X
j∈P

bVj bxg,i� �
i∈G

� �
+
X
j∈G

bVg,j bxg,i� �
i∈G

� �
, (13)

where bVg,j is the flow stemming from the j-th estimated gust vortex (Eq. 1), and Σj∈P bVj is the flow
stemming from the estimated flat plate vortices. It is computed according to Eq. 3 with the circulation of
the estimated vortices bΓ calculated as in Eq. 5 but neglecting the wake:

AbΓ= � U∞ +
X
j∈G

bVg,j xið Þ�Vr xið Þ
 !

�n
" #

i∈P

: (14)

In particular, the h operator computes bΓLE as the component of bΓ at the LE.

The KPF computes the gust vortex estimation sequence bΓg,bxg,i� �
i∈G

	 

0:t∗

such that the associated

sequence bΓLE,0:t∗ = bΓLE,0,…,bΓLE,t∗

� �
maximizes its so-called likelihood probability,

i.e. ℙ bΓLE,0:t∗ =ΓLE,0:t∗

� �
=Πn

k = 0N bΓLE,kdt∗ ,ΓLE,kdt∗ ,σ
� �

where N X;m,σð Þ is the Gaussian distribution

with mean m and standard deviation σ. We briefly present here how the KPF proceeds to computebΓg,bxg,i� �
i∈G

	 

0:t∗

. The KPF discretizes the gust vortex space of size 2Nv + 1 as a set of Np particles. At

the simulation initialization, the KPF initializes randomly the particles. As the simulation continues, the
KPF (i) propagates each particle through f , (ii) computes the LE circulation associated to each particle,
(iii) assimilates a new measure of ΓLE, (iv) calculates the estimate. For the KPF implementation, we used
the practical implementation provided by Elfring et al. (2021). The only difference is that instead of using
a constant value of σ, we set σ = ~σmax 1e�2, jΓLE,t∗ jð Þ (see Appendix C).

To summarize, we propose to solve the gust mitigation problem described in Section 3 by training an
ANN controller using DRL. During the training, the ANN controller has full access to the gust state
Γg,xi,g
� �

i∈G and to the onboard measurement ot∗ (Eq. 10). However, during deployment, the ANN
controller does not have access to the actual gust state, instead, the ANN controller takes as input the
environment state estimatebst∗ (Eq. 12) performed by a KPF. In the following, we refer to this controller as
the KPF controller. A scheme of the KPF controller is presented in Figure 3.

5. Results

In this section, we take advantage of DRL’s versatility on both control law’s shape and inputs to assess the
performance gap between (i) linear controllers and non-linear controllers and (ii) full knowledge of the
gust vortices and inputs restricted to onboard measurements. Furthermore, we investigate the recover-
ability of the performance loss due to partial observations using online estimations of the gust vortices
performed by a KPF. In this perspective, we present the performance of the linear and non-linear KPF
controllers, described in Section 4, on the gust mitigation problems that consist in mitigating the gust

Figure 3. Scheme of the KPF controller.
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configurations 1, 2, 3, 5 described in Figure 2. As a comparison, we also introduce (i) the Full Observation
ANN controller (FO controller), that is, an idealized controller taking as inputs the actual values of
Γg,xi,g
� �

i∈G instead of the KPF’s gust reconstruction, and (ii) the Partial Observation ANN controller
(PO controller) which stems from training TD3 with inputs limited to the on-board measurements ot∗ .
Note that the latter does not solve an MDP because ot∗ and _αt∗ are not sufficient to compute ot∗ + dt∗ . The
corresponding system is a partially observable MDP, for which there is no guarantee that there is an
optimal control defined only on ot∗ . This section is organized as follows: in Section 5.1, we conduct a
cross-analysis of the controller performance regarding its shape complexity and inputs, then in Section 5.2
we present the gust reconstruction and the performance recovery performed by the KPF controller, in
Section 5.3 we present in detail the control law learned through DRL and their associated lift mitigation.
Finally, in Section 5.4 we extend the discussion to gusts composed of more vortices than estimated by
the KPF.

5.1. Shape of the optimal control function

The aim of this section is to explore the characteristics of the optimal control function for the present gust
mitigation problem. Specifically, we analyze the complexity of the control function necessary for this
problem and examine how the control functions depend on the unobservable gust vortex position and
circulation. Three controller architectures are evaluated, with respectively zero, one, and two hidden
layers, the hidden layer activation function is ReLu, and the output layer activation function is tanh. Note
that the zero hidden layer architecture corresponds to a linear combination of the inputs with the tanh
function applied on top. We designate the FO (resp. PO) controller with i hidden layers as the NLi-FO
controller (resp. NLi-PO controller). The performance of those controllers is evaluated across gust
configurations 1, 2, 3, and 5, as illustrated in Figure 2, with initial gust transverse position set to zero
for the sake of repeatability. Note that separate controllers have been trained to mitigate each of these
vortex gust configurations. To ensure a fair comparison, each controller is trained using the same protocol:
the same number of simulations and the same sequence of initial states. Additionally, the same set of
hyper-parameters, as detailed in Appendix B, is used for each training run. These hyper-parameters are
inspired by the default parameters in the OpenAI Spinning Up DRL library. It is important to note that the
stochastic noise used during ANN optimization can lead to variations in ANN controller performance
(Berger et al., 2024). To mitigate this effect, we present the performance of 15 controllers trained with
different stochastic noises. These controllers are selected based on the lowest J criterion evaluation during
their respective training processes (i.e., the final one is not necessarily chosen).We present in Appendix B,
the learning curves for 1 and under NL0, NL2 control.

To compare different types of controllers, we introduce the mitigation efficiency as:
ηX = JCF � JXð Þ=JCF , where JCF represents the J criterion obtained under control-free conditions, and
JX represents the J criterion obtained using control method X (i.e., NLi-FO, NLi-PO, NLi-KPF). The
closer ηX is to one, the more effectively control method X mitigates the uncontrolled lift disturbance.
Figure 4 shows ηX for the NLi-FO, NLi-PO control methods for each of the 15 controllers across various
gusts. Each controller is assigned a single ηX value, which is the averaged performance over
Δ∗
x = 0:3,0:6,1:0,1:3 and Γ∗

g = ± 0:5, ± 0:4, ± 0:3, ± 0:2, ± 0:1. It is important to note that the NL1-FO,
NL2-FO controllers exhibit catastrophic behavior ηFO � 0ð Þ for case 5withΔ∗

x = 0:3 and Γ
∗
g ≤ 0. Since this

behavior is only observed in a very specific scenario and over a small range of Δ∗
x and Γ∗

g, we do not
include these configurations in the results presented here and leave this issue for future investigation.

Linearity of the optimal command law with respect to ½ot∗ ,ðΓg,xg,iÞi∈G�. Figure 4 shows that the
best linear and non-linear FO controllers achievemitigation efficiency higher than 0:8 for each of the gust,
therefore they are all able to efficientlymitigate the gust-induced lift. For 2, 3, 5 the efficiency gap between
the best FO controllers seems marginal, but for 1 the mitigation efficiency gap between the best NL0-FO
and NL1,NL2-FO controllers is significant, about 10%. Adding complexity to the control function also
significantly reduce the variability of performance between training runs. In fact, the variability between
ηNL2�FO values ( ) is far less significant than for ηNL0�FO values ( ). However, the NL2�FO controller
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does not show any clear advantage over the NL1�FO controller ( ) neither regarding the maximum
mitigation efficiency nor its variability. From those results, we conclude that the optimal control function
is well represented by an ANN with no hidden layers, even if the DRL algorithm is not able to accurately
approximate it at each training run.

Non-linearity of the optimal command law with respect to ot∗ . Figure 4 shows that, unlike theNL0-
FO controller, the NL0-PO controller is not able to mitigate the lift coefficient induced by 1, 2, and 3.
Precisely ηNL0�PO ranges, with high variability, between 0:0 and 0:6. Interestingly, for 5, the NL0-PO
controller still observes strong disparity but also observes a significant improvement of the best controller
(max ηNL0�PO

� �� 0:8, against max ηNL0�PO

� �� 0:6 for 1, 2, 3), which is a mitigation efficiency com-
parable to that of the best FO controllers. Unlike the FO controllers, adding non-linearities in the PO
controller architecture significantly impacts the maximum efficiency reached by the NL0-PO controllers.
One can see that the NL1�PO controller reaches, for 1, 2, 3 maximum mitigation efficiencies signifi-
cantly higher than theNL0-PO controller but with a comparable disparity. The efficiency loss between the
NL1�PO controller and the NL1�FO controller is still remarkable for 1 and 2 but is less clear for 3.
Furthermore, addingmore non-linearities in the PO controller architecture both significantly increases the
maximum efficiency and reduces its variability. In fact, one can see that for 1, 2, 3 the maximum

Figure 4. Controller performances across the gusts. , , , respectively, represent the efficiency of the
NL0-FO controller, the NL1-FO controller, the NL2-FO controller. , , , respectively, represent the
efficiency of the NL0-PO controller, the NL1-PO controller, the NL2-PO controller. The efficiency values
are displayed for 1 in (a), 2 in (b), 3 in (c), and 5 in (d); each value has been obtained as the averaged η for

a single controller and over Γ∗
g = ± 0:5 ± 0:4, ± 0:3, ± 0:2, ± 0:1 and Δ∗

x = 0:3,0:6,1:0,1:3.
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efficiencies of the NL2-PO controllers outperform the maximum efficiencies of the NL1-PO controllers,
and the efficiency variability seems to have also been reduced for 2, 3, 5. In addition, one can see that,
except for 1, the efficiency of theNL2�PO controllers appears similar to that of theNL2�FO controllers,
both in terms of maximum performance and variability. We therefore conclude from these results that the
optimal control function can be (i) well approximated by the NL0�FO controller, or (ii) quite well
approximated by a nonlinear combination of ot∗ .

5.2. Recoverability of the FO controller performances

Now that the performance of the FO and PO controllers has been outlined, we examine the ability of the
KPF controller to reconstruct the vortex gusts and restore the FO controller’s mitigation level.

As explained in Section 4.2, the KPF controller estimates the environment state bst∗ to compute _αt∗ ,
while the controller is kept the same as the FO controller (no retraining). Consequently, to retrieve the FO
controller’s level of performance, it is imperative that the KPF estimates the gust vortices as accurately as
possible. The estimation of the KPF depends on two parameters: the number of particles Np and the
measurement noise ~σ. One can notice that the set of particles at time t∗ is included in the initial set of
particles convected by the flow (Section 4.2). Thus, to accurately estimate the gust vortices, it is
imperative that particles similar to the actual gust vortices (in terms of location and circulation) are
represented in the initial set of particles. Therefore, we aim to initialize, within the limit of 4e6 particles, a
hundred particles similar to the gust vortices, that is, with one-chord uncertainty in the vortex positions
and 10% uncertainty in the vortex circulation. Appendix C shows the probability of a particle to be
initialized as each gust with a one-chord position uncertainty and a 10% circulation uncertainty. These
probabilities vary from 1e�2 for 1 to 1e�4 for 3. For 5 this probability varies from 4e�6 forΔ∗

x = 1:3 to 1e
�9

for Δ∗
x = 0:3. Consequently, we decide to use 4e

4, 4e5, 1e6 and 4e6 particles for 1, 2, 3, and 5, respectively.
Note that for 5, even with the entire particle budget allocated, only a few particles (resp. no particle) are
initialized near the actual vortices for the case Δ∗

x = 1:3 (resp. Δ∗
x = 0:3). The measurement noise ~σ is

set accordingly, which means that when the vortices are well represented in the particle set, we use a
low measurement noise and a large measurement noise otherwise. Precisely ~σ� 0:3 for 1, 2, and 3, and
~σ� 1:0 for 5.

5.2.1. KPF controller’s performance recovery
To visualize theKPF controller performance recovery, Figure 5 shows ηKPF for each of the three controller
architectures depending on the associated ηFO, when the controller undergoes 1, 2, 3, and 5 (Figure 5).
Each controller is represented by a red dot whose x-component represents ηFO and the y-component
represents ηKPF , so the closer the red dot is to the line y= x, the better the KPF controller recovers the
mitigation level of the associated FO controller. In addition, we display the efficiency of each PO
controller as a green dot located along the line y = x. Thus, controllers verifying ηFO ≥ ηPO see the red
dot to the right of the green dot, and controllers verifying ηKPF ≥ ηPO see the red dot above the green dot.
Note that the axis limits are set to 0,1½ �, so controllers with negative η are not displayed.

These results show that adding a KPF to a DRL-trained controller is a good methodology for the
problem of mitigating vortex gusts from onboard measurements. Figure 5 shows that, for 1, 2, 3, some
KPF controllers recover well the efficiency of the associated FO controller. This translates into a
significant improvement in the performance of the best NL0-KPF controllers and the best NL1-KPF
controllers compared with the best NL0-PO controllers and the best NL1-PO controllers. However, no
clear advantage of the best NL2-KPF controllers is found over the best NL2-PO controllers, but this is
mostly because the performance gap between the bestNL2-FO controller and the bestNL2-PO controller is
smaller than for the two other architectures.

Even if the best KPF controllers perform well at recovering the FO controllers’mitigation level for 1,
2, 3, we notice a strong variability in the mitigation efficiency of the KPF controllers. For example, the
NL2-KPF controller recovers well the attenuation level of theNL2-FO controller for 2 and 3, whereasmost
NL1-KPF controllers perform poorly for 1. Furthermore, the variability does not seem to be linked to any
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specific gust type or control architecture. For example, the same NL2-KPF controller has low variability
for 2 (Figure 5f), but high variability for 1 (Figure 5c), and 1 can be attenuated either with low variability
by the NL0-KPF controller, or with high variability by the NL1-KPF controller.

Figure 5. KPF controllers’ performance recovery. ηPO, ηFO, ηKPF are displayed, for 1, 2, 3, 5 under NL0,
NL1, NL2 controllers. represent ηKPF=f ηFOð Þ for each of the 15 controllers and represent ηPO
displayed along the line x= y (—–). Each of the η value given for 1, 2, 3 (resp. 5) are averaged over

Δ∗
x = 0:3,0:6,1:0,1:3 (Δ

∗
x = 0:6,1:0,1:3) and Γ

∗
g = ± 0:1, ± 0:2, ± 0:3, ± 0:4, ± 0:5. Note that the axis’ limits

have been set to 0,1½ � and therefore controllers with η< 0 are not displayed.
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The gust 5must be viewed from a different perspective than the other three gusts. The first difference is
that Δ∗

x plays an important role. Specifically, for the cases Δ∗
x = 0:6,1:0,1:3 (Figure 5j–l), the best KPF

controllers maintain a reasonable mitigation efficiency since the best ηKPF are close to their associated
ηFO. But in the case of Δ

∗
x = 0:3, the performance recovery is significantly reduced compared to the cases

with higher Δ∗
x. Furthermore, their performance is inferior to the best PO controllers. The NL0-KPF

controllers also see their recovery capability reduced compared to the other gusts.

5.2.2. Gust reconstruction
To further analyse the results of the KPF controller, we study the reconstruction of both the circulation at
the LE and the position and circulation of the gusts. We present here the reconstructions performed by the
five NL2-KPF controllers, which are built on top of the five NL2-FO controllers that achieve the lowest J
criterion evaluation. (For 1, we present the reconstruction averaged over only four controllers because the
fifth is not representative.) We restrict our results to the best controllers because, as explained in the next
section, the accuracy of the estimation can vary depending on the controller chosen. We refer to the
position of the i-th gust vortex as xg,i = xg,i,zg,i

� �
and to its KPF estimate as bxg,i = bxg,i,bzg,i� �

.

We display in Figure 6 bΓLE�ΓLE

� �
=max ΓLE,1e�2ð Þ for each of the gusts with Δ∗

x = 0:3,0:6,1:0,1:3

and Γ∗
g = ± 0:1, ± 0:2, ± 0:3, ± 0:4, ± 0:5, where ΓLE (resp. bΓLE) is the circulation at the LE induced by the

actual gust vortices (resp. the estimated gust vortices) under KPF control. Note that the denominator is
clipped under 1e�2, because themeasurement used for the particles update is itself clipped under 1e�2 (see

Section 4.2). For 1, the relative error between bΓLE and ΓLE has three remarkable stages (Figure 6-a): (i) for
t∗ < 3 the error is around 20%, (ii) for 3 < t∗ < 5 the error is characterized by sharp variations of high
amplitudes, and (iii) for t∗ > 5 the error is of low amplitude, that is, lower than 5%. The decrease in
estimation error throughout the simulation is due to the KPF methodology (Section 4.2). Indeed, when

initializing the simulation, the KPF computes bΓLE as the LE circulation induced by a gust vortex estimated
as the mean of a random distribution (since no data is available.) As the simulation continues, the KPF

acquires new observations of ΓLE and refines the estimate of the vortex so that the sequence of bΓLE

corresponds to the sequence of ΓLE. However, we notice high amplitude errors when the gust vortex is
close to the profile (3< t∗ < 5 in Figure 6a). We can advance two reasons to explain this error: (i) when the
vortices are close to the profile, the velocity perturbation induced by the vortices varies sharply with the
position of the vortices, and is therefore more sensitive to estimation errors (Eq. 1), (ii) wake vortices are

no more negligible in ΓLE, while they were neglected in the derivation of bΓLE. The trend observed for 1 is
still valid for the other three gusts. However, a singular case is worth to be mentioned. For 5, the MSE

between bΓLE,0:T∗
f
= cU∞ð Þ and ΓLE,0:T∗

f
= cU∞ð Þ is two orders of magnitude higher than for 1, 2, and 3. This

result correlates with the discussion of the particle budget above: for 5, the number of particles is not high
enough, which reduces the accuracy of the estimate of ΓLE in this case.

As a complementary result, we also present in Figures 7 and 8 the gust reconstruction performed
by the KPF controller. Those reconstructions have been made for Δ∗

x = 0:3,0:6,1:0,1:3 and
Γ∗
g = ± 0:1, ± 0:2, ± 0:3, ± 0:4, ± 0:5. The estimation of the gust circulation Γg and the estimation of the

longitudinal position of the gust vortices xg,i
� �

i≤Nv,x
are shown. Here, the transverse distance of the

vortices from the profile is negligible compared to the longitudinal distance, so we approximate
the positions of the vortices to their longitudinal positions and present the estimate of the transverse
positions in Appendix D. First, the KPF needs time to accurately estimate the gusts. According to
Figures 7 and 8, it estimates accurately 1, 2 and 3 after 3, 5 and 7 units of convective time respectively.
Note that the KPF accurately estimates the gust vortices when they pass by the LE. The reason for this
estimation delay is that, at the initialization of the simulation, the estimated gust vortex is considered to be
themean of a randomdistribution (Section 4.2), and then theKPF assimilates observations ofΓLE to refine
its reconstruction. Thus, prior to the convection times mentioned above, the KPF estimates the gust
vortices far upstream of their actual positions and with an overestimated circulation. Then, the KPF
estimates the vortices with an error on Γg of less than 10% and an error on xg,i of less than 0:5c. Note that
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this accuracy holds for each pair Δ∗
x ,Γ

∗
g. Conversely, the accuracy of the estimate in 5 depends mainly on

Δ∗
x . For the case Δ

∗
x = 1:3 (Figure 8h), the observations made for the other gusts remain valid: each of the

five vortices is accurately estimated when the vortices reach the profile. However, these conclusions are
not valid for the casesΔ∗

x = 0:3,0:6. In particular, forΔ
∗
x = 0:3, the four leading vortices are only accurately

estimated in the last quarter of the simulation and the fifth gust vortex is not estimated (Figure 8f). Note
also that the low performance of the KPF controller for Δ∗

x = 0:3 observed in Section 5.2.1 correlates with
the poor estimation of the gust vortices.

5.2.3. Variability of the KPF controller recovery
Now that the gust reconstruction performed by the Kalman filter has been presented, we further discuss
the ηKPF variability presented in Section 5.2.1. The ηKPF variability on 5 is left out because the particle
budget is not high enough and therefore leads to a worse vortex estimation compared to the other gust. To
explain the variability in KPF controller performance recovery, we investigate two potential sources of
variability: (i) the intrinsic KPF variability depending on Γ∗

g,Δ
∗
x and the range of Γ∗

LE observed by the
controller, and (ii) the variability in the ANN controller optimization. Indeed, it is well known that

Figure 6. Error bΓLE�ΓLE

� �
=ΓLE for 1 (a), 2 (b), 3 (c), and 5 (d). The dashed lines represent the

cases Δ∗
x = 0:3,0:6,1:0,1:3. bΓLE�ΓLE

� �
=max ΓLE,1e�2ð Þ has been evaluated for

Γ∗
g = ± 0:5, ± 0:4, ± 0:3, ± 0:2 ± 0:1. Solid lines represent the average quantities, and the colored areas are
the associated standard deviations. The gray areas report the presence of a gust vortex near the profile.
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different training runs can lead to different local minima of the objective function and thus produce ANN
controllers with significantly different parameters. We also introduce an objective recovery criterion
r = ∣1�ηKPF=ηFO∣, the closer r is to 0, the better theKPF controller recovers the associated ηFO. The gust 1
is the most symptomatic of the variability of r, because the NL0-KPF controllers recover the associated
ηFO well (Figure 5a), while theNL1-KPF controllers show a high variability in r (Figure 5b).We therefore
focus our analysis on this particular gust.

To visualize the potential correlation between KPF controller performance and vortex estimation accuracy,
we plot in Figure 9a ηKPF under the 15NL1�KPF controllers depending on the rMSE betweenΓ∗

g andbΓ∗
g and

x∗g,1 andbx∗g,1.We chose theNL1�KPF controller because it exhibits the highest variations in r (Figure 5b). It is
shown that low ηKPF are associated with bad gust vortex estimates. To complement this result, we show in
Figure 9bηFO under the 15NL1�FO controllers dependingon the rMSE betweenΓ∗

g andbΓ∗
g and xg,1 andbxg,1.

This experiment is performed as before, but instead of using the reconstructed vortex to compute the next
action, we use the actual vortex. It is shown that there is no particular correlation between ηFO under NL1
control and the accuracy of the estimate.We conclude that the variability in r is not due to the variability of the
estimator, since the estimation accuracy is stable for each of the NL1�FO controllers.

We now seek to understand to what extent the variability within the 15 NL0�KPF , NL1�KPF,
NL2�KPF controllers explains the variability of r. In this perspective, we emphasize that the KPF

Figure 7.KPF’s reconstruction of 1 and 2. The gust intensity estimation error bΓg�Γg

� �
=Γg is displayed

for 1 (a) and 2 (b) with Δ∗
x=0.3 ( ), 0.6 ( ), 1.0 ( ), 1.3 ( ). The actual i-th vortex position

δi = xg,i�xg,1
� �

=c and its estimate bδi = bxg,i� xg,1
� �

=c are displayed for 1 (c) and 2 with

Δ∗
x = 0:3 dð Þ,0:6 eð Þ,1:0 fð Þ. δ1, δ2,bδ1,bδ2 are respectively represented by , , , . Each quantity has

been evaluated for the five KPF controllers with Γ∗
g = ± 0:5 ± 0:4, ± 0:3, ± 0:2 ± 0:1. Solid lines represent

the average quantities and the colored areas are the associated standard deviations. The gray areas
indicate the presence of a gust vortex near the profile.
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controllers are asked to mitigate the lift induced by 1 based on gust reconstruction with high error in both
vortex circulation and positionwhen t∗ ≤ 3 (see Figure 7a,c). Therefore, we can assume that the sensitivity
of the KPF controller to the reconstructed input plays a role in the overall performance recovery of the
KPF controller. The notion of KPF controller sensitivity is evaluated by the gradient of the controller π
with respect to its inputs evaluated along the reconstructed gust trajectory∇sπjbs . In Figure 10, we plot the
sum of ∇sπj jbs∣ along a simulation performed under NL0�KPF, NL1�KPF , NL2�KPF control
depending on the recovery r = ∣1�ηKPF=ηFO∣. It shows a strong correlation between the sensitivity of
the controller and its recovery.More precisely, theNL0�KPF controllers have r� 0 and small sensitivity,

Figure 8.KPF’s reconstruction of 3 (left) and 5 (right). The gust intensity estimation error bΓg�Γg

� �
=Γg,

is displayed for 3 (a) and 5 (e) withΔ∗
x=0.3 ( ), 0.6 ( ), 1.0 ( ), 1.3 ( ). The actual i-th vortex position

δi = xg,i�xg,1
� �

=c and its estimate bδi = bxg,i� xg,1
� �

=c are displayed for 3 and 5 with

Δ∗
x = 0:3 b, fð Þ,0:6 c,gð Þ,1:0 dð Þ,1:3 hð Þ. δ1, δ2, δ3, δ4, δ5,bδ1,bδ2,bδ3,bδ4,bδ5 are respectively represented by ,
, , , , , , , , . Each quantity has been evaluated for the five KPF controllers with

Γ∗
g = ± 0:5, ± 0:4, ± 0:3, ± 0:2 ± 0:1. Solid lines represent the average quantities and the colored areas are

the associated standard deviations. The gray areas indicate the presence of a gust vortex near the profile.
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theNL1�KPF (resp.NL2�KPF) controllers with r close to zero have small sensitivity, and, the greater is
r, the greater is the sensitivity. Besides, regardless of the architecture of the KPF controller, r� 0 is
associated with low sensitivity and r� 1 with high sensitivity.

We conclude from these results that the variability in r of the KPF controllers observed for 1 is related
to the variability within the 15 controllers learned by DRL and not to the variability in the KPF’s gust
estimation. Therefore, we can consider in future work to constrain the ANN controllers to learn functions
that are less sensitive to the reconstruction error in order to reduce the variability of r.

5.3. Control law analysis

To complement the performance of the FO, KPF, and PO controllers described in the above sections, we
present here the control laws for each controller and their associated lift mitigation. These are obtained

Figure 9. Impact of ηKPF and ηFO on the estimation accuracy. We display in (a) (resp. b) ηKPF (resp. ηFO)

obtained under NL1-KPF (resp. NL1-FO) control depending on rMSE bΓg,Γg

� �
and rMSE bxg,1,xg� �

. ,

represents rMSE bΓg,Γg

� �
, and rMSE bxg,1,xg,1� �

, respectively. Each value is averaged over

Γ∗
g = ± 0:5, ± 0:4, ± 0:3, ± 0:2, ± 0:1.

Figure 10. Impact of the controller sensitivity on the KPF controllers’ recovery. We display the sensitivity
of a KPF controller π

P
∇sπj jbsi ∣ depending on the recovery r = ∣1�ηKPF=ηFO∣, where bsi is either bΓg orbxg,1. , , represent the NL0�KPF controllers, the NL1�KPF controllers, and the NL2�KPF

controllers, respectively. Each value is averaged over Γ∗
g = ± 0:5, ± 0:4, ± 0:3, ± 0:2, ± 0:1.
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under the control of the five controllers, out of the 15 presented in Sections 5.1 and 5.2, achieving the
minimum J evaluation. (For 1, we present the result averaged over only four controllers because the fifth is
not representative of the other four.) We have shown in Section 5.1 that the best NL0-FO controllers
achieve a mitigation comparable to the NL1, NL2-FO controllers, but with a much larger variability. The
NL0-PO controllers are found to be significantly less efficient than the NL0-FO controllers. However, the
efficiencies of the PO controllers are significantly increased when nonlinear controllers are used, that is,
adding one and two hidden layers to the PO controllers significantly increases their efficiency. In fact
NL2�PO controllers see their best efficiencies to be close to that of the bestNL2�FO controllers but with
a much higher variability (except for 5 where the NL2�PO controllers are of a lower variability).

We present the normalized lift coefficients C∗
L and the normalized control laws _α∗ under each NL0

controller (resp.NL2 controller) in Figures 11 and 12 (resp. Figures 11 and 13). In addition, we display the
quantity Φt∗ = d Jt∗=Jð Þ=dt∗, where Jt∗ =

P
t0 ≤ t∗ ∣CL,t0 ∣, with t0 = ndt∗,n∈ℕ. This derivative highlights

regions where the controller lacks of efficiency, which generates positive values of Jt∗ . Thus, when
t∗ ! Tf , it is expected that lim t∗!Tf Jt∗ = J and that lim t∗!Tf d Jt∗=Jð Þ=dt∗ = 0. Similarly, at early times and
for gust vortices far from the profile, it is expected that lim t∗!0Jt∗ = 0 and lim t∗!0d Jt∗=Jð Þ=dt∗ = 0.

FO control laws. To analyze the behavior of the FO controller in more detail, we show in Figures 11
and 12 (resp. Figures 11 and 13) the NL0-FO control laws (respectively, NL2-FO control laws) and their
associated lift coefficients. This analysis shows that the FO controllers mitigate the lift perturbation well
when the gust vortices are far from the profile (i.e., typically when the gust vortices are more than half a
chord from the edges of the flat plate), but are less effective when the vortices are close to the profile
(i.e., when the gust vortices are within half a chord of the edges of the flat plate). This observation is
reflected in the quantity Φt∗, which increases sharply when the vortices are within half a chord of the
profile edges, but otherwise remains relatively stable. We deepen the analysis of the FO control laws in
Appendix E, where we compare the FO controller with an open-loop controller derived according to the
thin-airfoil theory.

PO control laws. To analyze the behavior of the PO controllers in more detail, we present in
Figures 11 and 12 (respectively, Figures 11 and 13) the NL0-PO control laws (respectively NL2-PO
control laws) and the associated lift coefficients. When the PO controller undergoes 1 or 2 and 3 or 5,
respectively. First, the architecture of the ANN controller has a significant impact on the performance of
the PO controller. In fact, for gusts 1, 2, and 3, the NL0-PO control laws are of much smaller amplitude
than the NL0-FO control laws. As a consequence, the mitigation of the lift coefficient is poor at any t∗.
Conversely, the NL2 controllers approximate the FO control laws more accurately than the NL0
controllers. In fact, for 1 and 2, the NL2-PO controller is close to the NL2-FO control laws, except
when the vortices are close to the airfoil. This is also materialized by a small difference between the lift
coefficients underNL2-FO andNL2-PO control when the vortices are close to the airfoil (see Figure 11).
5 is a gust apart from the other three. Indeed, both the NL0-PO and the NL2-PO controllers produce
control laws similar to that of their FO counterparts. The main difference between theNL0-PO andNL2-
PO controllers is that the lift coefficient deviation under NL0-PO control is much larger than that under
NL2-PO control.

KPF controller. To analyze the behavior of the KPF controller, we present in Figures 11 and 12 the
NL0-KPF control laws and the corresponding lift coefficients. It can be seen that the NL0-KPF controller
recovers well the NL0-FO control laws for 1, 2, and 3. Consequently, the lift coefficients under the NL0-
KPF control appear to be similar to those of the NL0-FO control and of significantly smaller magnitude
than the lift coefficients obtained underNL0-PO control. It is worth noting that for 2 and 3 (see Figures 11c
and 12a), a small shift is observed between the lift coefficients obtained under NL0-KPF and NL0-FO
control, while the corresponding control laws appear to be very similar. However, we observe a shift in the
incidence laws for these cases (see Figures 11d and 12b), which highlights error accumulation, probably
due to small estimation errors.

To complete this analysis, we present in Figures 11 and 13 the NL2-KPF control laws and the
corresponding lift coefficients. The NL2-KPF controller also recovers well the NL2 control laws for
1, 2, and 3. Consequently, the lift coefficients under the NL2 control appear to be similar to those of the
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NL0-FO control and of comparable magnitude to the lift coefficients obtained under the NL2-PO
controller. It can be noted that the NL2-KPF controller recovers well the lift coefficient under NL2-
FO control for 1 and 2 (see Figure 11) with the vortices close to the airfoil, while the NL2-PO controller
is less efficient. We also notice for 1 and 2 a noisy actuation and a noisy lift coefficient for t∗ ≤ 3.
According to Figure 7, this correlates with a high amplitude error in the vortex estimation made for
t∗ ≤ 3. However, we do not believe that this noisy control is due to the quality of the estimator because
(i) the NL0-KPF controller also faces high amplitude estimation errors but does not show this control

Figure 11. The normalized lift coefficients C∗
L (left,—–) and the normalized control laws _α∗ (right,—–)

and α∗ (right, - - -) under the NL0 (resp. NL2)-KPF (red), the NL0 (resp. NL2)-FO (blue) and the NL0 (resp.
NL2)-PO (green) controllers, as well as the control free (gray) for 1 in a,b (resp. e,f) and 2 with

Δ∗
x = 0:6 in c,d resp:g,hð Þ. , on the left column represents the quantity Φ under KPF and FO
control. Solid lines represent the averaged quantities, and colored areas represent the associated

standard deviations. Gray areas on the t∗-axis indicate the presence of a gust vortex near the profile.
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behavior, (ii) it is shown in Appendix F that only oneNL2-KPF controller out of five actually produces a
noisy control law, the other four well approximate the NL2-FO control laws. We therefore conjecture
that this noisy actuation is attributable to the controller parameters.

The performance of the KPF controllers for 5 must be seen apart from the other three. In fact, as
explained in Section 5.2, the number of particles is not high enough to estimate the five vortices for
Δ∗
x = 0:3 but it is enough forΔ

∗
x = 1:3. Consequently, we can see in Figure 13 that theNL2�KPF controller

is not able to mitigate efficiently 5 for Δ∗
x = 0:3 but present better mitigation for Δ∗

x = 1:3. The NL0-KPF

Figure 12. The normalized lift coefficients C∗
L (left,—–) and the normalized control laws _α∗ (right,—–)

and α∗ (right, - - -) under the NL0-KPF (red), the NL0-FO (blue) and theNL0-PO (green) controllers, as
well as the control free (gray) for 3 with Δ∗

x = 0:3 a,bð Þ,1:0 c,dð Þ and 5 with Δ∗
x = 0:3 e, fð Þ,1:0 g,hð Þ.

, on the left column represent the quantityΦ under KPF and FO control. Solid lines represent the
averaged quantities and colored areas represent the associated standard deviations. Gray areas on the

t∗-axis indicate the presence of a gust vortex near the profile.
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controller also suffers from the lack of particles for Δ∗
x = 0:3, however, unlike theNL2�KPF controller, it

only achieves a very noisy mitigation for Δ∗
x = 1:3.

5.4. Generalisation to unseen gusts

In the above sections, we assumed that the KPF controller was exposed to a vortex gust with the same
number of vortices as those estimated by the KPF and used for the ANN controller training. However, in a
real deployment, the KPF controller undergoes gusts whose vortex number is unknown. Therefore, in the

Figure 13. The normalized lift coefficients C∗
L (left,—–) and the normalized control laws _α∗ (right,—–)

and α∗ (right, - - -) under the NL2-KPF (red), the NL2-FO (blue) and the NL2-PO (green) controllers, as
well as the control free (gray) for 3 with Δ∗

x = 0:3 a,bð Þ,1:0 c,dð Þ and 5 with Δ∗
x = 0:3 e, fð Þ,1:0 g,hð Þ.

, on the left column represent the quantityΦ under KPF and FO control. Solid lines represent the
averaged quantities and colored areas represent the associated standard deviations. Gray areas on the

t∗-axis indicate the presence of a gust vortex near the profile.
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following discussion, we examine the gust reconstruction performed by the NL2-KPF controller when it
undergoes a gust composed of more vortices than those used for the controller training and for the gust
vortex estimation. In this section, we evaluate the KPF controller used for the mitigation of 2 on 2×3
(Figure 2e) and 3×2 (Figure 2f). In these cases, the KPF controller estimates only two gust vortices
instead of the six actual vortices. 2×3 (resp. 3×2) is parameterized by Δ∗

x = 0:3,0:6,1:0,1:3
(respectively, Δ∗

x = 0:3,0:6,1:0,1:3) and Γ∗
g = ± 0:5=3, ± 0:4=3, ± 0:3=3, ± 0:2=3, ± 0:1=3 (respectively,

Γ∗
g = ± 0:5=2 ± 0:4=2, ± 0:3=2, ± 0:2=2, ± 0:1=2) so that these gusts induce an uncontrolled lift perturb-

ation similar to 2 (respectively, 3). We define the position of the i-th gust vortex train as
xg,i = xg,i,zg,i

� �
= 1=Nv,zΣ

Nv,z
j = 0xg,i,j,1=Nv,zΣ

Nv,z
j = 0zg,i,j

� �
.

In Figure 14, we present the criteria ηFO,ηPO,ηKPF when the five best NL2 ANN controllers are
subjected to either 2×3 or 3×2. To determine the performance of the FO controller on 2×3 (resp. 3×2), we
evaluate the above criteria using the FO controller trained on 2 (resp. 3) and observing 3Γg,xg,1,xg,2 (resp.
2Γg,xg,1,xg,2,xg,3Þ. For 2×3, the performance of the three ANN controllers is very similar to that obtained
for 2, that is, the five best FO controllers achieve amitigation above 0:80, the five best ηPO are above 0:70,
and the best ηKPF recovers well its associated ηFO, but with significant variability. However, this result is
no longer valid for 3×2. Although the performance of the FO and PO controllers is very similar to that
obtained for 3, that is, the best ηFO and ηPO are comparable and range between 0:80 and 0:90. However, the
KPF controller does not achieve the same level of performance as 3, the five ηKPF are distributed between
0:65 and 0:85, while for 3 the best ηKPF are all close to 0:80.

Here, we investigate the clustering of the gust vortices performed by the KPF controller. We present in
Figure 15 the gust reconstruction performed by the KPF controller for respectively 2×3 and 3×2.
Figure 15-a (resp. Figure 15-e) displays the relative error between bΓg and 3Γg (resp. 2Γg) when the
KPF controller undergoes 2×3 (resp. 3×2). In addition, Figure 15b–d (resp. Figure 15f–h) compares,
respectively, the position of the gust trains with the estimated vortices for Δ∗

x = 0:3,0:6,1:0. Figure 15
shows that the KPF controller clusters 2×3 into two vortices of circulation 3Γg and localized in xg,1,xg,2.
Furthermore, the clustering is made with the same accuracy as the estimation of 2 (Figure 7 in
Section 5.2.2), precisely: the KPF controller accurately captures the leading vortex train when it reaches

Figure 14.KPF’s controller performance recovery. ηPO, ηFO, ηKPF are displayed, for 2×3, 3×2. (a) shows
the performance of the controllers for 2×3, stands for ηKPF=f ηFOð Þ and represent ηPO displayed along
the line x= y (—–). (b) shows the performance of the controllers for 3×2, , , represent ηKPF ,ηFO,ηPO
respectively. Note that in (b), ηFO and ηKPF do not represent the same ANN controller. Each of the η values

given for 2×3 (respectively, 3×2) is averaged over Δ∗
x = 0:3,0:6,1:0,1:3 (Δ∗

x = 0:3,0:6,1:0,1:3) and
Γ∗
g = ± 0:1=3, ± 0:2=3, ± 0:3=3, ± 0:4=3, ± 0:5=3 (respectively,

Γ∗
g = ± 0:1=2, ± 0:2=2, ± 0:3=2, ± 0:4=2, ± 0:5=2).
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the LE t∗ = 3ð Þ. The second vortex train is accurately captured when the simulation reaches 4 to 6 unit of
convective time. bΓg is largely overestimated for t∗ ≤ 5, but reaches 3Γg afterwards. However, this
conclusion is not valid for 3×2: the clustering of the gust vortices is not clear for this case. For each of
the Δ∗

x , the KPF controller accurately estimates none of the actual vortex trains. Furthermore, no clear
pattern emerges from the estimation of Γg, except that bΓg reaches 2Γg for none of the Δ

∗
x .

These results leave open questions for future work. With a view to real-world deployment, it is
imperative that the KPF controller learns an effective mitigation strategy without prior knowledge of the
number of incoming gust vortices. This could be achieved by modifying the architecture of the KPF

Figure 15. KPF’s reconstruction of 2×3 and 3×2. The gust intensity estimation error is displayed for 2×3
(a) and 3×2 (e) with Δ∗

x=0.3 ( ), 0.6 ( ), 1.0 ( ), 1.3 ( ). The actual i-th vortex train position

δi = xg,i� xg,1
� �

=c and its estimate bδi = bxg,i�xg,1
� �

=c are displayed for 2×3 with

Δ∗
x = 0:3 bð Þ,0:6 cð Þ,1:0 dð Þ and 3×2 with Δ∗

x = 0:3 fð Þ,0:6 gð Þ, 1:0 hð Þ. δ1, δ2, δ3, bδ1, bδ2, are respectively
represented by , , , , . Each quantity has been evaluated for the five KPF controllers with
Γ∗
g = ± 0:5=Nv,z, ± 0:4=Nv,z, ± 0:3=Nv,z, ± 0:2=Nv,z, ± 0:1=Nv,z. Solid lines represent the average quan-

tities and the colored areas are the associated standard deviations. The gray areas indicate the presence
of a gust vortex near the profile.
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controller: it could seek to estimate the number of vortices along with the positions and circulations of the
gust vortices. This approach would also involve modifying the controller’s learning procedure, since it
would then have to mitigate gusts whose number of vortices is a priori unknown.

6. Conclusion

This paper provides a closed-loop control method for the vortex gust mitigation problem. It consists in
controlling the pitch rate _α of a two-dimensional flat plate so that the criterion J =

P
t∣CL,t∣ is minimized.

DRL is a promising approach to this problem because (i) it models the controller as an artificial neural
network, which allows the optimal controller to be searched in a space of functions of varying complexity,
and (ii) it derives the optimal controller directly from the aerodynamic model without any prior simplifi-
cations. The DRL theory states that the DRL-trained controller must have access to the positions and
circulations of the gust vortices to be optimal, but these are not known a priori in a real deployment. To
circumvent this issue, we propose to estimate online the gust vortices using data available from the onboard
sensors using a KPF. To discuss the advantages and limitations of this approach, we consider three
controllers that have all been trained through DRL: (i) the KPF controller that is trained with full knowledge
of the gust vortices but is deployed with only knowledge of the gust reconstruction performed by the KPF,
(ii) the FO controller that is trained and deployed with full knowledge of the gust vortices and, (iii) the PO
controller that is trained and deployed with knowledge limited to the onboard measurements. For each
controller, three control laws modeled by zero, one, and two hidden layers are investigated. All controllers
are evaluated on gusts composed of one to five vortices. The performance of each controller is evaluated
according to the metric ηX = JCF � JXð Þ=JCF , where JX is the criterion J obtained with controller X that is,
KPF, FO or PO and JCF is the criterion J obtained in control-free conditions. Our results show that for the
gusts consisting of one to three vortices, the maximum ηFO reached by the FO controller is not sensitive to
the control law architecture. However, the deeper is the controller, the lower is the variability. Themaximum
ηPO reached by the PO controllers increases significantly as the controller depth increases so that the
maximum efficiency of the shallowest PO controller is significantly below that of the FO controllers, but the
efficiency of the deepest PO controller is comparable to that of the deepest FO controller. The performance
loss observed between the PO and FO controllers is partially recovered by the KPF controllers, that is, the
best KPF controllers recover well the performance of their FO counterparts.

However, three limitations arise with the use of theKPF controller. The first is that, for a gust composed
of five vortices, the particle requirement (i.e., the computational cost) becomes very high, so the
reconstruction of the gust is poorer. Consequently, the performance of the KPF controller becomes
poorer to that of the PO controllers. The second is that the KPF controller is trained and deployed with
prior knowledge of the number of incoming gust vortices, but this information is inaccessible in a real-
world deployment. To examine the impact of this limitation in more detail, we deploy the KPF controller
on gusts consisting of more vortices than those estimated by the KPF. Our results show that the KPF
controller is able to reconstruct the incoming gust if the number of gust trains matches the number of trains
in the estimated gust. However, it performs poorly when the number of estimated gust trains is different
from the actual one. Finally, the efficiency of the KPF controller is highly dependent on the parameters of
the neural network.

Our work leaves open questions that could be addressed in future work. Indeed, in the perspective of
real-world deployment, it is mandatory that the KPF controller operates (i) without prior knowledge of the
number of incoming gust vortices and (ii) in such a way that the computational cost of the KPF is adapted
to the on-board computational resources. In addition, future work could increase the fidelity of the
aerodynamic model by modeling the boundary layers and their interaction with the gust, and then
developing an optimal controller, taking advantage of the DRL’s ability to learn optimal control laws
without prior model simplifications.
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Appendix

A. UVLM validation
This section presents the test cases studied for the assessment of our UVLMmodel. We present here three test cases: (i) comparison
with Wagner’s model on an impulsive pitch motion, (ii) comparison with Theodorsen’s model on a sinusoidal pitching motion, and
(iii) comparison of the uncontrolled lift disturbance induced by 1modeled according to the UVLMmodel and numerical simulation
of the (inviscid) Euler’s equations using a finite volume method.
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Impulsive start
Wecompute the temporal lift evolution of a flat plate subjected to anAoA step. At t∗ = 0�, theAoA is 0∘ and at t∗ = 0+ the AoA is

5∘. In Figure A1, we display the temporal evolution of CL=CL,t =∞ according to Wagner’s theory (—) (Wagner, 1925), the lumped
vortex method (•) implemented by Katz and Plotkin (2001) and our implementation of the lumped vortex method (—). Note that the
lumped vortexmethod is as the UVLM solver but withN = 1, dt∗ = 0:25 and the lift is computed according to the unsteady Joukovski
formula:L = ρU∞

P
i∈PΓi + ρc ∂

∂t

P
i∈PΓi

� �
ez. It results a good agreement betweenWagner’s theory and the lumped-vortex method

implementations.

Sinusoidal pitch motion

This test case assumes that the flat plate is undergoing a sinusoidal pitch motion defined as α tð Þ= 5∘ sin ωtð Þ, where ω is the
pulsation of the oscillation. In the present work, the maximum _α∗ value chosen by the controllers is ω∗

max =ωmaxc=U∞ � 0:13. We
assess our UVLM model over a sinusoidal pitch motion described as α tð Þ = 5∘ sin ωtð Þ with ω=ωmax andω = 2ωmax.

In Figure A2 we compare the lift coefficient of the oscillating profile predicted by our UVLM solver with that predicted by
Theodorsen’s model (Theodorsen, 1935). Theodorsen’s theory states that in the case of an oscillating profile, the added-mass effect
and the wake development cause changes in both amplitude and phase of the lift coefficient compared to that predicted by the thin
airfoil theory CL = 2πα. Figure A2 shows a very good agreement between Theodorsen’s model and the lift predicted by our UVLM
solver forω=ωmax andω= 2ωmax, that is, both the delay and the amplitude modulation are captured by the UVLM solver. Note that

Figure A1. Impulsive start modeled according to Wagner’s theory , the Katz and Plotkin’s (2001)
implementation of the lumped vortex method (•) and our lumped vortex method implementation ( ).

Figure A2. Lift coefficient of an oscillating flat plate. The pitch motion is defined as α tð Þ= 5∘ sin ωtð Þwith
ω=ωmax (left) and ω= 2ωmax (right). The lift coefficient is computed according to our UVLM solver ( )

with N = 10 and dt∗ = 0:025 and compared with Theodorsen’s model ( ).
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this result was obtainedwith a time step dt∗ = 0:025, which is four times smaller than that used for our training runs, butwe are unable
to train our controllers with this precision because of the computational cost (for example, training would take 4 days for 5).

Euler comparison

This test case compares the uncontrolled lift coefficient obtained when the flat plate undergoes 1 under UVLM modeling with
that obtained using Euler’s equations.

The Euler simulation is performed using the computational fluid dynamics software StarCCM+. In both models, we consider a
gust vortex with a viscous core rc = 0:2c and Γ∗

g = 0:5. The main differences are that (i) in the Euler modeling, the airfoil is a NACA
0012 profile instead of a flat plate, and (ii) in the UVLM modeling, the gust is modeled as a vortex whose position is defined as a
point convected by the flow, whereas in the Euler modeling the gust is modeled as a continuous velocity distribution initialized as
Eq. 1 and convected by the flow.

Figure A3 shows the lift coefficients C∗
L obtained with each of the methods as a function of the distance between the vortex xvð Þ

and the leading edge of the profile xLEð Þ. It is shown that the two models agree very well as long as the vortex is upstream of the
profile, but they differ when the vortex passes the leading edge. We can argue that this difference is due to the fact that the vortex in
UVLM is a vortex singularity, whereas the vortex in Euler is a continuous set of velocities. Consequently, as it passes close to the
profile, the Euler vortex is split by the surface, whereas the UVLM vortex remains a single vortex singularity.

B. Hyperparameters and learning curves
Table B1 shows the hyperparameters used to train the controllers. Note that since the UVLMmodel is deterministic, we chose σn = 0
(Section 4.1).

We also show in Figure B1 the J criterion of the 15NL0 andNL2-FO controllers and the 15NL0 andNL2-PO controllers along the
training for 1. Each of the J values is averaged from ten simulations withΓ∗

g ,Δ
∗
x randomly chosen. Note that positive values are due to

the calculation of the standard deviation and do not actually occur in the training. One can see that the training is noisy for the NL0-
FO controller, but smoother for theNL2-FO controller. Interestingly, theNL2-FO controller improves almost continuously along the
training, while the NL2-PO controller achieves its maximum mitigation efficiency during the first few episodes of the training, but
shows a poor J criterion afterward.

Figure A3. Comparison of the uncontrolled lift coefficient under UVLM and Euler modeling. shows
the lift coefficient obtained by our UVLM solver withN = 40 and dt∗ = 0:01. , - - -, represent the lift
coefficients obtained with the Euler equations with the mesh cell size and the time step dt∗ equal to

rc=10,1=80ð Þ, rc=20,1=160ð Þ, rc=40,1=320ð Þ, respectively.
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C. KPF initializations
We discuss here the initialization of the KPF particles. To mitigate 1, 2, 3, and 5, we assume that we know a priori the number of
vortices Nv but we know neither Γ∗

g nor Δ
∗
x. Thus, to initialize a particle, we randomly choose a value of Γ∗

g uniformly in �0:5,0:5½ �,
we choose randomly Nv longitudinal positions so that xNv ,1 ≤…≤ x1,1 and we choose randomly Nv transverse positions, uniformly
in �0:1c,0:1c½ �. In Table C1, we compute the probability for a particle to be initialized as the real gust vortices with an uncertainty on
the position of one chord and a 10% uncertainty on the circulation. Table C1 shows that the probability for a particle to be initialized

Table B1. Hyper-parameters

Hidden layer actor | 400½ � | 400,400½ �
Corresponding hidden layer critic 400,400½ � | 400½ � | 400,400½ �
Optimizer Adam
Learning rate critic 1e�3

Learning rate actor 1e�3

σn 0.0
Critic loss MSE
γ 0.99
τ 0.005
Batch size 64
Max episode 6000
Hidden layer activation function/ Output layer activation function ReLu/ tanh

Figure B1. Learning curves for the mitigation of 1 under NL2 control (a) and NL0 control(b). The FO
controllers are displayed in —–, and the PO controllers are displayed in , solid lines represent the

average quantities and the colored areas are the associated standard deviations.

Table C1. Probability for a particle to be initialized as 1, 2, 3, or 5

Δx=RI 0:3 0:6 1:0 1:3
Nv,x,Nv,z = 1,1ð Þ 1e�2

Nv,x,Nv,z = 2,1ð Þ 2e�3 3e�3 4e�3 5e�3

Nv,x,Nv,z = 3,1ð Þ 5e�5 2e�4 3e�4 6e�4

Nv,x,Nv,z = 5,1ð Þ 8e�10 7e�8 9e�7 4e�6
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as the gust vortices decreases very sharply asNv increases and this probability is larger for highΔ∗
x than for lowΔ∗

x. This is due to our
constraint on the longitudinal positions, xi,1 is s.t. xNv ,1 ≤…≤ xi,1 ≤…≤ x1,1.

We also examine the choice of measurement noise σ = ~σmax 1e�2, jΓLE,t∗ jð Þ. First, we observe experimentally that ΓLE varies
from 1e�3 to 1e�1. Consequently, a constant value of σ is not appropriate here, because if σ� 1e�1, theKPF is unable to discriminate
particles whenΓLE � 1e�2 and, conversely, if σ� 1e�2, theKPF over-constrains the particles when ΓLE � 0:1.We therefore propose
an adaptive measurement noise to take account of this wide range of ΓLE values.

D. Estimation of the gust vortex transverse positions
Wediscuss here the reconstruction of zg performed by the KPF for 2 and 3. In Figure D1, we present the KPF reconstruction of zg for
2 (Figure D1a) and for 3 (Figure D1b) forΔ∗

x = 0:3,0:6,1:0,1:3.We compare zg,1 ( ), zg,2 ( ), zg,3 ( ) with the KPF estimatesbzg,1
( ),bzg,2 ( ),bzg,3 ( ). It results that the estimation of the vortex transverse positions is a more challenging task than the estimation
of the vortex longitudinal positions. As amatter of fact, Figure D1 shows that for both 2 and 3, the KPF is not able to accurately track
the transverse positions. It is important to note that the transverse distances between the gust vortices and the LE are, most of the
time, negligible compared to the longitudinal distances. We can therefore assume that the KPF is not able to estimate them because
they have a limited impact on ΓLE compared to their longitudinal counterpart (Eq. 5).

Figure D1. Reconstruction of zg performed by the KPF controller.
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E. Comparison with thin airfoil theory based control
In the limit of thin airfoil theory, the lift coefficient in the control free configuration, CL,free, can be viewed as the lift response to a
perturbation in AoA αt∗ , such that CL,free = 2παt∗ . In the most simple quasi-steady framework, CL,free can thus be mitigated by
applying a control law that opposesCL,free, i.e. αt∗ = �CL,free= 2πð Þ. This rough approximation assumes that (i) the pitchmotion does
not affect the trajectories and the circulations of the gust andwake vortices and, (ii) neglects the unsteady effects. In the following, we
refer to the open-loop (OL) controller defined as αt∗ = �CL,free=2π as the OL controller. Note that this controller is only introduced
for analysis purposes since CL,free is not known a priori. To compare the difference between the NL2-FO controller and the OL
controller, we display in Figure E1 the FO control laws, the OL control laws and their associated lift coefficients when the controllers
undergo 1with Γ∗

g = ± 0:5, ± 0:1. Figure E1 shows that for t∗ ≤ 3, there is a good agreement between the two control laws. However,
for higher t∗, the FO controller differs from the OL controller. This differences involve a poor mitigation of the OL controller and a
good mitigation of the FO controller. These observations must be seen in the context of the assumptions made to derive the OL
controller.We assume that the pitchmotion does not induce a high amplitude _α but under OL control, this assumption is not valid for
3≤ t∗ ≤ 4. Furthermore, we assume that there is no coupling between the pitching motion and the wake vortices, however, in the
ideal case where the FO controller maintains the lift coefficient atCL,target , the wake vortices have zero circulation. This result shows
the great capability of DRL to build efficient controllers without the need of assumptions or simplifications of the physics, as done
for the OL controller.

Figure E1. The normalized lift coefficients C∗
L (left) and the normalized control laws _α

∗ (right) under the
OL controller - - -, the FO controller , control free - - for 1 with Γ∗

g = ± 0:5 a,bð Þ, ± 0:1 c,dð Þ. Solid lines
represent the averaged quantities and colored areas represent the associated standard deviations, and the

gray area on the t∗-axis indicates the presence of the gust vortex on the profile.
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F. All control laws for 2
In Section 5.3, we observe that the KPF controller exhibits noisy actuation for gust f(2). To better understand the reasons behind this
behavior, Figure F1 displays the five KPF and FO controllers used for the visualizations in Section 5.3. The results show that only
one out of the five controllers demonstrates this noisy actuation behavior.We therefore conclude that the noisy actuation is caused by
variability within the control functions.

Cite this article: Martin B, Jardin T, Rachelson E and Bauerheim M (2024). Vortex gust mitigation from onboard measurements
using deep reinforcement learning. Data-Centric Engineering, 5, e47. doi:10.1017/dce.2024.38

Figure F1. All control laws used for Figure 11-g. , respectively represent _α∗ under NL2-FO control
and NL2-KPF control, when the controllers undergo 2 with Δ∗

x = 0:6. The results have been computed for
Γ∗
g = ± 0:5, ± 0:4, ± 0:3, ± 0:2, ± 0:1. Solid lines represent the average control laws, and the colored areas

are the associated standard deviations.
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