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Multiple feature regularized kernel for
hyperspectral imagery classification
xu yan,1 peng jiangtao2 and du qian1

In this paper, a multiple feature regularized kernel is proposed for hyperspectral imagery classification. To exploit the label infor-
mation, a regularized kernel is used to refine the original kernel in the Support Vector Machine classifier. Furthermore, since
spatial features have been widely investigated for hyperspectral imagery classification, different types of spatial features includ-
ing spectral feature, local feature (i.e. local binary pattern), global feature (i.e. Gabor feature), and shape feature (i.e. extended
multiattribute profiles) are included to provide distinguish discriminative information. Finally, a majority voting-based ensem-
ble approach, which combines different types of features, is adopted to further increase the classification performance. Combining
different discriminative feature information can improve the classification performance since one type of feature may result
in poor performance, especially when the number of training samples is limited. Experimental results demonstrated that the
proposed approach has superior performance compared with the state-of-the-art classifiers.
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I . I NTRODUCT ION

Hyperspectral images (HSIs) contain hundreds of contigu-
ous spectral bands ranging from visible to infrared bands,
which can provide rich spectral information [1]. Com-
pared with multispectral images with only a few spectral
bands, they offer an advantage in terms of classification and
detection [2]. Due to the rich spectral bands, HSIs have a
variety of applications including environmental pollution
control, agriculture precision farming, mineral exploration,
etc [3–6]. Accurate classification is very important to those
applications. The key for accurate classification is to learn
an accurate similarity metric between samples. The tradi-
tional pixel-wise algorithms assume the samples from the
same class have similar spectral characteristics and sim-
ply compare the similarity between pixels. However, for
a complicate HSI scene, different materials might have a
similar spectral signature, and pixels from the same class
usually have various spectral signature. Thus, it is quite dif-
ficult to distinguish them by simply comparing the spectral
distance. Additionally, the limited number of training sam-
ples and the high dimensionality, also known as the Hug-
hes Phenomenon, prohibit the performance of HSI
classification [7].
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To overcome the above-mentioned problems, kernel-
based approaches have been applied for HSI classification
and shown excellent performance [8–10]. Kernel meth-
ods project the original samples into a high-dimensional
space, where the samples are more separable. The com-
monly used kernels include Gaussian radial basis function
(RBF), Polynomial, and linear kernels [11]. In [12], kernel-
based Support Vector Machine (SVM) is proposed for HSI
classification. A region-kernel-based SVM [13], which mea-
sures the region-to-region similarity, is able to capture the
spatial–spectral similarity and has shown improved perfor-
mance. Other variants such as generalized composite ker-
nel [14] and sample-cluster composite kernels [15] are also
introduced for spectral–spatial HSI classification. In [16], a
band-weighted SVM, which generates a band weight vector
to regularize the original SVM, is presented for HSI classi-
fication. Kernel collaborative representation with Tikhonov
regularization is presented for HSI classification in [17, 18].
Although kernel methods have achieved excellent per-

formance for HSI classification, the kernels are constructed
using the distance between the training samples only while
ignoring the available label information. The label informa-
tion among the training samples can be used to help refine
the original kernel. In [19–21], the ideal kernel method is
presented which incorporated the label information into
the original kernel and has shown better performance com-
pared to using the original kernel only. An ideal regular-
ized composite kernel (IRCK) framework is applied for HSI
classification in [22], which combines spatial information,
spectral information, and label information simultaneously.
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Multiple Kernel Learning (MKL) [23], which combines
multiple kernels to improve the performance, has been
applied for HSI. A composite kernel approach, which bal-
ances the spatial and spectral information, is presented
in [24], and four types of different composite kernels are
proposed including summation kernel, weighted summa-
tion kernel, stacked kernel, and cross-information kernel.
In [25], a two-step discriminative MKL (DMKL), which
can increase the between-class scatter while decrease the
within-class scatter in the reproduce kernel Hilbert space,
is presented for HSI classification.
The abovementioned IRCK method incorporates the

spatial information in terms of the spatial mean pixel of
the neighborhood; however, it does not consider other
different types of spatial information, which may provide
complementary discriminative information. Different types
of spatial features have been widely investigated for HSI
classification. For instance, in [26], a Gabor-filtering-based
nearest regularized subspace is presented for HSI classifica-
tion. In [27], local binary pattern is applied to extract local
image features such as edges, corners, and spots, and then
extreme learning machine is applied to achieve excellent
performance for HSI classification. In [28], extended multi-
attribute profiles feature (EMAP) is presented for the anal-
ysis of hyperspectral imagery, which can efficiently extract
the spatial information for classification purposes.
Furthermore, for a complicated HSI scene, one type of

feature may not guarantee good performance, especially
when the number of training samples is small. Different
types of features can be used to providemore discriminative
information, and multiple feature learning can be a good
solution to solve the above limitation. For instance, a multi-
ple feature learning framework, which integrates both linear
and non-linear features, is introduced for HSI classification
[29]. In [30], a non-linear joint collaborative representation
model with multiple feature learning is presented to solve
the small sample set problem in HSI. An efficient patch
alignment framework, which combines multiple features, is
proposed in [31].
Inspired by the idea of multiple feature learning, in this

paper, we propose to combine different types of features
for the IR kernel. Four types of features including spectral
feature, Gabor feature, EMAP feature, and LBP feature are
investigated due to their potential for HSI classifications.
Moreover, a majority voting-based ensemble approach is
adopted to make more robust classifications. The rest of the
paper is organized as follows. The related work on regular-
ized kernel is introduced in Section II. Section III shows
the proposed framework. In Section IV, the experimental
results and analysis are provided. Finally, Section V draws
the conclusion.

I I . REGULAR IZED KERNEL

A) Standard kernel
Suppose we have a set of HSI training samples ς =
{(x1, y1), (x2, y2), ..., (xN , yN)} with xi ∈ �d, where d

denotes the dimensionality of a sample. The kernel mea-
sures the similarity between two samples. The most com-
monly used kernels are linear kernel, polynomial kernel,
and RFB kernel. We choose the RBF kernel in our experi-
ment due to its wide application for HSI classification, and
the RBF kernel is calculated as

K ij = K(xi, xj) = exp

(
−
∥∥xi − xj

∥∥2
2δ2

)
, (1)

where δ is the band width of the RBF kernel.

B) Ideal kernel
The ideal kernel is defined as [20]

Tij=T(xi, xj) =
{
1, yi = yj
0, yi �= yj

. (2)

The ideal kernel is inspired by the idea that if two samples
should be considered as “similar” if and only they belong
to the same class. The ideal kernel has included the label
information.

C) Ideal regularized kernel
The similarity measurement between samples in the stan-
dard kernel does not consider the labeled information, and
a more desirable kernel can be learned by incorporating
the labeled information. In [21], an ideal regularization
(IR) learning framework is proposed, which can efficiently
incorporate the label information into the standard kernel.
The following equation learns a more desirable matrix K
given the initial kernel K0 [21]

min
K � 0

(D(K ,K0) + γ�(K)), (3)

where D represents the von Neumann divergence between
K and K0, � is a regularization term, and γ is the regu-
larization parameter. K � 0 indicates that K is a symmetric
positive semidefinite matrix. The von Neumann divergence
is expressed as

D(K ,K0) = tr(K logK − K logK0 − K + K0), (4)

where tr(•) represents the trace of a matrix and �(K) is
defined as�(K) = −tr(KT). The functionality of this term
is to incorporate the label information into the standard
kernel. Therefore, the final objective function is:

min
K � 0

tr(K logK − K logK0 − K + K0 − γ tr(KT)). (5)

Taking the derivative regarding K and setting the
equation to zero, the following equation for K is derived as

K = exp(logK0 + γT) = K0 ∗ exp(γT), (6)

where * represents the element-wise dot product between
two matrices. Using the Taylor expansion of equation (6),
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it can be also expressed as:

K = K0 + γK0 ∗ T + γ 2

2! K0 ∗ T2 + .... (7)

The above equation indicates that the IR kernel K can be
considered as a linear combination of the standard kernel
and the ideal kernels.
The out-of-sample extension is investigated for sam-

ples that are not encountered before. Denote S = K0−1(K +
K0)K0

−1, then the kernel between the two new points s and
t can be calculated as

K(s, t) = −K0(s, t) +
N∑

i,j=1
S(i, j)K0(s, xi)K0(xj, t). (8)

D) Majority voting-based ensemble approach
We propose to use a majority voting-based ensemble
approach to combine the output of SVM using the IR ker-
nel with different types of features. Suppose we are usingm
features and fi(x) represents the output using the i-th
feature, the final output is calculated as

ỹ = mode{f1(x), f2(x), ..., fm(x)}. (9)

I I I . PROPOSED FRAMEWORK

In this paper, a majority voting-based multi-feature IR
kernel method which can efficiently deal with the small
training sample problem is proposed. Figure 1 shows the
proposed framework. First, principal component analy-
sis [32] is conducted on the original dataset to extract
the principal components of the original dataset. Dif-
ferent types of features including EMAP features, Gabor
features, and LBP features are then extracted from the
principle components. Classification is conducted on
each type of feature with the IR kernel-based SVM.
Finally, a majority voting-based ensemble approach is
adopted to combine the results of the classification
output.

Fig. 1. Proposed framework.

I V . EXPER IMENTAL RESULTS

A) Experimental dataset
Three popular HSI datasets are used in our experiments.

(1) Indian Pines: This dataset is collected by the Airborne
Visible and Infrared Imaging Spectrometer (AVIRIS)
sensor over the Indian Pines site in June 1992. The spa-
tial size is 145× 145 with the spatial resolution of 20m/
pixel. The 200 spectral bands are ranging from 400 to
2500 nm. After bad bands removal, 200 spectral bands
remain. There are a total of 16 classes in the scene. The
false color infrared of bands 50, 27, and 17 is shown in
Fig. 2(a), and the groundtruth is shown in Fig. 2(b).

(2) University of Pavia: The second dataset is acquired by the
ReflectiveOptics System Imaging Spectrometer (ROSIS)
sensor, and the scene covers the University of Pavia with
115 spectral bands ranging from 0.43 to 0.86 μm. The
spatial size is 610× 340 with the spatial resolution of
1.3m/pixel including nine classes. After removing the
noisy band, 103 bands remain. Figures 3(a) and 3(b) show
the color infrared composite of bands 60, 30, 2 and the
groundtruth, respectively.

(3) Salinas: The third dataset is collected by the AVISIS sen-
sor over Salinas Valley, California. The spatial size is
512× 217 with the spatial resolution of 3.7m/pixel. After
removing the 20 water absorption bands, 200 bands
remain. The color infrared composite of bands 47, 27,
13 and the groundtruth is shown in Fig. 4(a), and the
groundtruth of this dataset is shown in Fig. 4(b). There
are a total of 16 classes.

Fig. 2. Indian pines dataset. (a) Color-infrared-composite of bands 50, 27, and
17. (b) Groundtruth.

Fig. 3. University of Pavia dataset. (a) Color-infrared-composite of bands 60,
30, and 2. (b) Groundtruth.
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Fig. 4. Salinas dataset. (a) Color-infrared-composite of bands 47, 27, and 13.
(b) Groundtruth.

B) Experimental setup
The number of training samples per class is denoted as N.
In the experiment, N is chosen to be {3, 5, 7, . . . , 13}, and
for those classes less than N samples, half of the total sam-
ples are chosen for training. The rest of the labeled samples
are chosen as the testing set. Gaussian kernel is investi-
gated, and the LIBSVM [33] is used to implement SVM.
The number of PCs for the Gabor features, EMAP fea-
tures, and LBP features are set to 10, 4, and 4, respectively
[26–28]. The EMAP features are generated according to
[28], and the parameters for LBP are set according to [27].
Each experiment is repeated 50 times to avoid bias.

C) Results
Tables 1–3 list the overall accuracies (OAs), average accura-
cies (AAs) and the κ coefficient of Indian Pines, University
of Pavia, and Salinas, respectively, for different types of
features using the standard and the regularized kernel; fur-
thermore, a majority voting-based ensemble approach is
presented with the standard and regularized kernel to better
utilize the discriminative information.
Several observations can be drawn fromTable 1. First, the

regularized versions consistently outperform the standard
kernels using all the four features. Specifically, for the EMAP
feature, the regularized kernel can approximately improve
the OAs of standard kernel around 5 when the number of
training samples is small. For the spectral, Gabor, and LBP,
the IR kernels can outperform the standard kernel, indi-
cating the advantage of incorporating the label information
into the kernel metric. Second, the majority voting-based
ensemble approach can achieve higherOAs compared using
a single feature for both the standard and IR kernels. The
explanation is that by combining multiple features, comple-
mentary discrimination information brought by multiple
features is used. Thus, better performance can be achieved.
Additionally, the classification performance is improved
with the increased number of training samples.
From the results for the University of Pavia, it can be

observed that the IR kernel versions can significantly out-
perform the standard kernel on both the EMAP and Gabor
features. For instance, the OAs increase approximately by 3
and 5 on EMAP and Gabor feature, respectively, for the
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Table 2. Classification accuracies for different features and ensemble approach on the University of Pavia.

Spectral EMAP Gabor LBP Ensemble

N Standard IR Standard IR Standard IR Standard IR Standard IR

3 OA 55.17± 4.94 56.77± 6.49 73.5± 6.67 77.70± 5.38 55.85± 5.59 57.67± 7.54 43.74± 5.58 44.61± 5.29 78.47± 3.09 81.40± 3.60
AA 67.79± 3.04 67.84± 3.01 82.12± 2.88 85.80± 2.94 56.72± 3.45 58.33± 4.10 49.90± 3.58 51.73± 2.89 82.23± 2.22 84.80± 1.89
K 45.32± 4.77 46.75± 6.49 66.88± 7.45 71.97± 6.21 44.44± 5.66 46.64± 7.47 33.30± 4.85 34.46± 4.69 72.06± 3.68 75.85± 4.23

5 OA 60.22± 4.41 60.92± 5.07 82.32± 4.47 86.12± 4.21 63.45± 5.71 66.59± 5.61 52.37± 5.47 51.27± 5.04 85.99± 2.87 88.49± 2.49
AA 71.62± 2.18 71.21± 2.36 88.17± 2.6 91.79± 1.96 63.92± 2.71 66.67± 3.20 59.28± 2.15 58.60± 58.0 88.35± 1.61 90.41± 1.46
K 50.85± 4.46 51.4± 5.16 77.44± 5.33 82.30± 5.11 53.44± 5.79 57.26± 6.06 42.82± 4.97 41.84± 4.88 81.63± 3.47 84.89± 3.14

7 OA 64.45± 5.21 65.03± 4.69 87.25± 5.00 89.89± 3.63 67.28± 4.29 72.36± 4.99 58.07± 3.76 58.63± 3.85 90.14± 2.13 92.59± 1.57
AA 73.87± 1.89 74.34± 1.93 91.10± 2.32 93.94± 1.82 67.21± 2.09 71.99± 2.51 65.03± 2.98 65.04± 2.27 91.2± 1.47 93.59± 1.18
K 55.66± 5.37 56.37± 4.79 83.62± 6.01 86.97± 4.51 57.89± 4.55 64.45± 5.53 49.16± 3.73 49.70± 3.77 86.97± 2.66 90.22± 2.04

9 OA 65.90± 4.10 66.63± 4.49 87.62± 3.54 92.02± 3.76 71.07± 4.00 74.97± 4.66 61.65± 3.5 63.45± 2.71 91.96± 1.34 94.34± 1.22
AA 75.41± 1.65 75.49± 1.62 92.64± 1.81 95.59± 1.29 70.88± 2.05 74.67± 2.33 68.02± 2.00 70.13± 1.98 93.12± 1.05 95.1± 0.73
K 57.4± 4.30 58.13± 4.79 84.11± 4.36 89.72± 4.67 62.62± 4.40 67.73± 5.34 53.14± 3.60 55.18± 2.90 89.38± 1.72 92.52± 1.57

11 OA 67.41± 3.76 67.96± 4.40 91.29± 3.54 92.76± 3.5 73.91± 4.36 78.40± 3.80 65.51± 2.74 67.16± 2.68 94.01± 1.11 95.61± 0.97
AA 76.42± 1.67 76.77± 1.68 94.94± 1.25 96.10± 1.16 73.54± 2.19 77.11± 2.18 71.87± 2.01 73.1± 2.37 94.85± 0.81 96.09± 0.78
K 59.15± 4.07 59.85± 4.68 88.76± 4.34 90.65± 4.33 66.21± 4.96 71.88± 4.49 57.47± 2.89 59.35± 2.90 92.06± 1.44 94.19± 1.27

13 OA 70.58± 3.44 70.54± 3.18 91.76± 2.86 94.88± 3.11 75.58± 4.09 80.32± 3.08 68.37± 3.40 69.25± 3.26 95.05± 0.87 96.58± 0.92
AA 77.83± 1.48 78.30± 1.42 95.19± 1.29 96.92± 1.10 75.37± 2.13 79.49± 1.42 74.52± 1.79 75.49± 1.82 95.57± 0.66 96.93± 0.55
K 62.76± 3.77 62.83± 3.49 89.33± 3.57 93.35± 3.89 68.38± 4.75 74.42± 3.57 60.73± 3.68 61.83± 3.57 93.44± 1.15 95.47± 1.20

Table 3. Classification accuracies for different features and ensemble approach on Salinas.

Spectral EMAP Gabor LBP Ensemble

N Standard IR Standard IR Standard IR Standard IR Standard IR

3 OA 78.95± 3.12 79.24± 3.21 82.90± 3.41 86.20± 3.24 40.93± 2.72 41.42± 2.54 56.18± 2.95 57.15± 2.72 84.01± 2.02 85.73± 2.20
AA 86.12± 2.36 86.26± 2.17 90.62± 1.88 92.18± 1.98 48.92± 2.73 49.77± 2.42 63.91± 2.86 64.50± 2.96 91.80± 1.03 92.56± 0.92
K 76.66± 3.42 77.00± 3.49 81.03± 3.73 84.70± 3.57 36.27± 2.74 36.83± 2.61 51.55± 3.16 52.51± 2.88 82.26± 2.21 84.17± 2.40

5 OA 81.52± 2.64 81.91± 2.79 86.45± 3.03 89.44± 2.39 48.27± 2.17 48.93± 2.57 63.80± 2.07 64.89± 2.38 87.46± 1.67 88.98± 1.76
AA 88.93± 1.56 89.28± 1.65 92.86± 1.38 94.58± 1.22 57.01± 2.09 58.02± 2.33 72.22± 1.72 73.33± 2.09 94.20± 0.67 94.89± 0.75
K 79.54± 2.87 79.95± 3.05 84.96± 3.32 88.72± 2.65 44.00± 2.25 44.70± 2.68 59.91± 2.24 61.18± 2.54 86.08± 1.84 87.76± 1.94

7 OA 82.89± 2.50 84.21± 2.15 87.46± 2.78 91.25± 1.74 53.82± 2.22 54.85± 1.96 68.76± 2.00 69.31± 1.77 88.99± 1.33 91.34± 1.08
AA 90.19± 1.36 90.92± 1.13 93.67± 1.15 95.57± 0.76 63.17± 1.95 64.34± 1.88 77.13± 1.73 78.30± 1.6 95.09± 0.54 96.19± 0.48
K 81.02± 2.73 82.47± 2.36 86.08± 3.06 90.2± 1.93 49.90± 2.35 51.05± 2.02 65.41± 2.15 66.09± 1.91 87.76± 1.47 90.38± 1.19

9 OA 84.41± 1.99 85.09± 1.70 88.49± 3.21 92.43± 2.41 58.28± 1.92 59.08± 1.91 71.53± 1.88 72.42± 2.10 90.8± 1.47 92.46± 1.25
AA 91.18± 0.95 91.70± 0.90 94.53± 0.99 96.12± 0.98 67.38± 1.62 68.42± 1.65 79.99± 1.46 81.33± 1.63 95.99± 0.49 96.78± 0.47
K 82.70± 2.17 83.46± 1.86 87.23± 3.52 91.79± 2.67 54.63± 2.02 55.55± 2.00 68.53± 2.03 69.53± 2.29 89.53± 1.62 91.8± 1.39

11 OA 85.12± 1.92 85.38± 1.87 90.18± 1.92 92.88± 1.83 61.74± 1.49 63.02± 2.08 74.03± 1.67 74.86± 1.48 91.99± 1.06 92.92± 0.95
AA 91.90± 0.91 92.19± 0.84 95.16± 0.78 96.33± 0.82 70.78± 1.33 72.35± 1.84 82.68± 1.26 83.80± 1.28 96.63± 0.41 97.04± 0.39
K 83.49± 2.11 83.77± 2.05 89.09± 2.12 92.09± 2.03 58.31± 1.60 59.75± 2.21 71.29± 1.82 72.22± 1.61 91.09± 1.18 92.12± 1.05

13 OA 85.81± 1.38 85.96± 1.65 91.09± 1.78 93.6± 1.31 64.56± 1.63 66.7± 1.65 76.09± 1.50 76.97± 1.27 92.79± 0.81 93.81± 0.81
AA 92.40± 0.75 92.68± 0.82 95.65± 0.70 96.64± 0.60 73.59± 1.34 75.52± 1.66 84.40± 0.97 85.31± 1.08 96.99± 0.32 97.38± 0.36
K 84.26± 1.52 84.41± 1.82 90.11± 1.97 92.89± 1.45 61.35± 1.72 63.69± 1.76 73.54± 1.64 74.52± 1.36 91.98± 0.89 93.11± 0.90
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Fig. 5. Overall accuracies of IRCK, DMKL, and the proposed method for three
datasets.

University of Pavia dataset. The IR kernel also has better
performance for the spectral feature and LBP feature.More-
over, the ensemble approach using the IR kernel has the best
performance, indicating the advantage of combining com-
plimentary discriminative information. It can be observed
that the ensemble approach has a smaller variance com-
pared with using a specific feature alone. This is expected
because by combining different types of features, a more
robust result can be achieved.
For the results on Salinas as shown inTable 3, several con-

clusions can be drawn. First, it can be concluded that IR can
provide better performance compared with the standard
kernel for all types of features. For this dataset, ensem-
ble approaches have slightly better performance compared
with using the EMAP feature alone. Gabor feature does
not have a good performance on this dataset, including
the Gabor feature for this dataset can affect the accuracy.
We also notice that the regularized kernel has poor perfor-
mance if the standard kernel has poor performance. In addi-
tion, with only seven and 11 training samples per class for
Indian Pines, University of Pavia, and Salinas, theOA can be
above 90. The explanation maybe that when the number
of training samples is limited, the similarity measurement
between samples is not reliable, and thus, the label similarity
between different classes can learn a desirable kernel met-
ric, which is essential for good classification performance.
Another conclusion is that the ensemble approach pro-
vides good performance with a limited number of training
samples.
Figure 5 compares the OAs of IRCK, DMKL, and our

proposed method using 15 samples per class. It can be con-
cluded that the proposedmethod has superior performance
over IRCK on three different datasets. More specifically,
the proposed method has around 6.1, 4.7, and 1.4 higher
OA than IRCK for Indian Pines, University of Pavia, and
Salinas, respectively. Compared with DMKL, the proposed

method has around 7 and 4 higher OA than DMKL on
Indian Pines and the University of Pavia, respectively. On
the Salinas dataset, the proposed method slightly degrades
from DMKL. In Fig. 6, the classification maps of Indian
Pines are shown for four different types of features. The pro-
posed method has around 0.6, 4, and 1.5 higher OA for
Indian Pines, University of Pavia, and Salinas, respectively.
The observation is that few misclassified samples exist in
the classification map of the ensemble approaches. This is
expected since different features can provide discriminative
information, which can lead to better performance.

D) Parameters analysis
The parameters in this paper are analyzed in this section.
For the SVM, we will first analyze the RBF kernel σ and
the regularization term C first. For σ , it is chosen from the
range {2−4, 2−3, . . . , 24}. C is chosen in the range {1, 10,
100, 105}. Figures 7(a)–7(c) show the OA with different σ

and C for EMAP features on Indian Pines, University of

Fig. 6. Classification maps for Indian Pines. The first and second rows
correspond to Standard and IR kernels. (a) Spectral-Sta(OA= 63.31).
(b) EMAP-Sta(OA= 83.9). (c) Gabor-Sta(OA= 77.8). (d) LBP-Sta
(OA= 73.2). (e) Ensemble-Sta(OA= 92.4). (f) Spectral-IR(OA= 64.4).
(g) EMAP-IR(OA= 86.4). (h) Gabor-IR(OA= 78.1). (i)LBP-IR
(OA= 76.8). (j) Ensemble-IR(OA= 93.8).
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Fig. 7. Parameters tuning using EMAP feature. (a) σ andC for Indian Pines. (b)
σ andC for the University of Pavia. (c) σ andC for Salinas. (d) γ for all datasets.

Pavia, and Salinas, respectively, using 13 training samples
per class. A holdout validation sample set is used for test-
ing. It can be concluded from Fig. 7 that C does not affect
the OA much especially when it is larger than 100, and any
number above 100 will guarantee good performance. For σ ,
a relatively small number will generate good classification
performance. In order to analyze the effect of the γ param-
eter in IR, in the following experiment, C is set as 1000, and
σ is chosen as 2−1 for the EMAP features of different datasets
to ensure good performance.
The parameter γ plays an important role in the classifi-

cation performance. We investigate the effect of γ on the
EMAP feature for Indian Pines, University of Pavia, and
Salinas, respectively. Figure 7(d) shows the OAs of the three
datasets with respect to different γ in the range {1e−3, 5e−3,
. . . , 5e−1}. It can be seen that the OA stays stable when γ

is very small, and when γ increases, the OAs of all three
datasets will decrease. This may be due to the reason that
the label information is dominant in the generated kernel
while ignoring the spectral similarity between the training
samples. In our experiment, we set C as 1000, σ as 2−1,
and γ as 5e−3 for the EMAP features for three datasets. For
other types of features, a similar parameter tuning process
is adopted.

V . CONCLUS IONS

In this paper, a novel multiple feature-based IR kernel is
presented for HSI classification. The proposed framework
incorporates the label information in conjunction with the
complementary discriminative information with multiple

features. Experimental results show our proposed approach
can achieve superior classification performance.
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