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A Transmission Ion Microscope (TIM), the Galileo prototype, has been built at the Luxembourg Institute 

of Science and Technology (LIST) [1]. This is part of a new interest in the imaging properties of 

transmitted helium ions [2] [3] [4]. This allows the combination of both helium ions and neutrals to be 

detected after passing through a sample, or, if post sample deflection is used, then only the signal from 

the neutrals (Figure 1 A). The helium ions have an energy between 10 keV and 20 keV and are produced 

in a Duoplasmatron ion source. 

The prototype instrument is very flexible and uses a microchannel plate (MCP) which can be configured 

in multiple ways to enable analysis modalities, producing datasets of varying dimensionality. 2D images 

can be obtained either with a phosphor screen and a defocussed beam in direct TIM mode (analogous to 

transmission electron microscopy) or with an anode plate to collect the total detector signal in scanning 

mode providing scanning-TIM (STIM) images. By using fast blanking electronics (similar to [5]), pulses 

of ions can be used to add time-of-flight (TOF) information, allowing a TOF-STIM mode to collect 3D 

datasets (x, y, t). Alternatively, a delay line detector (DLD) can be used to provide detector plane images 

with corresponding TOF values at each detector pixel, to collect TOF-TIM 3D datasets (x’, y’, t). Finally, 

detector imaged DLD TOF-STIM can be used, in this mode, for each beam position on the sample, the 

arrival time and position on the detector is recorded for each count (5D datasets, x, y, x’, y’, t). The 

prototype TIM is also equipped with a secondary electron (SE) detector providing additional SE intensity 

for each pixel position in STIM modes (Figure 1 B). 

Example TOF datasets from materials science related samples (e.g. Au on Si) will be presented. In addition 

to microscopy, the effects of 20 keV helium ion irradiation on Au-Silica core-shell nanoparticles have 

been evaluated. Using bright field Transmission Electron Microscopy (TEM)  imaging of irradiated 

particles, the effects of irradiation were tracked for increasing fluences [6]. It was seen that satellite 

particles are formed around the main Au core (Figure 2, A and B) and neighbouring silica shells fuse 

together (Figure 2, C and D). These effects will determine the suitable fluences when imaging 

nanoparticles with 20 keV helium ions. 
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Figure 1. A) TIM images formed with ions and neutrals the sample is 300-mesh lacey carbon grid covered with a 

single layer graphene membrane, pitch 85 µm (31 µm bar,  54 µm hole). B) Secondary electron and STIM images 

recorded concurrently in scanning mode (using MCP/anode plate detection). 

 
 

Figure 2. Bright field TEM images at 0 degrees tilt (A) and 60 degrees tilt (B) of a core-shell particle after 

4.7x1017 ions/cm2. Bright field TEM images of a collection of core-shell particles before (C) and after 

(D) 4.7x1017 ions/cm2 20 keV helium ion irradiation. 
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