FARTHEST POINTS IN W^{*}-COMPACT SETS

R. Deville and V.E. Zizler

We show that while farthest points always exist in w^{\star}-compact sets in duals to RadonNikodym spaces, this is generally not the case in dual Radon-Nikodym spaces. We also show how to characterise weak compactness in terms of farthest points.

The purpose of this note is to find under what conditions the Edelstein-AsplundLau results on the existence of farthest points in weakly compact sets can be extended to w^{*}-compact sets.

To fix our notation, let C be a norm closed bounded subset of a real Banach space X and x be an element of X. We define

$$
r(x)=r(x, C)=\sup \{\|x-z\| \mid z \in C\}
$$

and call $r(x)$ the farthest distance from x to C. Equivalently, $r(x)$ is the radius of the smallest ball of centre x, containing C. The function r is convex as supremum of such functions, and continuous since $|r(x)-r(y)| \leqslant\|x-y\|$, for all $x, y \in X$. A point $z \in C$ is called a farthest point of C if there exists $x \in X$ such that $\|x-z\|=r(x)$. The existence of a farthest point of C is equivalent to the fact that the set

$$
D=\{x \in X \mid(\exists z \in C)(\|x-z\|=r(x))\}
$$

is non-empty. Since it follows that any farthest point of a convex set C in a locally uniformly rotund space is a strongly exposed point of C, the notion of a farthest point is widely used in the study of the extreme structure of sets. In fact, it was the first discovered method of obtaining exposed points in sets [10]. We refer the reader to [3] and [5] for unexplained notions.

Extending the results of [6] and [1], Lau showed [9] that if C is a weakly compact set in a Banach space X, then the set D defined above is dense in X and thus, in particular, C has farthest points. Other extensions of the results of $[\mathbf{6}]$ and $[\mathbf{1}]$ may be found in [11]. The connection between farthest points and strongly exposed points in

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.
mentioned above led Edelstein and Lewis [7] to ask the following question: Does the existence of (strongly) exposed points in C imply the existence of farthest points in C ?

Proposition 1 gives a negative answer to this question. Moreover, it shows that Lau's result on weakly compact sets does not always extend to \boldsymbol{w}^{\star}-compact sets in a dual space X^{\star}. However, our Proposition 3 shows that if X has the Radon-Nikodym property then any w^{\star}-compact set in X^{\star} contains a farthest point, thus extending Proposition 1 of [11]. Finally, we point out in Proposition 4 that Lau's result actually characterises weakly compact sets.

Proposition 1. Let $\ell^{1}(N)$ be the Banach space of all real summable sequences $x=\left(x_{n}\right)$, equipped with its usual norm $\|x\|=\sum_{n=1}^{\infty}\left|x_{n}\right|$. Let

$$
C=\left\{\left(a_{n}\right) \in \ell^{1}(\mathbf{N}): \sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|a_{n}\right|^{2}\right) \leqslant 1\right\} .
$$

Then C is a weak*-compact convex of $\ell^{1}(\mathbf{N})$ and C has no farthest points.
Proof of Proposition 1: Tó prove that C has no farthest points, it is enough to show that, given $x \in \ell^{1}(N)$:
i) $r(x)=1+\|x\|$ and
ii) $\|x-z\|<1+\|x\|$ for all $z \in C$.

To do so, first notice that if $z \in C$ then $\|z\|<1$. Therefore, $\|x-z\|<\|x\|+\|z\|<$ $1+\|x\|$ and ii) is proved. This also shows that $r(x) \leqslant 1+\|x\|$. Hence, to prove i), it is enough to construct a sequence (u_{n}) of elements of C such that

$$
\lim _{n \rightarrow \infty}\left\|x-u_{n}\right\|=1+\|x\| .
$$

For each $n \in N$, let $\delta_{n}>0$ be such that $n\left(\delta_{n}+\delta_{n}^{2}\right)=1$. Note that $0<\delta_{n}<\frac{1}{n}$ and $\lim _{n \rightarrow \infty} n \delta_{n}=1$. Let $u_{n}=\left(\delta_{n}, \ldots, \delta_{n}, 0,0, \ldots\right)$ where δ_{n} is repeated n times. By our choice of $\delta_{n}, u_{n} \in C$.

Now given $x \in \ell^{1}(\mathbf{N})$ and $\varepsilon>0$, let $p \in N$ be such that $\sum_{n=p+1}^{\infty}\left|x_{i}\right|<\frac{\varepsilon}{3}$. We have for $n>p$

$$
\begin{aligned}
\left\|x-u_{n}\right\| & =\sum_{i=1}^{p}\left|x_{i}-\delta_{n}\right|+\sum_{i=p+1}^{n}\left|x_{i}-\delta_{n}\right|+\sum_{i=n+1}^{\infty}\left|x_{i}\right| \\
& \geqslant \sum_{i=1}^{p}\left|x_{i}\right|-p \delta_{n}-\sum_{i=p+1}^{n}\left|x_{i}\right|+(n-p) \delta_{n} \\
& \geqslant\|x\|-\frac{\varepsilon}{3}-p \delta_{n}-\frac{\varepsilon}{3}+(n-p) \delta_{n} .
\end{aligned}
$$

Choose $n_{0}>p$ big enough so that $(n-2 p) \delta_{n}>1-\frac{\epsilon}{3}$ for $n \geqslant n_{0}$. We have that for all $n \geqslant n_{0}$:

$$
\left\|x-u_{n}\right\| \geqslant 1+\|x\|-\varepsilon .
$$

Therefore,

$$
\lim _{n \rightarrow \infty}\left\|x-u_{n}\right\|=1+\|x\| .
$$

Remarks. (a) Since $\ell^{1}(N)$ has the Radon-Nikodym property, C is the norm closed convex hull of its strongly exposed points [3]. Hence, Proposition 1 gives a negative answer to the question of Edelstein and Lewis mentioned above.
(b) The proof of Proposition 1 shows that the intersection of all the balls containing C is the unit ball of $\ell^{1}(\mathbf{N})$. Note also that the sequence $\left\{u_{n}\right\}$ in the proof does not depend on x.

Before proceeding, let us recall that the subdifferential of a convex function f defined on a Banach space X is defined by

$$
\partial f(x)=\left\{x^{\star} \in X^{\star} \mid(\forall y \in X)\left(\left\langle x^{\star}, y-x\right\rangle \leqslant f(y)-f(x)\right)\right\}
$$

It was shown in [9] that if C is a closed bounded subset of a Banach space X and $r(x)$ is the farthest distance function for C, then for any $x \in X$ and $x^{\star} \in \partial r(x)$, we have that $\left\|x^{\star}\right\| \leqslant 1$ and thus $\sup \left\{\left\langle x^{\star}, x-z\right\rangle: z \in C\right\} \leqslant\left\|x^{\star}\right\| r(x) \leqslant r(x)$. Moreover, Lau showed that the set

$$
G=\left\{x \in X \mid\left(\forall x^{\star} \in \partial r(x)\right)\left(\sup \left\{\left\langle x^{\star}, x-z\right\rangle: z \in C\right\}=r(x)\right)\right\}
$$

is dense G_{δ} in X.
We shall need the following.
Lemma 2. Let C be a closed bounded subset of a Banach space X and r the farthest distance function on X associated with C. Assume that r is Fréchet differentiable at $x_{0} \in X$. Then

$$
r\left(x_{0}\right)=\sup \left\{\left\langle x_{0}^{\star}, x_{0}-z\right\rangle \mid z \in C\right\}, \quad \text { where } \partial r\left(x_{0}\right)=\left\{x_{0}^{\star}\right\}
$$

Proof: According to Lau's result mentioned before the statement of Lemma 2 it is enough to show that, under our assumptions, the following implication holds:

If $r\left(x_{0}\right)-\sup \left\{\left\langle x_{0}^{\star}, x_{0}-z\right\rangle \mid z \in C\right\}=\alpha>0$, then there is a neighbourhood U of x_{0} such that

$$
r(y)-\sup \left\{\left\langle y^{\star}, y-z\right\rangle \mid z \in C\right\}>0
$$

whenever $y \in U$ and $y^{\star} \in \partial r(y)$.
To prove that the implication holds, take $y \in X, y^{\star} \in \partial r(y)$ and $z \in C$. We have:

$$
\begin{aligned}
\left|\left\langle y^{\star}, y-z\right\rangle-\left\langle x_{0}^{\star}, x_{0}-z\right\rangle\right| & \leqslant\left|\left\langle y^{\star}, y-z\right\rangle-\left\langle y^{\star}, x_{0}-z\right\rangle\right|+\left|\left\langle y^{\star}, x_{0}-z\right\rangle-\left\langle x_{0}^{\star}, x_{0}-z\right\rangle\right| \\
& \leqslant\left\|y^{\star}\right\|\left\|y-x_{0}\right\|+\left\|y^{\star}-x_{0}^{\star}\right\|\left\|x_{0}-z\right\| .
\end{aligned}
$$

Therefore,

$$
\left|\sup \left\{\left\langle y^{\star}, y-z\right\rangle \mid z \in C\right\}-\sup \left\{\left\langle x_{0}^{\star}, x_{0}-z\right\rangle \mid z \in C\right\}\right| \leqslant\left\|y-x_{0}\right\|+r\left(x_{0}\right)\left\|y^{\star}-x_{0}^{\star}\right\| .
$$

Now choose a neighbourhood U of x_{0} such that

$$
2\left\|y-x_{0}\right\|+r\left(x_{0}\right)\left\|y^{\star}-x_{0}^{\star}\right\|<\alpha
$$

whenever $y \in U$ and $y^{\star} \in \partial r(y)$. This is possible due to the Fréchet differentiability of r at x_{0} [2, Lemma 5]. If $y \in U$ and $y^{\star} \in \partial r(y)$, then

$$
\begin{aligned}
& \left(r\left(x_{0}\right)-\sup \left\{\left\langle x_{0}^{\star}, x_{0}-z\right\rangle \mid z \in C\right\}\right)-\left(r(y)-\sup \left\{\left\langle y^{\star}, y-z\right\rangle \mid z \in C\right\}\right) \\
& \quad \leqslant\left|r\left(x_{0}\right)-r(y)\right|+\mid \sup \left\{\left\langle y^{\star}, y-z\right\rangle \mid z \in C\right\}-\sup \left\{\left\langle x_{0}^{\star}, x_{0}-z\right| z \in C\right\} \mid \\
& \quad \leqslant\left\|x_{0}-y\right\|+\left\|y-x_{0}\right\|+r\left(x_{0}\right)\left\|y^{\star}-x_{0}^{\star}\right\|<\alpha
\end{aligned}
$$

and this implies, by the definition of α, that

$$
r(y)-\sup \left\{\left\langle y^{\star}, y-z\right\rangle z \in C\right\}>0
$$

whenever $y \in U$ and $y^{\star} \in \partial r(y)$. Our implication is proven and the proof of Lemma 2 is finished.

Proposition 3. Let X be a Banach space with the Radon-Nikodym property, let X^{\star} be its dual space in its usual dual norm and C be a w^{\star}-compact subset of X^{\star}. Then the set D of all points in X^{\star} which have farthest points in C contains a subset D_{1} dense and G_{δ} in X^{\star}.

Proof: First notice that the farthest distance function r associated with C is \boldsymbol{w}^{\star}-lower semicontinuous as supremum of such functions. Since X has the RadonNikodym property it follows from [4] that r is Fréchet differentiable on a dense G_{δ} subset D_{1} in X^{\star}. So, to finish the proof of Proposition 3 we show that if r is Fréchetdifferentiable at x, then x admits a farthest point in C. If $x \in D_{1}$, denote by x^{\star} the only element of $\partial r(x)$. Since r is w^{\star}-lower semicontinuous and Fréchet differentiable at $x, x^{*} \in X\left[2\right.$, Corollary 1]. Since C is w^{\star}-compact, there is a $z_{0} \in C$ such that $\left\langle x^{\star}, x-z_{0}\right\rangle=\sup \left\{\left\langle x^{\star}, x-z\right\rangle \mid z \in C\right\}$. Using Lemma 2 we have $r(x)=\left\langle x^{\star}, x-z_{0}\right\rangle \leqslant$ $\left\|x^{\star}\right\| \cdot\left\|x-z_{0}\right\| \leqslant\left\|x-z_{0}\right\| \leqslant r(x)$. Thus $\left\|x-z_{0}\right\|=r(x)$ and the proof is finished.

Proposition 4. Let X be a Banach space and C be a closed convex bounded subset of X. The following are equivalent:
(i) C is weakly compact;
(ii) for every equivalent norm $\left\|\|_{1}\right.$ on $X, D=\left\{x \in X \mid r(x)=\|x-z\|_{1}\right.$ for some $z \in C\}$ is dense in X, where $r(x)=\sup \left\{\|x-z\|_{1} \mid z \in C\right\}$.

Proof: (i) \Rightarrow (ii) was proved by Lau in [9]. Conversely, let $\|\cdot\|$ be the norm of X and let $B(x, r)$ denote the $\|\cdot\|$-ball centred at x and radius r. Assume without loss of generality that $C \subset B(0,1)$. By James' theorem [5] there is a functional $f \in X^{\star}$, $\|f\|=1$ which does not attain its supremum on C. Let $B_{1}=B(0,6) \cap\left\{\left.x \in X\right|_{-1} \leqslant\right.$ $f(x) \leqslant 1\}$ and $\|\cdot\|_{1}$ be the Minkowski functional of B_{1}. Note that if $B_{1}(x, r)$ is the ball cenetred at x with radius δ with respect to the norm $\|\cdot\|_{1}$, then

$$
B_{1}(x, \delta)=6 B(x, \delta) \cap\{y \in X \mid-\delta \leqslant f(x)-f(y) \leqslant \delta\}
$$

Pick $x_{0} \in B(0,4) \cap\{x \in X \mid f(x)<-3\}$. We claim that if $x \in B\left(x_{0}, 1\right)$, then x has no farthest point in C when X is equipped with the new norm $\left\|\|_{1}\right.$, hence D is not dense in X.

To see it, we first show that $r(x)=\alpha$, where $\alpha=\sup \{f(z) \mid z \in C\}-f(x)$. Indeed, let $y \in C$; we have $|f(y)-f(x)| \leqslant \sup \{f(z) \mid z \in C\}-f(x)$ and $\|y-x\| \leqslant$ $\|y\|+\left\|x_{0}\right\|+\left\|x_{0}-x\right\| \leqslant 6 \leqslant 6 \alpha$ (note that for any $y \in C$ and $x \in B\left(x_{0}, 1\right)$ we have $f(y) \geqslant-1$ and $f(x) \leqslant f\left(x_{0}\right)+f\left(x-x_{0}\right)<-2$ and thus $\left.\alpha>1\right)$. Thus $y \in B(x, \alpha)$. Therefore $C \subset B_{1}(x, \alpha)$ and this shows that $r(x) \leqslant \alpha$. Conversely if $\delta<\alpha$, there exists $y \in C$ such that $f(y)-f(x)>\delta$ and so $y \notin B_{1}(x, \delta)$. This shows that $r(x) \geqslant \alpha$.

Now for $y \in C$, we have $\|y-x\| \leqslant 6<6 \alpha$ and $|f(y)-f(x)|<\sup \{f(z) \mid z \in$ $C\}-f(x)=\alpha$, hence $\|x-y\|_{1}<\alpha=r(x)$ and so y is not a farthest point from x in C.

Remark. We would like to point out that, while differentiability properties can be used to show that the set D of points which have at least one farthest point in a w^{\star}-compact C of a dual Banach space X is dense in X, convexity properties can be used to show the uniqueness of farthest points. More precisely, using standard rotundity arguments, we have

Proposition 5. Let X be a strictly convex Banach space, and C be a norm closed bounded subset of X such that the corresponding set D is dense in X.

Then the set

$$
U=\{y \in X \mid y \text { has a unique farthest point in } C\}
$$

is also dense in X.

Proof: First the strict convexity of X implies that for all $x \in X$ and $\lambda>1$,

$$
B(x,\|x\|) \cap S(\lambda x,\|\lambda x\|)=\{0\}
$$

where $B(x, r)$ (respectively, $S(x, r)$) denotes the ball (respectively, the sphere) of centre x and radius r.

Now let $x \in D$ and let z be a farthest point from x in C. By translation, there is no loss of generality in assuming $z=0$. It is enough to show that for any $\lambda>1$, $y=\lambda x$ has a unique farthest point in C, namely 0 . We have

$$
B(\lambda x,\|\lambda x\|) \supseteq B(x,\|x\|) \supseteq C
$$

and hence $r(\lambda x) \leqslant\|\lambda x\|$. On the other hand,

$$
\{0\} \subset C \cap S(\lambda x,\|\lambda x\|) \subset B(x,\|x\|) \cap S(\lambda x,\|\lambda x\|)=\{0\}
$$

Therefore $r(\lambda x)=\|\lambda x\|$ and the only farthest point from y in C is 0 .
Note that if X is not strictly convex, the set U of points which admit unique farthest points can be empty. Indeed, let $X=c_{0}(\mathrm{~N})$ and

$$
C=\left\{\left(z_{n}\right) \in c_{0}(\mathrm{~N}) \left\lvert\, 0 \leqslant z_{n} \leqslant \frac{1}{n}\right. \text { for all } n\right\}
$$

C is a norm compact convex subset of $c_{0}(N)$, and therefore $D=c_{0}(N)$. On the other hand, if $x=\left(x_{n}\right) \in c_{0}(N)$, we have

$$
r(x)=\max \left\{\left.\max \left\{\left|x_{n}\right|,\left|x_{n}-\frac{1}{n}\right|\right\} \right\rvert\, n \in \mathrm{~N}\right\}
$$

so $r(x)=\left|x_{n_{0}}\right|$ or $r(x)=\left|x_{n_{0}}-\frac{1}{n_{0}}\right|$, for some $n_{0} \in N$. Define:

$$
\begin{aligned}
& C_{1}=\left\{\left(z_{n}\right) \in C \mid z_{n_{0}}=0\right\} \\
& C_{2}=\left\{\left(z_{n}\right) \in C \left\lvert\, z_{n_{0}}=\frac{1}{n_{0}}\right.\right\}
\end{aligned}
$$

If $r(x)=\left|x_{n_{0}}\right|$ (respectively, $r(x)=\left|x_{n_{0}}-\frac{1}{n_{0}}\right|$), C_{1} (respectively, C_{2}) is included in the set of farthest points from x in C. In both cases $x \notin U$.

References

[1] E. Asplund, 'Farthest points in reflexive locally uniformly rotund Banach spaces', Isreal J. Math. 4 (1966), 213-216.
[2] E. Asplund, 'Fréchet differentiability of convex functions', Acta Math. 121 (1968), 31-47.
[3] J. Bourgin, 'Geometric aspects of convex sets with the Radon-Nikodym property', in Lecture Notes in Mathematics: 999 (Springer-Verlag, New York, 1983).
[4] J.B. Collier, 'The dual of a space with the Radon-Nikodym property', Pacific J. Math. 64 (1976), 103-106.
[5] J. Diestel, 'Geometry of Banach spaces-selected topics', in Lecture Notes in Mathematics 485 (Springer-Verlag, New York, 1975).
[6] M. Edelstein, 'Farthest points of sets in uniformly convex Banach spaces', Israel J. Mat. 4 (1966), 171-176.
[7] M. Edelstein and J.E. Lewis, 'On exposed and farthest points in normed linear spaces', J. Austral. Math. Soc. 12 (1971), 301-308.
[8] G. Godefroy and N. Kalton, 'The ball topology' (to appear).
[日] K.S. Lau, 'Farthest points in weakly compact sets', Israel J. Math. 22 (1975), 168-174.
[10] S. Straszewicz, 'Uber exponierte Punkte abgeschlossener Puntmengen', Fund. Math. 24 (1935), 139-143.
[11] V. Zizler, 'On some extremal problems in Banach spaces', Math. Scand. 32 (1973), 214-224.

Professor V.E. Zizler,
Department of Mathematics,
Faculty of Science,
University of Alberta,
Edinonton,
Canada. T6G 2G1

Dr R. Deville,
Equipe d'Analyse Fonctionelle, Université Paris VI, Paris, France.

[^0]: Received 19 February, 1987
 Research completed while Dr Deville was a visitor at the University of Alberta. Research paritally supported by NSERC (Canada)

