AN OPEN MAPPING THEOREM
ON HOMOGENEOUS SPACES

SHOZO KOSHI and MASAMICHI TAKESAKI

(Received 22 June 1990)

Communicated by S. Yamamuro

Abstract

We shall prove an open mapping theorem concerning a Polish group acting transitively on a complete metric space.

Let X be a topological space and G be a topological transformation group on X which is a Polish (separable, complete metric) group acting transitively on X. This action is denoted by the map ψ from $G \times X$ to X with $\psi(g , x) = g \cdot x$ for $g \in G$ and $x \in X$.

We shall consider an open mapping theorem on the map $G \ni g \rightarrow \psi(g , x) = g \cdot x \in X$ from G to X for each fixed $x \in X$.

Even if there is a famous open mapping theorem on Banach spaces or topological linear spaces, the proof of this case is different from that of Banach space cases.

We shall call ψ continuous if ψ is continuous as the map from $G \times X$ to X. We shall call ψ separately continuous if

1. for each fixed $g \in G$, the map $x \rightarrow g \cdot x$ from X to X is continuous,
2. for each fixed $x \in X$, the map $g \rightarrow g \cdot x$ from G to X is continuous.

Now, we have the following theorem.
THEOREM A. Let G be a complete metric group acting on a metric space X. If the map $\Psi: G \times X \to X$ defined by $\Psi(g, x) = g \cdot x$ is separately continuous, then Ψ is continuous.

Proof. Due to the inequality:

$$d(gx, g_0x_0) \leq d(gx, gx_0) + d(gx_0, g_0x_0),$$

the continuity of ψ at $(g_0, x_0) \in G \times X$ follows from the claim that for any $\varepsilon > 0$ there exist $\delta > 0$ and a neighborhood U of g_0 such that $d(gx, gx_0) < \varepsilon$ whenever $d(x, x_0) < \delta$ and $g \in U$. Fix $x_0 \in X$, and set

$$A_{m,n} = \left\{ g \in G : d(gx, gx_0) \leq \frac{1}{m} \text{ if } d(x, x_0) < \frac{1}{n} \right\}.$$

The separate continuity of ψ yields the closedness of each $A_{m,n}$ and $G = \bigcup_{n=1}^{\infty} A_{m,n}$. Furthermore, $A_{m,n} \subset A_{m,n+1}$ by construction. Baire's category property of G implies that every non-empty open subset U of G contains a non-empty open subset $V \subset U$ such that $V \subset A_{m,n(m)}$ for some $n(m) \in \mathbb{N}$. Thus, we can find a sequence of open subsets O_m of G such that

$$O_m \subset A_{m,n(m)}, \quad \text{diameter } (O_m) < 1/m,$$

$$O_m \supset \overline{O}_{m+1}.$$

By the completeness of G, there exists a point $g_0 \in \bigcap_{m=1}^{\infty} O_m$. It then follows that $d(gx, gx_0) \leq 1/m$ if $d(x, x_0) < 1/n(m)$ and $g \in O_m$. Hence ψ is continuous at (g_0, x_0) by the first observation. Therefore, for any $\varepsilon_1 > 0$ there exists $\delta > 0$ and a neighborhood U of g_0 such that $d(gx, g_0x_0) < \varepsilon_1$ whenever $g \in U$ and $d(x, x_0) < \delta$. For an arbitrary $g_1 \in G$ and $\varepsilon > 0$, choose $\varepsilon_1 > 0$ so that $d(g_1g_0^{-1}y, g_1x_0) < \varepsilon$ whenever $d(y, g_0x_0) < \varepsilon_1$. We then set $V = g_1g_0^{-1}U$ as a neighborhood of g_1 and conclude that if $g \in V$ and $d(x, x_0) < \delta$ then $g_0g_1^{-1}g \in U$ so that $d(g_0g_1^{-1}gx, g_0x_0) < \varepsilon_1$ and therefore

$$d(gx, g_1x_0) < \varepsilon \quad \text{if} \quad g \in V \text{ and } d(x, x_0) < \delta.$$

Thus ψ is continuous at $(g_1, x_0) \in G \times X$.

Next, we shall state an open mapping theorem in this case. In this note, a group G acting transitively on a metric space X means that for each $x, y \in X$ there exists an element $g \in G$ with $gx = y$.

THEOREM B. Let G be a Polish group acting transitively on a complete metric space X. For each $x \in X$ the map $G \ni g \to \psi(g, x) = g \cdot x \in X$ is open.
PROOF. Let $B(x, \delta) = \{y; d(x, y) < \delta\}$, that is, the open ball with center x and radius $\delta > 0$. Let $x_0 \in X$ be fixed. We shall prove that for any neighbourhood (nbd in short) U of the unit e of G, there exists an open ball with

$$
\overline{Ux_0} \supset B(x_0, \delta)
$$

for some $\delta > 0$.

If this is proved, then we can prove the theorem as follows: for any $x_0 \in X$ and for any nbd U_0 of the unit e of G, there exist $\varepsilon_0 > 0$ and $B(x_0, \varepsilon_0) \subset \overline{U_0x_0}$. Now, by induction we will construct two types of decreasing sequences of nbds of e: U_n and V_n for a given U_0. We want to prove that any point y_0 of $B(x_0, \varepsilon_0)$ is contained in U_0x_0.

There exists $V_0 \subset U_0$ such that $V_0 = V_0^{-1}$ (symmetric), $V_0^2 \subset U_0$ and $\overline{V_0y_0} \subset B(x_0, \varepsilon_0)$. Choose $\delta_0 > 0$ such that

$$
\overline{V_0y_0} \supset B(y_0, \delta_0) \quad \text{and} \quad \delta_0 < (1/2)\varepsilon_0.
$$

Then there exists $g_0 \in U_0$ with $g_0 \cdot x_0 = x_1 \in B(y_0, \delta_0)$. Choose a nbd U_1 of e such that

$$
\overline{U_1x_1} \subset B(y_0, \delta_0) \quad \text{with} \quad U_1 = U_1^{-1}, \ U_1^2 \subset U_0
$$

and

$$
d(U_1g_0) \quad (= \text{diameter of } U_1g_0) \leq (1/2)\varepsilon_0.
$$

Choose further $0 < \varepsilon_1 < (1/2)\varepsilon_0$ so that

$$
\overline{U_1x_1} \supset B(x_1, \varepsilon_1).
$$

Then, there exists $h_0 \in V_0$ such that

$$
y_1 = h_0y_0 \in B(x_1, \varepsilon_1).
$$

Next, choose V_1 such that $V_1 = V_1^{-1}$, $V_1^2 \subset V_0$, with

$$
\overline{V_1y_1} \subset B(x_1, \varepsilon_1) \quad \text{and} \quad d(V_1h_0) < (1/2)\delta_0.
$$

Then there exists $0 < \delta_1 < (1/2)\delta_0$ such that

$$
\overline{V_1y_1} \supset B(y_1, \delta_1).
$$

Continue this process to get $\{U_n\}$, $\{V_n\}$, $\{\varepsilon_n\}$, $\{\delta_n\}$, $\{g_n\}$, $\{h_n\}$, $\{x_n\}$, and $\{y_n\}$ such that

$$
x_{n+1} = g_n \cdot x_n = \cdots = g_n \cdot g_{n-1} \cdots g_0 \cdot x_0,
$$

$$
y_{n+1} = h_n \cdot y_n = \cdots = h_n \cdot h_{n-1} \cdots h_0 \cdot y_0,
$$

$$
d(U_ng_{n-1} \cdots g_0) < (1/2)\varepsilon_{n-1}, \quad g_n \in U_n,
$$

$$
d(V_nh_{n-1} \cdots h_0) < (1/2)\delta_{n-1}, \quad h_n \in V_n,
$$

https://doi.org/10.1017/S1446788700035382 Published online by Cambridge University Press
with $0 < \varepsilon_n < (1/2)\varepsilon_{n-1}$ and $0 < \delta_n < (1/2)\delta_{n-1}$ and

$$U_n x_n \supset B(x_n, \varepsilon_n) \supset V_n y_n,$$

$x_{n+1} = g_n \cdot x_n \in B(y_n, \delta_n)$.

Let $\lim_{n \to \infty} g_n \cdot g_{n-1} \cdots g_1 = g$ and $\lim_{n \to \infty} h_n h_{n-1} \cdots h_1 = h$. Then $g \in U_0^2$, $h \in U_0^2$ and

$$d(x_n, y_n) < \varepsilon_n \quad \text{implies} \quad g \cdot x_0 = h \cdot y_0.$$

Therefore, we have $y_0 = h^{-1} g \cdot x_0 \in U^4 x_0$.

From this result, we have that for arbitrary $x_0 \in X$ and for arbitrary nbhd U, there exists $\varepsilon > 0$ with $U x_0 \supset B(x_0, \varepsilon)$. Hence the proof is complete, if the following lemma is proved.

Lemma. For any nbhd U of e in G, $\overline{U x_0}$ contains an open ball $B(x_0, \delta)$ for some $\delta > 0$.

Proof. Let $\{g_n\}$ be a sequence of elements in G such that $\bigcup_n g_n U = G$, since G is a Polish group. Hence $\bigcup_n g_n U x_0 = X$ so that there exists an n_0 such that $g_{n_0}^{-1} \overline{U x_0}$ contains an open ball; hence $\overline{U x_0}$ contains an open ball $B(y, \delta)$ because $\overline{U x_0} = g_{n_0}^{-1} g_{n_0} \overline{U x_0}$. Choose a nbhd V of e with $V = V^{-1}$ and $V^2 \subset U$. Then $\overline{V x_0} \supset B(y, \delta)$ means that there exists $g \in V$ such that $g \cdot x_0 \in B(y, \delta)$; hence there exists $\varepsilon > 0$ such that $B(g \cdot x_0, \varepsilon) \subset B(y, \delta) \subset \overline{V x_0}$. Thus $g^{-1} B(g \cdot x_0, \varepsilon) \subset g^{-1} B(y, \delta) \subset g^{-1} \overline{V x_0} \subset V^2 x_0 \subset \overline{U x_0}$. But $g^{-1} B(g \cdot x_0, \varepsilon)$ is an open set containing x_0, so that there exists $\delta_1 > 0$ such that $B(x_0, \delta_1) \subset g^{-1} B(g \cdot x_0, \varepsilon) \subset \overline{U x_0}$.

We express our thanks to the referee who improved our proof of Theorem A and pointed out some errors in the first draft of this paper.

References

Department of Mathematics Department of Mathematics
Hokkaido University University of California
Sapporo, 060 405 Hilgard Avenue
Japan Los Angeles, California 90023
USA

https://doi.org/10.1017/S1446788700035382 Published online by Cambridge University Press