RINGS IN WHICH EVERY ELEMENT IS THE SUM OF TWO IDEMPOTENTS

YASUYUKI HIRANO AND HISAO TOMINAGA

Let \(R \) be a ring with prime radical \(P \). The main theorems of this paper are (1) The following conditions are equivalent: 1) \(R \) is a commutative ring in which every element is the sum of two idempotents; 2) \(R \) is a ring in which every element is the sum of two commuting idempotents; 3) \(R \) satisfies the identity \(x^3 = x \). (2) If \(R \) is a PI-ring in which every element is the sum of two idempotents, then \(R/P \) satisfies the identity \(x^3 = x \). (3) Let \(R \) be a semi-perfect ring in which every element is the sum of two idempotents. If \(R_n \) is quasi-projective, then \(R \) is a finite direct sum of copies of \(\text{GF}(2) \) and/or \(\text{GF}(3) \).

Throughout, \(R \) will represent a ring with prime radical \(P \). A Boolean ring is defined as a ring in which every element is an idempotent. As a generalisation of Boolean rings, we consider the class of rings in which every element is the sum of two idempotents. We begin with an example which shows that such a ring need not be Boolean or even commutative.

Example. Let \(A(\neq 0) \) and \(B \) be Boolean rings, and \(W(\neq 0) \) a \(B \cdot A \)-bimodule. Assume, furthermore, that \(W \) is \(s \)-unital as a right \(A \)-module, that is, for any \(w \) in \(W \), there exists an element \(e \) in \(A \) such that \(we = w \). Then every element of the non-commutative ring \(R = \begin{pmatrix} A & 0 \\
W & B \end{pmatrix} \) is the sum of two idempotents. In fact,
\[
\begin{pmatrix} a & 0 \\
w & b \end{pmatrix} = \begin{pmatrix} e & 0 \\
w & 0 \end{pmatrix} + \begin{pmatrix} a - e & 0 \\
w & b \end{pmatrix},
\]
where \(e \) is an element of \(A \) such that \(we = w \).

Our present objective is to prove the following theorems.

THEOREM 1. The following conditions are equivalent:

1) \(R \) is a commutative ring in which every element is the sum of two idempotents.
2) \(R \) is a ring in which every element is the sum of two commuting idempotents.
3) \(R \) satisfies the identity \(x^3 = x \).
THEOREM 2. Let R be a PI-ring in which every element is the sum of two idempotents. Then R/P satisfies the identity $x^3 = x$.

THEOREM 3. Let R be a semi-perfect ring in which every element is the sum of two idempotents. If $\mathcal{R} = R_R$ is quasi-projective, then R is a finite direct sum of copies of $GF(2)$ and/or $GF(3)$.

In preparation for proving our theorems, we state four lemmas.

LEMMA 1. Let $R(\neq 0)$ be a ring in which every element is the sum of two idempotents. If R contains no non-trivial idempotents, then R is either $GF(2)$ or $GF(3)$.

PROOF: Since 0 and 1 are the only idempotents of R, we have either $R = \{0, 1\}$ or $R = \{0, 1, 2\}$. Thus R is either $GF(2)$ or $GF(3)$. $lacksquare$

LEMMA 2. Let a be an element of R with $a^2 = 0$.

(1) If $a = e + f$ for idempotents e, f then $4a = 0$.

(2) If $a = e + f$ for commuting idempotents e, f then $a = 2e$ and $4e = 0$.

PROOF: (1) Obviously,

$$0 = a^3 - 2a^2 = a + 2(ef + fe) + efe + fef - 2(a + ef + fe) = efe + fef - a.$$

Hence $0 = ea^2 + fa^2f = a + 3(efe + fef) = 4a$.

(2) Since $0 = a^2 = a + 2ef$, we get $a = -2ef$, and so $0 = a(f - e) = f - e$.

Hence $a = 2e$ and $4e = a^2 = 0$. $lacksquare$

LEMMA 3. Let R be a ring with 1, and n a positive integer greater than 1. Then the $n \times n$ full matrix ring $M_n(R)$ over R contains an element which cannot be written as the sum of two idempotents.

PROOF: We write $M_n(R) = \sum_{i,j=1}^n Re_{ij}$, where e_{ij} are matrix units. Suppose, to the contrary, that every element of $M_n(R)$ is the sum of two idempotents. Then, by Lemma 2(1), $4e_{12} = 0$ and so $4R = 0$. Consider the element $a = e_{11} + e_{12} + e_{21}$, and choose idempotents $e = \sum r_{ij}e_{ij}$ and f such that $a = e + f$. Since $a - e = f = f^2 = a^2 - ae - ea + e$, we get $a^2 = a + ae + ea - 2e$. Comparing the coefficients of e_{11}, e_{12} and e_{21} on both sides, we get $1 = r_{12} + r_{21}$, $0 = r_{11} + r_{22} - r_{12}$ and $0 = r_{11} + r_{22} - r_{21}$, and therefore $1 = 2r_{12}$. Then $4R = 0$ implies that $1 = 4r_{12}^2 = 0$, which is a contradiction. $lacksquare$
LEMMA 4. Let \(R \) be a prime ring in which every element is the sum of two idempotents. If \(R \neq Z \), the centre of \(R \), then \(\text{char } R = 2 \) and \(Z \) is either 0 or \(GF(2) \).

PROOF: First, we claim that \(R \) cannot be reduced. Actually, if \(R \) is reduced, then every idempotent is central, and so \(R = Z \) by hypothesis, a contradiction. Hence \(R \) has a non-zero element \(a \) with \(a^2 = 0 \). By Lemma 2 (1), we conclude that \(\text{char } R = 2 \).

Now, let \(z \) be an arbitrary element of \(Z \). By hypothesis, we can write \(z = e + f \) for idempotents \(e, f \) in \(R \). Then it is easily observed that \(ef = fe \). Since \(\text{char } R = 2 \), we obtain that \(z^2 = e + f + 2ef = e + f = z \). Since \(R \) is prime, this implies that \(z \) is either 0 or 1. This completes the proof.

PROOF OF THEOREM 1: 1) \(\Rightarrow \) 3). It is well-known that \(R \) is a subdirect sum of subdirectly irreducible rings \(R \). Since, by Lemma 1, each \(R \) is either \(GF(2) \) or \(GF(3) \), \(R \) satisfies the identity \(x^3 = x \).

3) \(\Rightarrow \) 2). As is well-known, \(R \) is a commutative ring. Replacing \(x \) by \(2x \) in \(x^3 = x \), we obtain \(6x = 0 \). Further, replacing \(x \) by \(x^2 - x \) in \(x^3 = x \), we obtain \(3x^2 = 3x \). By making use of these, we see easily that \((2x^2)^2 = 4x^4 = -2x^4 = -2x^2 \) and \((x + 2x^2)^2 = x^2 + 4x^4 + 4x^2 = x^2 + 4x^4 + 4x^2 = x + 2x^2 + 3(x - x^2) + 6x^2 = x + 2x^2 \). Hence \(x \) is the sum of the idempotents \(-2x^2 \) and \(x + 2x^2 \).

2) \(\Rightarrow \) 1). Let \(a \) be an element of \(R \) with \(a^2 = 0 \). Then, by virtue of Lemma 2 (2), there exists an idempotent \(e \) such that \(a = 2e \) and \(4e = 0 \). Now, \(-e = f + g \) with some commuting idempotents \(f, g \). Then \(e = (e)^2 = -e + 2fg \), so \(2e = 2fg = 2efg \). Noting that \(fe = ef \), we see easily that \(a = 2e = 2efg \). Hence \(R \) is a reduced ring. As is well-known, every idempotent of the reduced ring \(R \) is central, and so \(R \) is commutative.

COROLLARY 1. Let \(R \) be a semiprime ring. If \(R \) has the property that every element is the sum of two idempotents, then the centre \(Z \) of \(R \) has the same property.

PROOF: Since \(R \) is semiprime, \(R \) is a subdirect sum of prime rings \(R_\lambda (\lambda \in \Lambda) \). By Lemmas 1 and 4, the centre \(Z_\lambda \) of \(R_\lambda \) is 0, or \(GF(2) \), or \(GF(3) \). Now we may regard \(Z \) as a subring of the direct product \(\prod_{\lambda \in \Lambda} Z_\lambda \). Hence \(Z \) satisfies the identity \(x^3 = x \). Then, by Theorem 1, every element of \(Z \) is the sum of two idempotents in \(Z \).

PROOF OF THEOREM 2: In view of Lemma 1, it suffices to show that every prime factor ring of \(R \) is commutative. Suppose, to the contrary, that a prime factor ring \(R' \) of \(R \) is not commutative. By [3, Corollary 1], the ring \(Q(R') \) of central quotients of \(R' \) is a full matrix ring over a division ring. Then, by Lemma 4, we have that \(R' = Q(R') \). Now, Lemmas 1 and 3 force a contradiction that \(R' \) is either \(GF(2) \) or \(GF(3) \).

COROLLARY 2. Let \(R \) be an Azumaya \(Z \)-algebra in which every element is the
sum of two idempotents. Then R satisfies the identity $x^3 = x$.

Proof: By [1, Lemma II.3.1], Z is a Z-direct summand of R, say $R = Z \oplus T$. Then $P = (P \cap Z) \oplus (P \cap Z)T$ by [1, Corollary II.3.7]. As is well-known (see, for example, [1, Theorem II.3.4]), R is a finitely generated Z-module, and therefore R is a PI-algebra. Hence, by Theorem 2, R/P is commutative. Then, by [1, Proposition II.1.11], we obtain $(P \cap Z)T = T$. Since $P \cap Z$ is a nil ideal of Z, and T is a finitely generated Z-module, we conclude that $T = 0$, and hence $R = Z$. Now, by Theorem 1, R satisfies the identity $x^3 = x$.

Proof of Theorem 3: By [2, Theorem 4.6], R is the finite direct sum of full matrix rings over local rings. Hence, by Lemmas 1 and 3, R is the finite direct sum of copies of $GF(2)$ and/or $GF(3)$.

Remark. As is shown in [5] (see also [4]), the following conditions are equivalent:

1) There exists an involution $*$ of R such that $xx^*x = x^*$ for all x in R;
2) R is an anti-inverse ring, that is, every element x in R has an anti-inverse x^*; $xx^*x = x^*$ and $x^*xx^* = x$;
3) For each element x of R there exists x^* in R such that $x^2x^* = x^*$ and $x^*x^2 = x$;
4) R is a (dense) subdirect sum of fields isomorphic to $GF(2)$ or $GF(3)$
5) R satisfies the identity $x^3 = x$.

References

Department of Mathematics
Okayama University
Okayama 700
JAPAN