ADDENDUM
 to the paper
 INEQUALITIES FOR THE MAXIMAL EIGENVALUE OF A NONNEGATIVE MATRIX

by LINA YEH

We gave an elementary proof of Theorem 4 in the paper, published in the Glasgow Mathematical Journal 39(1997), 275-284. The result provides an algorithm for approximating the maximal eigenvalue of a nonnegative matrix. Recently the author has learnt that the result can be proved immediately from Theorem 6.8 in [1]. Indeed, the paper [1] determines necessary and sufficient conditions for the convergence of an iterative sequence to the maximal eigenvalue. Their proof needs knowledge of graph theoretical concepts.

By setting $x=\left[\begin{array}{lll}1 & 1 & \ldots\end{array}\right]^{T}$, we have

$$
\begin{aligned}
r\left(A^{k} x\right) & \equiv \sup \left\{\mu: \mu A^{k} x \leq A^{k+1} x\right\} \\
& =\min _{i=1}^{n} \frac{\left(A^{k+1} x\right)_{i}}{\left(A^{k} x\right)_{i}} \\
& =\min _{i=1}^{n} \frac{r_{i}\left(A^{k+1}\right)}{r_{i}\left(A^{k}\right)} \\
& =\min _{i=1}^{n} r_{i}^{(k)} .
\end{aligned}
$$

Similarly, we have $R\left(A^{k} x\right) \equiv \inf \left\{\mu: \mu A^{k} x \geq A^{k+1} x\right\}=\max _{i=1}^{n} r_{i}^{(k)}$. Now by Theorem 6.8 in [1], $\lim _{k \rightarrow \infty} r\left(A^{k} x\right)=r=\lim _{k \rightarrow \infty} R\left(A^{k} x\right)$. It follows that $r=\lim _{k \rightarrow \infty} \max _{i=1}^{n} r_{i}^{(k)}=\lim _{k \rightarrow \infty}$ $\min _{i=1}^{n} r_{i}^{(k)}$, and this proves the second part of Theorem 4.

REFERENCE

1. S. Friedland and H. Schneider, The growth of powers of a nonnegative matrix, SIAM J. Alg. Disc. Meth. 1 (1980), 185-200.

Department of Mathematics
Soochow University
Taipei
Taiwan

