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A NOTE ON OPEN EXTENSION OF MAPS 

J. K. KOHLI 

0. Introduction. In recent years there has been some interest in trying to 
improve the behaviour of maps by extending their domains (see Whyburn [10], 
Baur [3], Krolevec [8], Dickman [5], Franklin and Kohli [6]). It was shown in 
[6] that every map can be extended to an open map so that certain properties 
of the domain and range are preserved in the new domain. In [6] and [7] we 
also related the topological properties of the domain and range of the mapping 
with the new domain; also these results were then used to obtain analogues 
and improvements of recent theorems of Arhangelskii, Coban, Hodel, Keesling, 
Nagami, Okuyama, and Proizvolov. In this note we give a method of unify
ing the domain and range of a mapping so as to yield a meaningful open 
extension. This method of unifying the domain and range of a mapping is a 
modification of Whyburn's "unified space technique" [10] (also see Dickman 
[5]). But our extension space does not satisfy separation axioms, although in 
some special cases it can be modified so as to be Hausdorff or regular. This 
modified extension is useful in obtaining partial improvements of recent 
theorems of Arhangelskif, Coban, and Proizvolov. 

1. A unified open extension. Let / be a function, not necessarily con
tinuous, from a topological space X into a topological space F. We call a 
point x £ X and its image/(x) £ F singular points of X and F, respectively, 
if there is an open set U in X containing x such that/(£7) is not a neighbour
hood of f(x). In the sequel that follows 61 and T will always denote the sets of 
singular points of X and F respectively. 

Without any loss of generality, we may assume that the spaces X and F 
are disjoint. Let W denote the set theoretic union of X and F Define a sub
set Q of W to be open if it satisfies the following conditions. 

(i) The sets Q C\ X and Q P F are open in X and F respectively. 
(ii) The set Q P S = 0 or else for each x £ Q P S, the set Q P F contains 

a neighbourhood of f(x) in F. 
Let T denote the collection of all open sets (i.e., all sets satisfying (i) and (ii) 

above). Then the following statements are easily verified. 

1.1. The collection r is a topology for W. 
1.2. The set X is closed in W and the set Y is open in W. 
1.3. The retraction map r from W onto F, defined by r(x) = f(x) for x 6 X 
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and r(x) = x for x Ç Y, is an open function. If the function f is continuous, so 
also is r. 

1.4. / / the function f is closed (respectively compact), then the retraction map 
r as defined in 1.3 is a closed (respectively compact) function. 

The space (W, r) is called a unified open extension space for the function / . 
There may exist topologies on W distinct from r which satisfy the conditions 
1.1-1.4. For example, let the condition (ii) be replaced by (ii'): the set 
Q Pi S = 0 or else for each x f Ç H 5 , the set Q P F contains a deleted 
neighbourhood of f(x). Then the conditions (i) and (ii') define a topology r 
on W such that r C / . It is easy to give examples where r and / do not 
coincide. 

In the sequel, by the space W we shall always mean the space (W, T), 
unless expressly stated otherwise. 

It is routine to verify the following assertions. Hence the proofs are omitted. 

1.5. The space W is T0 if and only if X and Y are T0. 
1.6. The space W is never Ti and hence never T2. Furthermore, the space W is 

never regular. 
1.7. The space W is connected if the spaces X and Y are connected. 
1.8. The space W is locally connected if the spaces X and Y are locally con

nected. 

The assertion 1.6 tells us that the space W is never T\ and hence never T2. 
Nevertheless, in some special cases it is possible to reduce I f to a TYspace 
or to a TYspace by deleting some points of W. (This was first observed by 
Professor S. P. Franklin in an example.) The next result tells us under what 
conditions on the function/ and on the set of singular points of X and Y, W can 
be reduced to a TYspace or TYspace. 

1.9. If singular points of X and Y do not accumulate, f\S is one-to-one and 
if X = W - T, then 

(1) the space X is T\ if the spaces X and Y are Th 

(2) the space X is T2 if the spaces X and Y are T2, 
(3) the function f = r\X is open, and 
(4) the function f is continuous if f is. 

Proof. (1). Suppose that the spaces X and Y are T± and let Xi, x2 be any two 
distinct points of X. Then the following three cases arise: 

Case I. Both of the points Xi and x2 are in X. Since X is a TYspace, there 
are neighbourhoods Ni and N2 (in X) of x± and x2 respectively such that 
Xi (Z iV2 and x2 £ NL Therefore, the sets (iVi W F ) n l and (N2 U F) C\ X 
are neighbourhoods in X of Xi and x2 respectively such that x2 $ (iVi U F) Pi X 
and X! $ (N2 U F) Pi X. 

Case II. One of the points X\ and x2 lies in X and othe other lies in F. Suppose 
Xi G X. Then x2 G X — X. Since X = W — T, x2 Ç F — T. If Xi is a non-
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singular point of X, then by hypothesis on the set S of singular points of X, 
there is a neighbourhood N(\n X) of x\ which contains no singular point of X. 
Thus N and X — X are disjoint neighbourhoods in X of Xi and x2 respectively. 
If Xi is a singular point of X, then f(xi) 9^ x2 and by the hypothesis on the 
set 5 of singular points of X there exists a neighbourhood iV(in X) of Xi which 
contains no other singular points of X. Since F is a TVspace, there exists a 
neighbourhood Ni (in F) of f(Xl) such that x2 G NL Then (N U Nt) H X 
and Y — T are neighbourhoods in X of Xi and x2 respectively such that 
x2 g (iV U iVi) n ï a n d x i ? F - T. 

Case III. Both of the points Xi and x2 are in F. Since F is a 7Yspace, there 
are neighbourhoods Ni and N2 (in F) of Xi and x2 respectively such that 
x2 (t iV"i and Xi ? iV2. Since F is open in IF, the sets N1 C\ X and N2 C\ X are 
neighbourhoods in X of Xi and x2 respectively. 

(2) Suppose that the spaces X and F are T2. Let Xi and x2 be any two distinct 
points of X. The following three cases arise: 

Case I. Both of the points Xi and x2 are in X. Since X is T2, there are disjoint 
neighbourhoods Ni and iV2 (in X) of Xi and x2 respectively. By hypothesis on 
the set S of singular points of X, the neighbourhoods Ni and iV2 can be so 
chosen that they contain no other singular point of X. If the points x± and x2 

are nonsingular points of x, then N± and N2 are disjoint neighbourhoods in X 
of Xi and x2 respectively. If Xi is a singular point and x2 is a nonsingular point, 
then (Ni \J Y) — T and iV2 are disjoint neighbourhoods in X of xx and x2 

respectively. Since/15 is one-to-one, if both of the points Xi and x2 are singular 
points of X, then f(x\) 9^ f(x2). Since F is a TVspace, there exist disjoint 
neighbourhoods N± and N2 (in F) of /(xi) and f(x2) respectively. Then 
(N1 \J Nxf) H X and (N2 U N2') C\ X are disjoint neighbourhoods in X of 
x\ and x2 respectively. 

Case II. Only one of the points #1 and x2 belongs to X. Suppose Xi G X. 
Then x2 G X — X = F — T. By hypothesis on the set 5 of singular points 
of X, there exists a neighbourhood iV (in X) of Xi which contains no other 
singular point of X. If Xi is a nonsingular point of X, then N and F — T are 
disjoint neighbourhoods in X of Xi and x2 respectively. If Xi is a singular point 
of X, then/(xi) g X. Hence/(xi) 7̂  x2. Since F is a 7Yspace, there are dis
joint neighbourhoods iVi and N2 in Fof/(xi) and x2 respectively. Consequently, 
(N \J Ni) H X and N2 C\ X are disjoint neighbourhoods in X of Xi and x2 

respectively. 
Case III. Both of the points Xi and x2 are in F. Since F is a TVspace there 

exist disjoint neighbourhoods iV*i and N2 in F of Xi and x2 respectively. Since 
F is open in W, Ni C\ X and N2C\ X are disjoint neighbourhoods in X of 
Xi and x2 respectively. 

(3) Since the singular points of F do not accumulate, the set T is closed in F. 
Since F is open in W, the set F — T is open in W. In order to show that the 
function/ is open, let V be an open set in X. Then there exists an open set U 
in W such that V = U fMW - T). The set 
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j(v) =j(vnx) u / (7n (F - T)) =f(vr\x) u (vn ( F - T)). 
If f(V Pi X ) is open in F, the s e t / ( F ) , being the union of two open sets, is an 
open set. Suppose / ( V P\ X) is not a neighbourhood of its point y. Then 
y == f(x) for some i f F H I and x is a singular point of X. Since U is open 
in IF, there is a neighbourhood iV in Y of y such t h a t TV C U P\ F. By the 
hypothesis on the set T of singular points of F, iV can be so chosen t h a t it 
contains no singular points of F other than y. Then TV — {3/} C V C\ ( F — T). 
Therefore, NCf(Vr\X) KJ (VC\ ( F - T)) = f{V). Since the set f(V) 
contains a neighbourhood of each of its points, it is an open set. 

(4) S i n c e / is continuous, the retract ion m a p r is continuous and the function 
/ being the restriction of r to X is continuous. T h e proof of the assertion 1.9 
is now complete. 

1.10. If the singular points of X and Y do not accumulate, f\S is one-to-one 
and if X = W — T, then the space X is locally compact Hausdorff if X and Y 
are locally compact Hausdorff. 

Proof. Since the spaces X and F are Hausdorff and since the hypothesis of 
1.9 is satisfied, it follows t h a t the space X is Hausdorff. Let x Ç Ï b e any point . 
Now the following two cases arise: 

Case I. T h e point x £ X. Since the space X is locally compact , there is a 
compact neighbourhood N (in X) of x. By hypothesis on the set S of singular 
points of X, the neighbourhood N can be chosen so t h a t it contains no other 
singular point of X. If x is a nonsingular point of X, then N is a compact 
neighbourhood of x in W. If x is a singular point of X, t h e n / ( x ) is a singular 
point of F. Since F is locally compact and since the singular points of F do not 
accumulate, there is a compact neighbourhood Nx (in F) of f(x) which con
tains no other singular points of F. Then N \J Nx is a compact neighbourhood 
of x in W and {N VJ Nx) C\ X = (N VJ Nx) - \ f{x)) is a neighbourhood of x 
in X. We shall show t h a t the set (N U Nx) — {f(x)} is compact . Let 
{xa}aeD be a net in (N U Nx) — \f(x)\. Since N \J Nx is compact , the net 
Maw has a cluster point p £ N KJ Nx. If p 9* f(x) then p Ç (TV W A^) -
{ / ( # ) } . If P = f(x), then x is also a cluster point of the net {xa}a€Z) . In either 
case the net {xa}aeD has a cluster point in (N VJ Nx) — { f(x)}. So (TV U Nx) — 
{ f(x)} is a compact neighbourhood of x (in X ) . 

Case I I . T h e point x Ç Î - I . Since F is locally compact and since the 
singular points of F do not accumulate , there is a compact neighbourhood N 
of x in F which contains no singular points of F. Then N = N Pi X is a 
compact neighbourhood of x G X . 

1.11. Suppose that singular points of X and Y do not accumulate and suppose 
f\S is one-to-one. If X and Y are 7"3, then the space X is Ts. 

Proof. Let F be a closed set in X and let x G F be any point of X. T h e 
following two cases arise: 
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Case I. The point x is a singular point of X. Since F is closed in X, the set 
X P F is closed in X and the set F P F is closed in F — T. Now the point 
/ (x) cannot be a limit point (in Y) oî F C\ Y. For, if f(x) is a limit point 
(in Y) oî F r\ X, then since x is a limit point in W of {/(#)}, the point x is a 
limit point of F in X. Therefore, the set (F P Y) KJ (T — {/(#)}) *s closed 
in Y. Since Y is r3 , there exist disjoint open sets N\ and N2 in F containing 
f(x) and (^FP F) U (T — {/(#)}) respectively. Since X is r3 , there exist 
disjoint open sets 7V3 and N4 of X containing x and F C\ X respectively. Then 
(Ni VJ Nz) P X and (N2 W N4) Pi X are disjoint neighbourhoods in X of x 
and T7 respectively. 

Case II. The point x is not a singular point of X. If x Ç X, then since X is 
Tzy there are disjoint open sets Ni and iV2 of X containing x and F C\ X 
respectively (in case F P X = 0, let iV2 = 0). By the hypothesis on the set 6* 
of singular points of X, Ni can be chosen so that it contains no singular point 
of X. Then N\ and (N2 U Y) C\ X are disjoint neighbourhoods in X of x and F 
respectively. If x 6 (X — X), then since F P F is closed in ( F — T) and 
since F is Tz, there are disjoint neighbourhoods N± and 7V2 in F of x and 
r U ^ H F ) respectively. Then A^ P X and (Z U 7V2) P X are disjoint 
neighbourhoods in X of x and F respectively. 

In 1966, Proizvolov [9] showed that in the class of locally compact spaces 
weight and metrizability are inversely preserved under open finite-to-one 
maps. Later that year, Arhangelskn [1; 2] proved that they were always 
inversely preserved under clopen finite-to-one maps. In 1967, Coban [4] showed 
that hereditary paracompactness (metacompactness, Lindelôf property) are 
inversely preserved under open-finite-to-one maps. (Some separation axioms 
are required for all these results.) In [6], we showed that in all the above 
mentioned results it is sufficient to require that / be open except at finitely 
many points (i.e. if the set S of singular points is finite). But the methods of 
[6] and [7] are not applicable if the set S of singular points of X is infinite. 
Here we show that in some special cases the result still holds even if the set 5 
is infinite. 

If / is finite-to-one, the singular points of X and F do not accumulate and 
if/ |5 is one-to-one, t h e n / : X —> F is an open finite-to-one map and hence X 
will inherit properties from F by the results quoted in the above paragraph 
(1.9, 1.10 and 1.11 ensure that the needed separation axioms also lift properly). 
Since these properties are all hereditary, X must also enjoy them. For the 
convenience of the reader we list the precise statements of the improved 
theorems (assume all spaces to be Hausdorff and all maps to be continuous 
onto). 

1.12. Let f be a finite-to-one map of X onto Y such that singular points of X 
and Y do not accumulate, and letf\S be one-to-one. Then the following statements 
are true. 
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(a) (Proizvolov) If X and Y are locally compact, then weight X S weight Y. 
If Y is metrizable, so is X. 

(b) (ArhangelskiT) / / X and Y are locally compact and if f is a closed mapt 

then weight X S weight Y. Further, if Y is metrizable, then so is X. 
(c) (Coban) If X is T^-space and if Y is hereditarily paracompact, then X is 

hereditarily paracompact. 
(d) (Coban) If Y is hereditarily metacompact {respectively, Lindelôf), then X 

is hereditarily metacompact (respectively, Lindelôf). 

Let Y be the real line with its usual topology and let X be Y with the 
integers as an open discrete set. Then the identity mapping of X onto Y 
satisfies the hypotheses of 1.12 and the set S of singular points of X is infinite. 

In conclusion, the author wishes to express his thanks to Professor Richard 
A. Alo for his interest and encouragement in writing this note and to Professor 
S. P. Franklin for many useful discussions. 
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