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Genus 2 Curves with Quaternionic
Multiplication

Srinath Baba and Håkan Granath

Abstract. We explicitly construct the canonical rational models of Shimura curves, both analytically

in terms of modular forms and algebraically in terms of coefficients of genus 2 curves, in the cases of

quaternion algebras of discriminant 6 and 10. This emulates the classical construction in the elliptic

curve case. We also give families of genus 2 QM curves, whose Jacobians are the corresponding abelian

surfaces on the Shimura curve, and with coefficients that are modular forms of weight 12. We apply

these results to show that our j-functions are supported exactly at those primes where the genus 2 curve

does not admit potentially good reduction, and construct fields where this potentially good reduction

is attained. Finally, using j, we construct the fields of moduli and definition for some moduli problems

associated to the Atkin–Lehner group actions.

1 Introduction

An abelian surface is said to have quaternionic multiplication, or QM for short, if

its endomorphism ring admits an embedding by an order O in an indefinite non-

split quaternion algebra over Q . In this paper we will only consider cases where O

is a maximal order. A genus 2 curve is said to have QM if its Jacobian does. Given

O, let O
1 denote the elements in O with norm 1. This group acts naturally, via an

embedding of O into M2(R), on the upper half-plane H. The quotient V = H/O1,

which is a compact Riemann surface called a Shimura curve, is the moduli space of

the natural moduli problem of classifying abelian surfaces with QM by O. Shimura

proved that this curve admits a model over Q . Our main goal in this paper is to

construct explicitly this canonical model of the Shimura curves of discriminants 6

and 10.

The complex multiplication (or CM) points on V will play a big role for us. A

QM abelian surface has complex multiplication if the center of the ring End(A) is a

complex quadratic order O. Associated to every optimal embedding ι of a quadratic

order O into O is a fixed point zι ∈ H such that the corresponding abelian surface

has CM by O. If disc(O) = D, we say that the resulting point on the Shimura curve

has CM by D.

The Shimura curve V comes equipped with a natural group of involutions which

is called the Atkin–Lehner group. This group has 22n elements, where 2n is the num-

ber of primes dividing the discriminant of the quaternion algebra. The natural for-

getful maps from V to other moduli spaces, which are induced by forgetting parts of

the information given by the embedding of O into End(A), factor through quotients
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of V by subgroups of the Atkin–Lehner group. In particular, the natural map from

V to the moduli space A2 of principally polarized abelian surfaces factors as a pro-

jection V → V/G, where G has 2 or 4 elements, and a generically injective map. The

case where G has 4 elements is called the twisting case.

The problem that we consider has two sides to it: on one side there are the abelian

surfaces with QM considered as complex tori. There is a classical construction as-

sociating to a point z on the upper half-plane H the period matrix of a QM abelian

surface. On the other side, there are the genus 2 curves whose Jacobians have QM.

Families of such curves have been constructed by Hashimoto and Murabayashi in the

cases of discriminant 6 and 10. What is missing is an explicit way to link a genus 2

curve in such a family to the point z in the upper half-plane giving its complex Ja-

cobian. In addition, equations for Shimura curves have been computed by Kurihara

and others. For example, it is known that in the case of O having discriminant 6,

the Shimura curve has equation x2 + y2 + 3 = 0 defined over Q . However, there is

no explicit correspondence between points on this conic and points z ∈ H. In this

paper, we construct such correspondences in the discriminant 6 and 10 cases, and

derive a complex uniformized family of genus 2 curves whose Jacobians are exactly

those given by the classical construction.

The strategy in the paper is the following. On the one hand, there is a rational

map of the Shimura curve into the moduli space M2 of genus 2 curves factoring

through the action of the Atkin–Lehner group (the cases we consider are twisting

cases in which the Atkin–Lehner groups have exactly 4 elements). We compute equa-

tions for the image in M2 in terms of Igusa’s invariants J2, . . . , J10 using the work

of Hashimoto and Murabayashi on families of genus 2 curves with QM [10]. Then

we solve these equations, and get a parametrization of the image curve. This is now

given in terms of the coefficients of the sextics defining the genus 2 curves. On the

other hand, we determine the ring of modular forms with respect to O
1, and use this

to construct a generator of the rational function field in terms of modular forms. Fi-

nally, we are able to find some CM points on the Shimura curve where we know both

sides, i.e., both the genus 2 curve and the values of the modular forms. We then use

this information to show that our two functions are equal. We denote the function

we have constructed by j. This function is really defined on the quotient curve of the

Shimura curve by the Atkin–Lehner involutions, so finally we construct functions on

V which give the canonical structure of V as a curve over Q .

By using a construction of Mestre, we recover the genus 2 curve from its j-invar-

iant. Using the analytic description of j, we are thus able to construct a sextic whose

coefficients are modular forms of weight 12, such that at any point z in H, except for

a finite set of orbits which will also be determined in the course of our investigations,

the genus 2 curve Cz described by the sextic has Jacobian Az. An important difference

between our families and the ones given in [10] is that the former are families over

V , while the latter factor via a cover of V .

The j-function that we define has many of the properties that its namesake in

the elliptic curve case has. First, it follows immediately from our construction that

j(C) generates the field of moduli of the genus 2 curve C . Contrary to the elliptic

curve case, the genus 2 curve can in general not be defined over its field of moduli.

We express the Mestre obstruction for this curve in terms of j, and hence we know
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in principle every possible field of definition. Furthermore, we show that for any

algebraic point on V , the prime places where j has non-zero valuation are exactly

those where the genus 2 curve does not have potentially good reduction. This shows

that our j-function has some arithmetic significance. Finally, using j, we construct

the fields of moduli for the various moduli problems described by the Atkin–Lehner

involutions.

One point in involving modular forms is, of course, to be able to numerically

compute values of our j-function. To calculate values of modular forms on a compact

Shimura curve, one can embed the curve in a Hilbert modular surface. By restricting

Hilbert modular forms on H × H to the embedded curve and putting in natural

correction factors, one gets modular forms on the Shimura curve. We describe this

in Appendix A. In our cases, the curves can be embedded into the Hilbert modular

surface corresponding to Q(
√

5), and one can use the corresponding Eisenstein series

on H×H to efficiently compute values of the modular forms occurring in this paper

to arbitrary precision.

The obvious directions that should emerge from this work are extensions to higher

discriminant and higher level. In the higher discriminant case, the difficulty lies in

the absence of the Hashimoto–Murabayashi family. On the other hand, understand-

ing the ring of modular forms may yield some success. In the cases that are considered

here, better understanding of the behaviour of the j-invariant at algebraic points (in

particular singular moduli) should prove useful in arithmetic applications.

The computations required in this paper were done using the computer algebra

systems Macaulay 2 [7] and Pari/GP [20].

2 Preliminaries

2.1 Shimura curves

Let B = B∆ denote the indefinite quaternion algebra of discriminant ∆ over Q ,

where ∆ = p1 · · · p2n. Let x 7→ x∗ be the canonical involution on B, so nr(x) = x∗x,

and let O be a maximal order in B∆. Following Rotger [23], we fix an element µ ∈ O

with µ2 = −∆ and we call the pair (O, µ) a principally polarized maximal order in B.

Define the positive anti-involution a 7→ a ′ on B by a ′ = µ−1a∗µ, i.e., the quadratic

form a 7→ tr(a ′a) is positive definite. Let R be a maximally embedded subring of O

invariant under ′, i.e., R = QR ∩ O and R ′ = R. We call such rings stable.

Let S(O,µ) be the set of triples [A, ρ, ι], where A is an abelian surface, ρ is a prin-

cipal polarization on A, and ι : O → End(A) is an embedding such that the Rosati

involution defined by ρ on ι(O) is ′. We recall how such triples are constructed. Fix

an embedding θ : B → M2(R). For any point z ∈ H, consider the lattice Λz = θ(O)vz

in C2, where vz =
(

z 1
)t

. Define Az = C2/Λz . On Λz , define the Riemann form

Ez : Λz × Λz → Z

Ez(θ(λ1)vz, θ(λ2)vz) = tr(λ∗
1µλ2).

Then Ez defines a principal polarization ρz on Az such that the Rosati involution on

EndQ (Az) corresponds to the positive anti-involution a 7→ a ′ on B. This defines a
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triple [Az, ρz, ιz], where Az is an abelian surface, ρz a principal polarization on Az and

ιz : O → End(Az) an injection.

Let R be a stable subring of O. Define an equivalence relation ∼R on S(O,µ) as fol-

lows: [A1, ρ1, ι1] ∼R [A2, ρ2, ι2] if and only if there exists an isomorphism φ : A1 →
A2 such that φ∗(ρ2) = ρ1, and for every r ∈ R, the following diagram commutes.

A1
φ //

ι1(r)

��

A2

ι2(r)

��
A1

φ // A2

It turns out that there exists a coarse moduli space, which we denote by VR, that

classifies triples [A, ρ, ι] up to equivalence by the relation ∼R. This situation was

studied by Jordan [14] and Rotger [23], we describe this moduli space below.

The normalizer group NB+ (O) acts on H as fractional linear transformations

through θ. This generates a subgroup of Aut(H) which we denote by Γ̃. The sub-

group of Γ̃ generated by elements of O of norm 1 is denoted by Γ. Let V = H/Γ,

which is a compact Riemann surface. The group Γ̃/Γ ∼= (Z/2)2n, the Atkin–Lehner

group, acts on V . Any coset w ∈ Γ̃/Γ is of the form w = γΓ, where γ ∈ O with

nr(γ) = d > 0 and d | ∆. We write w = wd. For any subgroup G of Γ̃/Γ, we denote

VG = V/G. We also let Vd = V/〈wd〉 for any positive divisor d of ∆.

In [23], an element χ ∈ O ∩ NB(O) is called twisting if tr(χ) = tr(χµ) = 0.

Note that this implies that nr(χ) < 0, so if, additionally, χ ∈ O is assumed to be

primitive, then we have B = Q(µ, χ) where µ2 = −∆, χ2 = m, and µχ = −χµ, for

some positive integer m dividing ∆. A quadratic stable ring R is called twisting if it

contains a twisting element. Not all pairs (O, µ) have twisting subrings, and if they

exist there are exactly 2 of them. From now on, we assume that this is the case (it

holds for ∆ = 6, 10). The twisting rings naturally correspond to two elements wm,

wm ′ of the Atkin–Lehner group with mm ′ = ∆. We denote the twisting rings by Rm

and Rm ′ respectively and let R∆ = Z[µ]. The subgroup of the Atkin–Lehner group

generated by wm and wm ′ has 4 elements and is denoted by W .

The following result shows how we can identify the moduli spaces above with

quotients of V by appropriate subgroups of the Atkin–Lehner groups.

Theorem 2.1 There are natural identifications VO = V , VRd
= Vd for d ∈

{m, m ′, ∆} and VZ = VW . For any other stable quadratic ring R, we have VR = V .

This theorem is a reformulation of more general results proved in [23]. In fact,

the following holds:

[Az, ρz, ιz] ∼R [Az ′ , ρz ′ , ιz ′] if and only if the points z and z ′ are related by

z ′ = γz, where γ = wε ∈ NB+ (O), w ∈ Z(R), ε ∈ O∗ and wµ = nr(ε)µw.

Here Z(R) denotes the centralizer of R in O. It is straightforward to verify that this

claim is equivalent to Theorem 2.1.

We recall some fundamental facts that will be used in this paper. First, the curve

V has a canonical model defined over Q (see [26]). The Atkin–Lehner involutions
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are also defined over Q , so all quotient curves VG are defined over Q . Second, for

any imaginary quadratic order OD that embeds into O, the coordinates of a point

with complex multiplication by OD on any rational model of V are in the ring class

field H(OD) of OD (see [27]). The number of points on V with given CM can be

computed by Eichler’s theory of optimal embeddings, see [28].

Define the field of moduli kZ of [A, ρ]/Q̄ as the smallest extension of Q such

that for any σ ∈ Gal(Q̄/kZ), there is an isomorphism φσ : A → Aσ such that

φ∗
σ(ρσ) = ρ. For any subring R of End(A), we define the field of moduli kR as the

minimal number field containing kZ with the property that for any σ ∈ Gal(Q̄/kR),

there is an isomorphism φσ : A → Aσ, φ∗
σ(ρσ) = ρ such that the following diagram

commutes for each r ∈ R

A

r

��

// Aσ

rσ

��
A // Aσ

Let M2 denote the moduli space of genus 2 curves, and A2 denote the moduli

space of principally polarized abelian surfaces. The open Torelli map assigns to a

point C ∈ M2 the pair (Pic0(C), Θ), where Θ is the theta divisor that embeds C

into Pic0(C). Thus, M2 maps onto a Zariski open subset of A2, and so the general

principally polarized abelian surface is a Jacobian. Let Ẽ = Ẽ∆ denote the image of

the natural forgetful map V → A2, and let E = E∆ denote the intersection with M2.

We have the following picture:

A2 M2
? _oo

V
4:1 // Ẽ

?�

OO

E
?�

OO

? _oo

2.2 Igusa Invariants and Mestre’s Construction

Let C be a non-singular genus 2 curve, with a hyperelliptic model

C : z2
= a6x6 + a5x5 y + a4x4 y2 + a3x3 y3 + a2x2 y4 + a1xy5 + a0 y6.

Igusa [13] defined invariants Ji = Ji(C), for i = 2, 4, 6, 10, which are homogenous

polynomials of degree i in the coefficients ak having rational coefficients. In partic-

ular, 210 J10 is the discriminant of the sextic. Two curves are isomorphic if and only

if they define the same point p = [ J2, J4, J6, J10] in the weighted projective space

P(2, 4, 6, 10). The minimal field k over which the point p is defined is called the field

of moduli of C .

Mestre [18] showed how to solve the inverse problem of constructing the genus 2

curve C from its Igusa invariants. He constructed a conic

(2.1) L =

∑

1≤i, j≤3

Ai jxix j ,
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and a cubic

(2.2) M =

∑

1≤i, j,k≤3

ai jkxix jxk,

where the coefficients Ai j and ai jk can be expressed in terms of the Ji ’s. The conic

L is degenerate if and only if the curve C has more automorphisms than just the

hyperelliptic involution. In this case, we say that C has non-trivial involutions. If

so, then it follows from [3] that C is defined over k. If not, then the curve C can in

general not be defined over k. In this case, C can be defined over a field extension K/k

if and only if L is isotropic over K. It is therefore natural to consider the even Clifford

algebra over k associated with L, and we denote it HC . The quaternion algebra HC is

called the Mestre obstruction of C , and it has the property that C can be defined over

K if and only if K splits HC . One recovers a hyperelliptic model z2 = f (x, y) from

the Igusa invariants by finding a parametrization xi = xi(x, y) of the solutions to the

equation L = 0 and setting

f (x, y) =

∑

1≤i, j,k≤3

ai jkxi(x, y)x j (x, y)xk(x, y).

3 Discriminant 6 Case

If k is a field and a, b ∈ k∗, then we use the notation (a, b)k for the quaternion algebra

over k generated by elements i and j satisfying i2 = a, j2 = b and i j + ji = 0.

Let B = (2,−3)Q , so ∆ = disc(B) = 6. We choose a maximal order O =

Z[i, ( j + 1)/2] in B, and an element µ = 2 j + i j ∈ O with µ2 = −6. We let

R6 = Z[µ] ∼= Z[
√
−6]. There are two twisting rings in this case, namely R2 =

Z[i] ∼= Z[
√

2] and R3 = Z[ j + i j] ∼= Z[
√

3].

From [25] it follows that the curve V has genus 0 and that there are 2 classes

of elliptic fixed points of order 2 and 3 respectively for the action of Γ on H. The

involutions wd on V , for d = 2, 3, 6, each have 2 fixed points. In the cases of d = 2

and d = 3, these are exactly the elliptic points of order d. Let zd, z ′d denote the fixed

points of wd on V . Let xd and x ′
d be a choice of points on the upper half plane that

descend to the points zd, z ′d, for d = 2, 3, 6. By abuse of notation, we denote also by

zd, z ′d the images of these points on quotient surfaces VG, for any subgroup G of the

Atkin–Lehner group.

Lemma 3.1 The curve VW is isomorphic to P1
Q and z2, z3, z6 ∈ VW (Q).

Proof The points z2, z ′2 are points with complex multiplication by Q(
√
−1), so

z2, z ′2 ∈ V (H(Q(
√
−1))) = V (Q(

√
−1)). These two points are transposed by w3

and also by complex conjugation. We conclude that z2, z ′2 ∈ V3(Q). In particular

z2 ∈ VW (Q) and we get that VW
∼= P1

Q .

The same argument, using z3, z ′3 ∈ V (H(Q(
√
−3))) = V (Q(

√
−3)), gives that

z3 ∈ VW (Q).

The fixed points of w2 on V3 are the two points z2 and z6. Since V3
∼= P1

Q , we

conclude that z2 and z6 are defined over a common minimal field F at most quadratic
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over Q . If F 6= Q , then we would have that z2 and z6 are conjugates under the

nontrivial element σ ∈ Gal(F/Q). Hence the images on VW are also conjugates, but

since z3 ∈ VW (Q) we would get z3 = z6 on VW , a contradiction.

3.1 The Ring of Modular Forms

For any Fuchsian group G acting on H, we denote by vi(G) the number of elliptic

fixed points of order i for G, and by sk(G) the dimension of the space of holomorphic

weight k modular forms for G. Let Γd = Γ ∪ wdΓ and ΓW =
⋃

w∈W wΓ. Using the

formulae in [25], it follows that the degree of the divisor of a modular form of weight

k is k/6 and that sk = 1− k + 2⌊k/4⌋+ 2⌊k/3⌋ for k even and k > 2, and 0 otherwise.

We compute the following table:

G v2 v3 v4 v6 s4 s6 s12

Γ 2 2 0 0 1 1 3

Γ2 0 1 2 0 0 1 1

Γ3 1 0 0 2 0 0 2

Γ6 3 1 0 0 1 0 2

ΓW 1 0 1 1 0 0 1

We conclude that S4(Γ) is generated by a form h4(z) which vanishes necessarily at x3

and x ′
3. Similarly, S6(Γ) is generated by a form h6(z) which vanishes necessarily at x2

and x ′
2. We assume that h6 is normalized so that h3

4/h2
6(x6) =

√
−3. We fix a basis

of S12(Γ) by the forms h3
4, h2

6, h12, where h12 is chosen so that it vanishes at x6 and x ′
6.

We normalize h12 so that h2
12 + 3h4

6 + h6
4 = 0. Finally, the action of the Atkin–Lehner

group on the modular forms is given by

w6(h4) = h4 = −w2(h4) = −w3(h4),

w2(h6) = h6 = −w3(h6) = −w6(h6),

w3(h12) = h12 = −w2(h12) = −w6(h12).

Proposition 3.2 The modular forms h4 and h6 are algebraically independent, and

∞
⊕

k=0

S2k(Γ) = C[h4(z), h6(z), h12(z)] ∼= C[h4, h6, h12]/(h2
12 + 3h4

6 + h6
4)

as graded rings.

Proof To see that h4(z) and h6(z) are algebraically independent, first note that any

linear combination of modular forms that is identically 0 must have terms of the

same weight, and so any polynomial in h4(z) and h6(z) that vanishes identically must

be a linear combination of monomials of the same weight. Also, any polynomial in

h4(z) and h6(z) that is identically zero is divisible by h6, for if not, we could write it as

ch4(z)m + h6(z)P(h4(z), h6(z)) for some polynomial P and non-zero constant c, and

this would vanish at x2 but not at x3. Thus, dividing by h6(z) would give an algebraic

relation of lower degree, and so algebraic independence follows by induction on the

degree of the polynomial.
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To see that the whole ring of modular forms is generated by h4, h6 and h12, we

observe that for weights k ≤ 12 it follows from the dimension formula that all forms

are combinations of h4, h6 and h12. It also follows that dim Sk+12 = dim Sk + 2 for

all k. The same recursion formula holds for the graded polynomial ring

C[h4, h6, h12]/(h2
12 + 3h4

6 + h6
4),

and we are done.

Now, we define the weight 0 modular form jm, invariant under the action of w6,

as jm = 4h2
6/3h3

4. Since the degree of the divisor of a modular form of weight 12 is 2,

jm defines a double cover V → P1, and we get the following.

Proposition 3.3 The holomorphic map jm : V6 → P1 is an isomorphism. Further-

more jm(w2(z)) = jm(w3(z)) = − jm(z).

3.2 Equations for E6 and the Arithmetic j-Function

Our goal is to give equations for E6 and construct an embedding of E6 into P1 in

terms of the Igusa invariants Jn. Our starting point is the following important result

from [10].

Theorem 3.4 The following equations give a family of QM-curves with respect to O:

y2
= x(x4 − Px3 + Qx2 − Rx + 1)

with

4s2t2 − s2 + t2 + 2 = 0,

P = −2(s + t), R = −2(s − t), Q =
(1 + 2t2)(11 − 28t2 + 8t4)

3(1 − t2)(1 − 4t2)
.

We rewrite these equations in the coordinates on M2 given by the Igusa invariants

as follows.

Proposition 3.5 The equations for E6 are

(3.1a) J6
2 − 68 J4

2 J4 + 1296 J2
2 J2

4 + 216 J3
2 J6 − 4608 J3

4 − 6912 J2 J4 J6 + 15552 J2
6 = 0,

(3.1b) J5
2 − 60 J3

2 J4 + 864 J2 J2
4 + 216 J2

2 J6 − 5184 J4 J6 + 248832 J10 = 0.

The map given by ϕ(p) = [ J2(24 J4 − J2
2 ), 432 J6 − 96 J4 J2 + 3 J3

2 ] ∈ P1 for p ∈ E6 gives

an embedding ϕ : E6 → P1.
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Proof A calculation gives that (3.1a) and (3.1b) are satisfied by the family of genus 2

curves given in Theorem 3.4. Let

A = J2, B = J2
2 − 24 J4, C = 432 J6 − 96 J4 J2 + 3 J3

2 , D = 125 J10.

In these variables, equations (3.1) become

(3.2) (AB + C)(AB −C) = 4B3, 2D = B(AB −C).

These equations define an irreducible reduced rational curve E6,0 in P(2, 4, 6, 10)

with a single simple node at [A, B,C, D] = [1, 0, 0, 0]. Hence (3.1) generate all rela-

tions. It is easy to see that the map given by p 7→ [AB,C] induces an isomorphism

from the non-singular resolution of this curve to P1.

With notations as in the proof of Proposition 3.5, we define the following function

on E6

j = j6 =
AB −C

AB + C
=

D2

B5
.

where the second equality follows from (3.2). Since the image of E6 in P(2, 4, 6, 10)

is the non-singular locus of the curve given by (3.2), we get the following.

Proposition 3.6 The map j defines an isomorphism E6 → P1 \ {0,∞}.

The inverse map is given by [A, B,C, D] = [ j + 1, j, j(1− j), j3], or, equivalently,

the Igusa invariants are given in terms of j by

[ J2, J4, J6, J10] = [12( j + 1), 6( j2 + j + 1), 4( j3 − 2 j2 + 1), j3].

Since Ẽ6 is the resolution of the nodal curve E6,0, there are two points on Ẽ6 which

are not Jacobians of genus 2 curves. By [11], we know that these points correspond

to the points on Ẽ6 with CM by Q(
√
−1) and Q(

√
−3). What is happening in these

cases, is that the abelian surfaces are products of elliptic curves with the product

principal polarization.

Remark. The map from the family in Theorem 3.4 to the curve E6 is of degree 24 and

is given by

j =
16(2t2 + 1)4(t2 − 1)2

27(4t2 − 1)3
.

3.3 Some Explicit Points on E6

To compare the algebraically and analytically defined functions, we will need to com-

pute a few explicit points on E6. In this section, we compute the curves with discrim-

inant 6 QM and D CM for D = −24 and D = −19.

We consider first the case D = −24. Let K = Q(
√
−6). The class number

h(K) = 2, and a non-trivial ideal class in O = Z[
√
−6] is given by the ideal
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a = (2,
√
−6). Hence, there are two isomorphism classes of elliptic curves with

Z[
√
−6] CM, namely the curves E1 = C/O and E2 = C/a with j-invariants

j(E1) = j(
√
−6) = 1728(1399 + 988

√
2)

and

j(E2) = j(
√
−6/2) = 1728(1399 − 988

√
2).

Consider the cubic

f (t) = (1 +
√

2)t3 − 3(7 − 3
√

2)t2 − 3(7 + 3
√

2)t + (1 −
√

2),

and define a genus 2 curve C(−24) by z2 = f (x2). By a direct computation of Igusa in-

variants one gets that C(−24) corresponds to a point on E6, and has invariant

j = −16/27.

Proposition 3.7 The Jacobian J of C(−24) is isomorphic to E1 ×E2 and has endomor-

phism ring
(

O a

a
−1

O

)

. Furthermore, this curve defines a point on E6 with j(C(−24)) =

−16/27.

Proof Consider the non-hyperelliptic involutions u and v on C(−24) given by

u(x, z) = (−x, z) and v(x, z) = (−x,−z). The quotient C(−24)/u has equation

s2 = f (t) (let s = z and t = x2), which is an elliptic curve with j-invariant

1728(1399 − 988
√

2). Hence C(−24)/u ∼= E2.

Similarly the quotient C(−24)/v has equation s2 = t f (t) (where s = xz, t = x2),

which has j-invariant 1728(1399 + 988
√

2), so C(−24)/v ∼= E1.

Let fi : C(−24) → Ei , i = 1, 2, be the corresponding quotient maps. They induce a

natural surjective homomorphism of abelian varieties ϕ : J → E1 × E2, given by

ϕ(O(a − b)) = ( f1(a) − f1(b), f2(a) − f2(b)),

where a, b ∈ C(−24) (the minus sign on the left-hand side is given by the group laws of

the elliptic curves). By a direct computation, one gets that fi(a) = fi(b) for i = 1, 2 if

and only if a = b. Hence ϕ is an isomorphism. The claim about the endomorphism

ring follows immediately.

The final claim follows from a direct computation.

Remark. By Proposition 3.7, the endomorphism ring is a maximal order in M2(K)

which is not isomorphic to M2(O) (since the class of a is not a square in the class

group of K). Hence one gets in particular that the Jacobian of C(−24) cannot be

isomorphic to the square E × E of an elliptic curve E.

We now consider the case D = −19. Let K = Q(
√
−19) and O = Z[ 1+

√
−19

2
].

The class number of K is one, so there is only one elliptic curve E3 = C/O with CM

by O. It has j-invariant j(E3) = −963. Consider the cubic

f (t) = 2t3 − 3(1 + 9
√
−19)t2 − 3(1 − 9

√
−19)t + 2,

and define a genus 2 curve C(−19) by z2 = f (x2). This curve corresponds to a point

on E6 with j = 81/64, and by an argument similar to the proof of Proposition 3.7

one gets the following.
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Proposition 3.8 The Jacobian J of C(−19) is isomorphic to E3 × E3 and has endo-

morphism ring M2(O). Furthermore, this curve defines a point on E with j(C(−19)) =

81/64.

3.4 The Arithmetic Function and the Analytic Function

The main results of this paper relate the arithmetically and the analytically defined

functions and give an explicit map from V to its rational model in terms of modular

forms. The first step in this direction is the following.

Proposition 3.9 We have j = j2
m, considered as functions on Ẽ6.

Proof It is clear, from Propositions 3.3 and 3.6, that j and j2
m are related by a linear

fractional transformation. We noted in Section 3.2 that the points on VW corre-

sponding to J10 = 0 on E6 are the points z2 and z3. These points are therefore the

zeroes and poles of j. Furthermore, j(z6) = −16/27 by Proposition 3.7. Now, we

have j2
m(z2) = 0, j2

m(z3) = ∞, and j2
m(z6) = −16/27 by our choices of normaliza-

tion. Hence we conclude that j = j2
m or j =

162

272 j2
m

.

To determine which possibility is the correct one, we use the −19 CM point.

By Proposition 3.8, we get that j = 81/64 at this point. Now we can numeri-

cally compute j2
m at the point z(−19), which is the fixed point attached to the order

Z[i + (1 + 3 j)/2]. This calculation can be done with full control of the size of the

error terms, and doing this shows that the first possibility is the correct one.

By Proposition 3.9 and the identity −27 j − 16 = (4h12/h3
4)2, we see that

√
j and√−27 j − 16 lift to meromorphic functions on V .

Theorem 3.10 The holomorphic map f : V → X = {x2 + 3y2 + z2 = 0} given by

f (z) = [h3
4(z), h2

6(z), h12(z)] = [4, 3
√

j,
√

−27 j − 16]

descends to an isomorphism from the canonical Q-model of V to X viewed as a curve

over Q .

Proof By [16], we know that there exists an isomorphism g : V → X of curves

over Q , so we only need to show that the automorphism f ◦ g−1 of X is defined

over Q .

Let K1 = Q(
√
−1,

√
−3). By [25], we have that the two elliptic points z2, z ′2 of

order 2 on V belong to V (H(Q(
√
−1))) ⊂ V (K1). Similarly, the two elliptic points

z3, z ′3 of order 3 belong to V (K1). Furthermore j(z) = 0, so f (z) = [1, 0,±
√
−1] for

z = z2, z ′2, and similarly f (z) = [0, 1,±
√
−3] for z = z3, z ′3. Hence, f maps 4 points

on V (K1) to 4 points on X(K1). We conclude that f ◦ g−1 maps 4 points on X(K1)

into X(K1), and since X is isomorphic to P1 over K1, we get that f ◦ g−1 is defined

over K1.

Let K2 = Q(
√
−19) and consider the 4 points z ∈ V (K2), with −19 CM. We have,

by Proposition 3.8 that j(z) = 81/64, so f (z) = [32,±27,±13
√
−19] ∈ X(K2) for

these points z. Hence as above f ◦ g−1 is defined over K2.

We conclude that f ◦ g−1 is defined over K1 ∩ K2 = Q .
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Remark. The equation for V given in Theorem 3.10 is, of course, known, see [16].

What is new with this result is the explicitly given isomorphism.

Corollary 3.11 The Atkin–Lehner action on the curve X is given by

w2(p) = [x,−y, z], w3(p) = [−x, y, z],

where p = [x, y, z] ∈ X. In particular, we get Vd
∼= P1

Q for d = 2, 3, 6, and the

projection maps πd : V → Vd, πW : V → VW are given by π2(p) = [x, z], π3(p) =

[y, z], π6(p) = [x, y], πW (p) = [x2, y2].

Proof This follows immediately from Theorem 3.10, since we know the action of W

on the modular forms.

3.5 Mestre’s Obstruction and a Family over E6

Let L( j) be the matrix of the quadratic form (2.1) where we have made the substitu-

tions J2 = 12( j + 1), J4 = 6( j2 + j + 1), J6 = 4( j3 − 2 j2 + 1), and J10 = j3.

Proposition 3.12 The only curves on E6 which have non-trivial automorphisms are

the two curves with −24 and −19 CM respectively. In both of these cases, the automor-

phism group is isomorphic to C2 ×C2.

Proof The curve C with j(C) = j has non-trivial automorphisms if and only if the

matrix L( j) has vanishing determinant. Now we get

det(L( j)) = −2333−185−20 j7(64 j − 81)2(27 j + 16),

so the first claim follows immediately from our computations in Section 3.3.

It is well known, see [1], that any genus 2 curve with automorphism group other

than C2 or C2 ×C2 has a model of the form y2 = x5 + tx3 + x or y2 = x6 + tx3 + 1 for

some t ∈ C, or is the exceptional curve y2 = x5 − x. By comparing Igusa invariants,

one checks that neither of the curves C(−24) and C(−19) can be written in this form.

Consider now the matrix N( j) =

32

0

@

−32(96 j3 − 76 j2 + 75 j − 108) 48(296 j3 − 13 j2 − 564 j) 16(2856 j3 − 2389 j2 + 684 j + 864)
1800(8 j2 − 6 j − 9) 38700(2 j2 − 3 j) 900(242 j2 − 65 j − 72)

16875(8 j − 9) 50625 j 16875( j − 36)

1

A.

We have det(N( j)) = 27311510 j3(64 j − 81)2, and get

(3.3) N( j)t L( j)N( j) = −2153 j4(64 j − 81)2





1 0 0

0 6 j 0

0 0 2(27 j + 16)



 .

Hence we have the following (cf. [2, Theorem 4.5]).

Proposition 3.13 If C is on E6 and has trivial automorphisms, then the Mestre ob-

struction HC is the quaternion algebra (−6 j,−2(27 j + 16))kZ
.

https://doi.org/10.4153/CJM-2008-033-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-033-7


746 S. Baba and H. Granath

Now we can get explicit equations for the sextic defining C when C has trivial

automorphism group.

Theorem 3.14 The curve C is defined over, for example, the field K = Q(
√−6 j). An

explicit equation is

f (x) = (−4 + 3s)x6 + 6tx5 + 3t(28 + 9s)x4 − 4t2x3

+ 3t2(28 − 9s)x2 + 6t3x − t3(4 + 3s),

where t = −2(27 j+16), s =
√−6 j, i.e., the corresponding genus 2 curve C : y2 = f (x)

lies on E6 and j(C) = j.

Proof We see immediately from (3.3) that the Mestre conic (2.1) is parametrised by





x1

x2

x3



 = N( j)





x2 + t y2

x2 − t y2

−2sxy



 .

Plugging this into the Mestre cubic (2.2), we get the result after dehomogenisation

and a slight simplification.

Corollary 3.15 For any point z ∈ H, the curve Cz : y2 = gz(x), where

gz(x) = h3
4(z)(x6 − 21x4 − 21x2 + 1) +

√
−6h2

6(z)(x6 + 9x4 − 9x2 − 1)

+ 2
√

2h12(z)x(3x4 − 2x2 + 3)

is a point on E6 with j(Cz) = j(z) and Jacobian isomorphic to (Az, ρz).

Proof Using Theorem 3.10, we get that

s =
4
√
−6h2

6(z)

3h3
4

and t =
32h2

12(z)

h6
4(z)

,

which gives the result in the case of trivial automorphism group. One can also verify

that the model works also for the two points with −19 and −24 CM respectively.

3.6 Arithmetic Properties

Proposition 3.16 The field of moduli of the curve C is kZ = Q[ j(C)].

Proof If σ is an automorphism of C, then Cσ ∼= C if and only if j(Cσ) = j(C) if and

only if j(C)σ = j(C). The claim follows.
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Theorem 3.17 The diagram

kO

BB
B

||
|

kR2

BB
B

kR6
kR3

||
|

kZ

is given by

Q(
√

j,
√

−(27 j + 16))

mmmmmm
RRRRRRR

Q(
√

−(27 j + 16))

QQQQQQQ

Q(
√

j) Q(
√

−(27 j + 16)/ j)

Q( j)

llllllll

Proof That kO = Q(
√

j,
√

−(27 j + 16)) follows from Theorem 3.10. That kZ is

Q[ j(C)] is Proposition 3.16. By the moduli property of Vd and by the explicit de-

scriptions of the maps given in Theorem 3.10, we see that the two diagrams are the

same.

Proposition 3.18 If K is a field of definition of C, then L = K ·kO is a field of definition

of the endomorphisms, i.e., EndL(A) ∼= O.

Proof By [15, Theorem 1.1], it is enough to show that the field L splits B. Now we

get

B ⊗Q kO
∼= HC ⊗kZ

kO,

since HC ⊗kZ
kO

∼= (−6 j,−2(27 j + 16))kO

∼= (−6, 2)kO

∼= B ⊗Q kO. But

HC ⊗kZ
K ∼= M2(K)

since K is a field of definition for C , so we get B ⊗kZ
L ∼= M2(L).

Remark. It follows that the curve C is always defined over the field kO[
√
−6].

The following results show that our choice of j-function is reasonable from an

arithmetic point of view.

Proposition 3.19 Let C on E6 be such that kZ is a number field. Then C has potentially

good reduction at a prime p not dividing 6 if and only if

(3.4) vp( j) = 0.

In fact, the curve attains good reduction over the field

K = kZ[
√

−6 j,
√

−2(27 j + 16)] ⊆ kO[
√

2,
√
−3].
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Proof First we prove that (3.4) is necessary. Recall that, with notations as in the

proof of Proposition 3.5, we have j = D2/B5. Also, equations (3.2) show that p | D

if and only if p | B. If the curve has potentially good reduction at p, then there exists

an integral model over some extension field such that D is a unit at p. Hence B is also

a unit at p, so (3.4) follows.

To prove that (3.4) is sufficient, we use our model in Theorem 3.14. If we let

u =
√

t , the model simplifies to

y2
= (−4 + 3s)x6 + 6ux5 + 3(28 + 9s)x4 − 4ux3 + 3(28 − 9s)x2 + 6ux − (4 + 3s).

In this model, we have j = −s2/6 and J10 = 227312s6. Hence, if j is a unit in Op, then

the discriminant of the sextic, which equals 212 J10, is also a unit and consequently the

curve has good reduction at p.

4 Discriminant 10 Case

Now we want to do exactly the same thing in the discriminant 10 case as we have

done for discriminant 6. The presentation will, however, be briefer this time, and

we omit proofs in those cases where they are completely analogous to what we have

already done.

Let B = Q(i, j), where i2 = 2, j2 = 5 and i j + ji = 0, so ∆ = disc(B) = 10.

We choose the maximal order O = Z[i, (1 + j)/2] in B, and the element µ = i j ∈ O

with µ2 = −10. We let R10 = Z[µ] ∼= Z[
√
−10]. There are two twisting rings in this

case, namely R2 = Z[i] ∼= Z[
√

2] and R5 = Z[(1 + j)/2] ∼= Z[(1 +
√

5)/2].

The ring of modular forms with respect to Γ is generated by one element g(z) of

weight 4 and three forms a2(z), a5(z) and a10(z) of weight 6. The ring of modular

forms with respect to Γd is generated by g(z) and ad(z), for d = 2, 5 and 10. The ring

with respect to Γ̃ is generated by g(z), a2
2 and a2a5a10. We can normalize the forms

such that

a2
2 + 2a2

5 + a2
10 = 0, 4g3 + 27a2

5 + a2
10 = 0.

Furthermore, we get a holomorphic isomorphism jm : VW (C) → P1(C) by

jm(z) =
g3(z)

a2
2(z)

.

It is clear from our choice of normalization, that

(4.1)
jm(z(−3)) = 0, jm(z(−8)) = ∞,

jm(z(−20)) = 1/4, jm(z(−40)) = 27/8.

where z(D) denotes a point on VW (C) such that the corresponding abelian surface has

D CM (which is unique for the above values of D).
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Theorem 4.1 ([10]) The following equations give a family of QM-curves with respect

to O10: y2 = x(P2x4 + P2(1 + R)x3 + PQx2 + P(1 − R)x + 1) with

P =
4(2t + 1)(t2 − t − 1)

(t − 1)2
, R =

(t − 1)s

t(t + 1)(2t + 1)
,

Q =
(t2 + 1)(t4 + 8t3 − 10t2 − 8t + 1)

t(t − 1)2(t + 1)2
,

where s2 − t(t − 2)(2t + 1) = 0.

The equations for E10 in terms of J2, . . . , J10 are rather complicated, so we do not

write them here. Let E10,0 be the closure of the image of E10 in P(2, 4, 6, 10). It turns

out that E10,0 has one singular point [12, 6, 4, 0], where it has two cusps meeting with

different tangent directions. This point is the only intersection point with E10,0 and

the curve J10 = 0. It also turns out that E10,0 is not a complete intersection, which

makes it more difficult to find nice equations as we had in the discriminant 6 case.

We can, however, find a parametrization of E10.

Proposition 4.2 We have an isomorphism j = j10 : E10 → P1 \ {0,∞} which is

given by

j =
23751C2 − 501060ABC + 2641541A2B2 − 37046420B3

2169C2 − 34404ABC − 16709A2B2 + 37046420B3

where A = 5 J2, B = J2
2 − 24 J4, C = 5(33 J3

2 − 992 J2 J4 + 3600 J6). The inverse map is

given by [ J2, J4, J6, J10] = [ J2( j), J4( j), J6( j), J10( j)], where

J2( j) = 12 j2 − 16 j + 12, J4( j) = 6 j4 − 16 j3 + 6 j2 − 16 j + 6,

J6( j) = 4 j6 − 16 j5 + 32 j3 − 8 j2 − 16 j + 4, J10( j) = j4.

For future reference, we also note the formula

(4.2) j2
=

( J2
2 − 24 J4)5

2010 J2
10

.

Remark. The map from the family in Theorem 4.1 to the curve E10 is of degree 12

and is given by

j =
(t2 − 1)3

4t(t2 − 2t − 1)2
.

Proposition 4.3 The following curves C(D) have D CM:

C(−20) : y2
= x5 −

√
5x3 + x,

C(−40) : y2
= (2 −

√
5)x6 + (30 + 51

√
5)x4 + (30 − 51

√
5)x4 + (2 +

√
5),

C(−27) : y2
= x6 − (189 + 64

√
−3)x4 − (189 − 64

√
−3)x2 + 1,

C(−35) : y2
= (2 −

√
5)x6 + (30 + 19

√
5)x4 + (30 − 19

√
5)x4 + (2 +

√
5).
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Proof The proof of the last three cases is analogous to the proof of Proposition 3.7.

One gets the first case by observing that the Jacobian is isomorphic to E × E, where

E = C/Z[
√
−5]. A splitting map C(−20) → {Y 2 = (X + 2)(X2 − 2 −

√
5)} ∼= E is

given by

X =
x2 + 1

x
, Y =

y(x3 + 1)

x2(x2 − x + 1)
.

It is easy to verify that the curves C(D) from Proposition 4.3 lie on E10, and we have

j(C(−20)) = 1/4, j(C(−40)) = 27/8,

j(C(−27)) = −24/25, j(C(−35)) = 8/7.

Now we consider the matrix L( j) corresponding to (2.1). We get

det(L( j)) = −2333−185−20 j10(4 j − 1)2(25 j + 24)2(7 j − 8)2(8 j − 27).

In this case, one can find a matrix N( j) with coefficients in Z[ j] such that

N( j)t L( j)N( j) =

− 2155 j6(7 j − 8)2(25 j + 24)2





1 0 0

0 10(1 − 4 j) 0

0 0 −2(8 j − 27)(1 − 4 j)



 .

Hence we get the following.

Proposition 4.4 If C is on E10 and has trivial automorphisms, then the Mestre ob-

struction HC is the quaternion algebra (−10(1 − 4 j), 5(8 j − 27))kZ
.

Lemma 4.5 The −3 and −8 CM surfaces on Ẽ10 have the product polarizations, hence

neither of them is a Jacobian of a genus 2 curve.

Proof In the −3 CM case, there is only the product polarization (see [11]), so there

is nothing to prove.

In the −8 CM case, one can use the formulas for period matrices given in [10,

p. 290] and find a period matrix Z = Ω(z) of the abelian surface. It is then straight-

forward to find a matrix
(

A B
C D

)

∈ Sp4(Z) such that

Z ′
= (AZ + B)(CZ + D)−1

=

(√
−2 0

0
√
−2

)

.

Now, Z ′ is clearly the period matrix of a split abelian surface with product principal

polarization.

Proposition 4.6 We have j = jm on Ẽ10.

Proof It is clear that j and jm are related by a linear fractional transformation. We

know the values of jm at the 4 points given in (4.1). Now it follows from Lemma 4.5

that the set { j(z(−3)), j(z(−8))} equals {0,∞}, and we have j(z(−20)) = 1/4 and

j(z(−40)) = 27/8 by Proposition 4.3. The claim follows.
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Theorem 4.7 The expressions
√

1 − 4 j and
√

8 j − 27 lift to meromorphic functions

on V . Furthermore, the holomorphic map f : V → X = {x2 + 2y2 + z2 = 0} given by

f (z) = [a2(z), a5(z), a10(z)] = [5,
√

1 − 4 j,
√

8 j − 27]

descends to an isomorphism from the canonical Q-model of V to X viewed as a curve

over Q .

Proof The first claim follows from the identities 1 − 4 j = (5a5/a2)2 and 8 j − 27 =

(5a10/a2)2.

Let K1 = Q(
√
−2,

√
−3). The elliptic points z3, z ′3 and the fixed points z(−8), z ′(−8)

of w2 belong to V (K1), and map to [5, 1,±
√
−3] and [0, 1,±

√
−2] respectively.

Hence the map is defined over K1.

Let K2 = H(Q(
√
−35)) = Q(

√
−7,

√
5). The 4 points with −35 CM are defined

over K2, and by Proposition 4.3, we have that j = 8/7 for these points, so they map

to [±
√
−7, 1,±

√
5]. Hence the map is also defined over K2 and we are done.

Theorem 4.8 The curve C is defined over the field K = Q(
√

−10(1 − 4 j)). An

explicit equation is

f (x) = t3(s2 + 2s − 10)x6 − 4t3(3s + 4)x5 + 15t2(3s2 + 2s + 2)x4 − 40t2sx3

+ 15t(−3s2 + 2s − 2)x2 − 4t(3s − 4)x − (s2 − 2s − 10),

where s =
√

−10(1 − 4 j)/5, t = (8 j − 27)/5.

Corollary 4.9 For any point z ∈ H, the curve Cz : y2 = gz(x), where

gz(x) = 5a2
2(z)(x6 − 3x4 + 3x2 − 1) + a2

5(z)(x6 + 45x4 − 45x2 − 1)

−
√
−2a2(z)a5(z)(x6 + 15x4 + 15x2 + 1) + 8

√
5a2(z)a10(z)(x5 − x)

+ 2
√
−10a5(z)a10(z)(3x5 + 10x3 + 3x)

is a point on E10 with j(Cz) = j(z) and has Jacobian isomorphic to (Az, ρz).

Theorem 4.10 The diagram

kO

{{
{ CC

C

kR2

CC
CC

kR10
kR5

kZ

{{{{
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is given by

Q(
√

1 − 4 j,
√

8 j − 27)

jjjjjjj
QQQQQ

Q(
√

(1 − 4 j)/(8 j − 27))

UUUUUUUUUU

Q(
√

1 − 4 j) Q(
√

8 j − 27)

Q( j)

mmmmmmm

Proposition 3.18 holds also in this case, with an analogous proof. We conclude

that the genus 2 curve is defined over kO[
√
−10], exactly corresponding to the result

for the D = 6 case.

Proposition 4.11 The only curves on E10 which have non-trivial automorphism

groups are the −20 CM curve, which has group D4, and the curves with −40, −27,

and −35 CM, where the group is C2 ×C2.

Proposition 4.12 Let C on E10 be such that kZ is a number field. Then C has poten-

tially good reduction at a prime p not dividing 10 if and only if

(4.3) vp( j) = 0.

In fact, the curve attains good reduction over the field

K = kZ[
√

−10(1 − 4 j),
√

5(8 j − 27)] ⊆ kO[
√
−2,

√
5].

Proof First we prove that (4.3) is necessary. Assume that C has good reduction over

a field K at a prime p, so there is an integral model over K whose discriminant 212 J10

is not divisible by p. We introduce the variables

A = 5 J2, B = J2
2 − 24 J4, C = 5(33 J3

2 − 992 J2 J4 + 3600 J6), D = 205 J10.

One can verify that A, B, C , and D are integral at any prime not dividing 10, and D is

a unit at p. Now we have, by (4.2), that j2 = B5/D2, so it is sufficient to show that B

also is a unit. Now, there is a relation 31D2 = B(DC − 49B4), so we are done in case

p ∤ 31. However, modulo 31 there is a relation

D2
= B(11ABD − 7A2B3 + 13CD − 8AB2C + 11BC2),

so B is must be a unit in this case too.

To prove that (4.3) is sufficient, we use the model in Theorem 4.8 and argue exactly

as in the proof of Proposition 3.19.

Proposition 4.13 The intersection of E6 and E10 in M2 is the single point correspond-

ing to the curve with −43 CM.

Proof Plugging the parametrization of E10 from Proposition 4.2 into equations

(3.1), we get the only solution j = 216/1225. Now, in Table 2 we see that this j-value

corresponds to the −43 CM curve.
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5 Examples and Tables

Elkies [6] found that there are 27 rational CM points on E6 and 22 on E10. We list

them in Tables 1 and 2 respectively, together with the additional information that we

now can give about these points. The points are ordered in increasing height of j.

The relations between our uniformization j and Elkies’ t is j = 16(t − 1)/27 in

the discriminant 6 case, and j = t/8 in the discriminant 10 case. Unfortunately,

the caveat in [6] that not all of these curves are proved to have the correct CM still

applies, for example the −163 curve on E6. Probably it should be easier to prove these

cases now that we can give the explicit sextics, but it seems to the authors that these

are still computationally difficult problems.

D j kR2 kR6 kR3 disc(HC )

−3 ∞ Q Q Q(
√
−3) no curve

−4 0 Q(
√
−1) Q Q no curve

−24 −24/33
Q Q(

√
−3) Q –

−19 34/26
Q(

√
−19) Q Q(

√
−19) –

−40 2434/53
Q(

√
−10) Q(

√
5) Q(

√
−2) 2 · ∞

−51 −74/(2633) Q(
√

17) Q(
√
−3) Q(

√
−51) 1

−84 −2672/36
Q(

√
3) Q(

√
−1) Q(

√
−3) 2 · 3

−52 −2634/56
Q(

√
−13) Q(

√
−1) Q(

√
13) 2 · 13

−120 2474/(3653) Q(
√
−15) Q(

√
5) Q(

√
−3) 3 · ∞

−75 114/(263651) Q(
√
−15) Q(

√
5) Q(

√
−3) 3 · ∞

−132 −28112/(3356) Q(
√
−1) Q(

√
−3) Q(

√
3) 1

−43 3474/(2656) Q(
√
−43) Q Q(

√
−43) 43 · ∞

−168 −2472114/(3356) Q(
√

6) Q(
√
−3) Q(

√
−2) 2 · 3

−88 −243474/(56113) Q(
√
−22) Q(

√
−11) Q(

√
2) 2 · 11

−100 28345174/116
Q(

√
−1) Q(

√
5) Q(

√
−5) 5 · ∞

−123 −74194/(263356) Q(
√

41) Q(
√
−3) Q(

√
−123) 1

−228 21074192/(3956) Q(
√
−1) Q(

√
3) Q(

√
−3) 2 · ∞

−67 3474114/(21256) Q(
√
−67) Q Q(

√
−67) 67 · ∞

−147 −114234/(26365671) Q(
√

21) Q(
√
−7) Q(

√
−3) 3 · 7

−148 −263474114/(56176) Q(
√
−37) Q(

√
−1) Q(

√
37) 2 · 37

−312 −2474234/(3356116) Q(
√
−39) Q(

√
−3) Q(

√
13) 3 · 13

−372 −2674194312/(3656116) Q(
√

3) Q(
√
−1) Q(

√
−3) 2 · 3

−408 −2474114314/(3956173) Q(
√

17) Q(
√
−51) Q(

√
−3) 1

−267 −74314434/(2123356116) Q(
√

89) Q(
√
−3) Q(

√
−267) 1

−232 243474114194/(56236293) Q(
√
−58) Q(

√
29) Q(

√
−2) 2 · ∞

−163 3874194234/(2656116176) Q(
√
−163) Q Q(

√
−163) 163 · ∞

−708 −21274114474592/(3356176296) Q(
√
−1) Q(

√
−3) Q(

√
3) 1

Table 1: Rational CM points on E6
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D j kR2 kR10 kR5 disc(HC )

−3 0 Q(
√
−3) Q Q(

√
−3) no curve

−8 ∞ Q(
√
−2) Q Q no curve

−20 1/22
Q Q Q(

√
−1) –

−35 23/7 Q(
√

5) Q(
√
−7) Q(

√
−35) –

−27 −233/52
Q(

√
−3) Q Q(

√
−3) –

−40 33/23
Q Q

√
−2 Q –

−52 −33/(2252) Q(
√
−13) Q(

√
13) Q(

√
−1) 13 · ∞

−120 −33/(2372) Q(
√
−15) Q(

√
10) Q(

√
−6) 3 · ∞

−72 53/(233172) Q(
√
−2) Q(

√
6) Q(

√
−3) 3 · ∞

−43 2333/(5272) Q(
√
−43) Q Q(

√
−43) 43 · ∞

−180 −113/(22132) Q(
√
−15) Q(

√
15) Q(

√
−1) 2 · ∞

−88 3353/(2472) Q(
√
−22) Q(

√
−11) Q(

√
2) 2 · 11

−115 2633/(13223) Q(
√

5) Q(
√
−23) Q(

√
−115) 5 · 23

−67 −233353/(72132) Q(
√
−67) Q Q(

√
−67) 67 · ∞

−280 33113/(2471232) Q(
√

10) Q(
√
−35) Q(

√
−14) 2 · 7

−340 33233/(2272292) Q(
√

17) Q(
√
−17) Q(

√
−1) 2 · 17

−148 33113/(225272132) Q(
√
−37) Q(

√
37) Q(

√
−1) 37 · ∞

−235 2333173/(7237247) Q(
√

5) Q(
√
−47) Q(

√
−235) 5 · 47

−520 33293/(2672131472) Q(
√
−2) Q(

√
13) Q(

√
−26) 2 · ∞

−232 33113173/(255272232) Q(
√
−58) Q(

√
−2) Q(

√
29) 1

−163 −263353113/(72132292312) Q(
√
−163) Q Q(

√
−163) 163 · ∞

−760 33173473/(2372312712) Q(
√
−95) Q(

√
−38) Q(

√
10) 5 · 19

Table 2: Rational CM points on E10

Example 1 Consider the curve

y2
= (x2 + 5)((−1/6 +

√
2)x4 + 20x3 − 490/6x2 + 100x + 25(−1/6 −

√
2))

studied in [5]. This has discriminant 6 QM with j = −9/128. We get kR6
=

Q(
√
−2), kR2

= Q(
√
−10), kR3

= Q(
√

5), and kO = Q(
√

5,
√
−2), which is consis-

tent with and somewhat more precise than the results in [5].

Example 2 The curve

y2
= 1/48x(9075x4 + 3025(3 + 2

√
−3)x3 − 6875x2 + 220(−3 + 2

√
−3x + 48)),

which is studied in [4, 24], has discriminant 10 QM. We have j = −32/147, and

hence we get

kR10
= Q(

√
33), kR2

= Q(
√
−11), kR5

= Q(
√
−3), kO = Q(

√
−3,

√
−11).
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Example 3 From Table 1, we see, for example, that the curve with −132 CM on E6

is defined over Q . An explicit equation is given by

y2
= 73x6 − 750x5 + 966x4 + 2000x3 − 876x2 − 3000x − 1288.

To find this explicit model from the invariants J2, . . . , J10, we used Paul B. van Wame-

len’s PARI/GP package for computations of genus 2 curves.

Example 4 We consider an example of CM points with non-rational j-value. There

are two points with −91 CM points on E6, which we denote z(−91) and z ′(−91). The

j-values of these points belong to H(Q(
√
−91)) = Q(

√
−7,

√
13). Numerically (up

to several hundred decimals) we get

j(z(−91)) = j(z ′(−91)) =
34 p4

7 p4
11

p6
2 p12

2 p6
11

,

where p2 = (1 +
√
−7)/2, p7 =

√
−7 and p11 = 2 +

√
−7.

A Restriction of Hilbert Modular Forms

In this appendix, we describe how to construct modular forms with respect to a co-

compact quaternionic group over Q in a way that is suitable for numerical computa-

tions. We start by embedding the curve into a suitable Hilbert modular surface. Note

that our description of this embedding is just a reformulation of the classical con-

struction of Hirzebruch–Zagier cycles [12]. The key to constructing modular forms

with respect to the quaternionic group is to introduce a certain factor such that re-

striction of modular forms on H × H times this factor gives modular forms with

respect to the quaternionic group. A special case of this occurs in [9].

Let k = Q(
√

d), where d > 1 is a square free integer. Let D be the discriminant

of the field k, O the ring of integers in k and the nontrivial automorphism of k is

denoted by x 7→ x. Consider the algebra A = M2(k). The canonical involution on

A is given by
(

a b
c d

)∗
=

(

d −b
−c a

)

. Let Λ = M2(O). The Hilbert modular group

Γ = SL2(O) acts on H × H by γ(z1, z2) = (γz1, γz2). Let β ∈ Λ with β
∗

= β,

β ∈ Z +
√

DΛ and det(β) > 0. Furthermore, we assume that β is primitive, i.e., if

β = nβ0 where β0 has the same properties and n ∈ Z, then n = ±1. Consider

Λβ = {λ ∈ Λ | βλ = λβ},

which is an order in an indefinite quaternion algebra over Q . The discriminant of

the order Λβ is det(β) (cf. [8]). Let Cβ = {(z, βz) | z ∈ H} ⊂ H × H. The group

Γβ = {γ ∈ Λ1 | βγ = ±γβ} ⊇ Λ1
β , which is an extension of Λ1

β of degree at most 2,

acts on Cβ
∼= H.

Our aim is to construct modular forms with respect to the group Γβ . Let F be a

Hilbert modular form with respect to Γ of weight (k1, k2), i.e., F : H × H → C is

holomorphic and satisfies

F(γz1, γz2) = j(γ, z1)k1 j(γ, z2)k2 F(z1, z2),
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for all γ ∈ Γ. Here j(α, z) = cz + d for any real matrix α =
(

a b
c d

)

. We de-

fine a function f (z) = j(β, z)−k2 F(z, βz), z ∈ H. Now, for γ ∈ Γβ , we get

j(β, γz) j(γ, z) = j(βγ, z) = ± j(γβ, z) = ± j(γ, βz) j(β, z), so

(A.1)
j(γ, βz)

j(β, γz)
= ± j(γ, z)

j(β, z)
,

where the sign is the same as the sign in the equation βγ = ±γβ.

Proposition A.1 The function f is a modular form with respect to Λ1
β of weight k1+k2.

If k2 is even, then it is also a modular form with respect to Γβ .

Proof The function f is obviously holomorphic. By (A.1), we get

f (γz) = j(β, γz)−k2 F(γz, βγz) = j(β, γz)−k2 F(γz, γβz)

= j(β, γz)−k2 j(γ, z)k1 j(γ, βz)k2 F(z, βz)

= j(β, z)−k2 j(γ, z)k1 j(γ, z)k2 F(z, βz)

= j(γ, z)k1+k2 f (z),

for any z ∈ H and γ ∈ Λ1
β . The last statement is now clear.
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e-mail: sbaba@mathstat.concordia.ca

Department of Mathematics, Karlstad University, 65188 Karlstad, Sweden
e-mail: hakan.granath@kau.se

https://doi.org/10.4153/CJM-2008-033-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-033-7

