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Perceived relationships between timbres are critical in
electroacoustic music. Most studies assume timbres have fixed
inter-relationships, but we tested whether distinct tasks change
these. Thirty short sounds were used, from five categories:
acoustic instruments, impulse responses, convolutions of the
preceding, environmental sounds and computer-manipulated
instrumental sounds. In Task 1, 46 non-musicians formed a
‘cohesive’ sonic ordering of unlabelled icons (sounds attached).
In Task 2, they categorised the icons into four boxes. In Task 3
listeners separately ordered the sounds from each of Task 2’s
boxes using the approach of Task 1. Tasks 1 and 2/3 revealed
distinct orderings, consistent with conceptual flexibility. To
analyse the orderings, we replaced conventional distance by
adjacency measures, and described each system as a network
(rather than spatial positions), confirming that the two task
outcomes were distinct. Network analyses also showed that the
two systems were mechanistically distinct and allowed us to
predict temporally changing networks, modelling the observed
networks as successive perceptions. Further simulated
networks generated with the temporal model readily
encompassed all possible pairings between the sounds and not
just those we observed. The temporal network model thus
confirms conceptual flexibility even in untrained listeners,
clearly suitable for a composer to use.

1. INTRODUCTION

Electroacoustic composers often use small-scale
motivic structure, transforming it to create new rela-
tionships and hence the macrostructure of a piece
(Xenakis 1971; Wishart 1985). Orchestral composers
Schoenberg and Webern have also used timbral vari-
ation within their motives, as in klangfarbenmelodie
(Rushton 2001), voicing a melody through a series
of timbrally different instruments. Schoenberg also
discussed ‘timbre structures’. Electroacoustic music
(EAM) has increased attention to timbral morphing
and juxtaposition, small or large scale. EAM compos-
ers thus must forge diverse and mutable relationships
between timbres, most commonly as sequential rela-
tions. A case study of composer Roger Reynolds’s
work illustrates this mutability (McAdams 2004),
and reviews of cognitive processes in composition
(Dean 2017) and EAM (Dean 2009) cohere with this.
Such composerly conceptual flexibility suggests that

listeners need comparable flexibility in conceiving tim-
bres: to identify recurrent and changing sequencing of
timbral combinations in a piece.
In contrast to such fluidity, most studies of timbre

perception map apparent fixities in their relationships
(McAdams 1993; Bregman 1994; McAdams and
Siedenburg 2019). Generally, they measure perceptual
distances between pairs of short sounds, and then use
multidimensional scaling (MDS) to provide a two- or
higher dimensional representation, following classic
‘timbre space’ studies of instrumental sounds (Grey
and Gordon 1978). Such maps can suggest analogies
between sounds, where sounds a and b bear a similar
relation as do x and y (McAdams and Cunible 1992).
Word ‘embedding’ techniques in machine learning and
psychology similarly relate woman/man, countess/
count or queen/king (Pennington, Socher and
Manning 2014). Scalar acoustic features only predict
a portion of the MDS mappings (Caclin, McAdams,
Smith and Winsberg 2005): temporal factors are prob-
ably important in the remainder.
Thus kinetic trajectories of acoustic features related

to timbre are predictors of detection of phrasing by
untrained listeners, particularly in EAM (Olsen,
Dean and Leung 2016), paralleling the ontogeny of
language acquisition (Johnson 2016). Similarly, anal-
yses of continuous response measures of musical
change and affect (Bailes and Dean 2012; Dean,
Bailes and Dunsmuir 2014a, 2014b) reveal the kinetic
contribution of both acoustic intensity and spectral
features. So the conception of a particular timbre
(or phoneme) may be influenced by its context. For
example, changing background noise levels changed
the timbre space of a group of synthetic sounds
(Zacharakis, Terrell, Simpson, Pastiadis and
Reiss 2017).
Flexibility and mutability suggest viewing inter-

sound relationships as transforming networks, in
which any pair of sounds might be connected to vary-
ing degrees. This is analogous to networks between
people or ideas, with interactions that are one- or
two-directional and of varying intensity. ‘Network
analysis’ has a major role in spheres such as sociology,
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neuroscience and internet commerce (see McAndrew
and Everett 2015 for a musical social network).

Network analysis has been little applied to musical
sounds. Relationships between mean computational
features in pop songs covering an approximate 50-year
period since the 1950s have been used in a network
analysis of their ‘evolution’, suggesting that keeping
the spectral features (i.e., presumably the timbres) rel-
atively invariant is successful (Serrà, Corral, Boguñá,
Haro and Arcos 2012). We can find no network anal-
ysis of perceptual relations between short sounds.

So here we assess whether the composer’s need for
fluidity in conception of timbral relationships can be
fulfilled by non-musicians in two successive ordering
tasks. We propose that different tasks create different
orderings, and reveal different timbral networks. Early
network analyses simply sought the best descriptive
model of a set of relationships, but more recent gener-
ative models (Betzel and Bassett 2017), allow the
prediction of populations of networks. This generative
modelling allows us to assess whether a composerly
flexibility in transforming timbral relationships might
be readily available to them and to listeners.

2. MATERIALS AND PARTICIPANTS

The 30 sounds used (each about 3 seconds) were either
open access, recorded manually, or produced by
experimental (convolution) or compositional (digital
signal processing, DSP) manipulation by the first
author (referenced by his initials, RTD). Table 1 lists
the sounds and their membership of five pre-chosen
sound design groups (acoustic instruments, impulse
responses, convolutions of the preceding two, environ-
mental sounds and computer-manipulated
instrumental sounds). The Table 1 note explains a sub-
division of the environmental group addressed in the
network analyses.

Participants (n=46) were recruited within Western
Sydney University as being ‘untrained’ in music; psy-
chology undergraduates received a course credit for
participation. They completed the Goldsmiths’
Musical Sophistication Index (GMSI; Müllensiefen,
Gingras, Musil and Stewart 2014), and reported on
average 2.0 years training on an instrument (maxi-
mum 6) and a mean of 1.7 years in music theory
(maximum 6). They were all below the median of
the large UK population aggregate GMSI score,
hence termed ‘non-musicians’. All participants self-
reported as students. They reported 19 nationalities,
but all except six spent their formative years in
Australia. Mean age was 23.2 years (range 17–47);
32 reported their gender as female, 14 as male.

Max (v7.0, from Cycling74) was used to present the
experiment and to collect the responses (screen
positions).

3. PROCEDURE AND METHODS

After the GMSI, participants listened to the sounds on
Beyerdynamic DT770 Pro headphones, seated in front
of a computer screen.
The first task required participants to audition and

order unlabelled sound icons ‘cohesively from left to
right’ according to their principles (Figure 1). They
could listen to the sounds and adjust their relative
positions on a horizontal line as much as they wished.
This task created one type of ‘demand’ for conceptual
responses.
Task 2, following, was intended to provide different

pressures: it required ‘grouping’ sounds. Figure 2
shows its interface, requiring sorting into four boxes
based on ‘affinity between sounds’. The boxes were,
from left to right, blue, green, orange and turquoise,
but there was no request to order sounds across the
screen or within a box. This was a categorisation task,
where congeners would be placed in the same box. We
expected it would be quite difficult, as there were five
sound design groups but only four boxes, potentially
requiring some reconceptualisation.
Next, Task 3 showed box by box the sound icons

from each individual box, in the order blue, green,
orange and turquoise, but with unboxed sounds ran-
domly placed below a horizontal line, as in Task 1.
Task 3 required a left to right ordering on the line
of sounds from the presently available set, as for
Task 1. After box 1, the screen was cleared and the
process repeated for each box. So Task 3 made the
same demand as Task 1, but with four subsets of
the sounds. Tasks 2/3 cumulatively provided different
conditions for relating the sounds from those of Task
1. The ‘two tasks’ below refer to Task 1 vs the cumu-
lation of Tasks 2/3. We fixed the order of tasks, since
Task 1 is more-open ended than 2. Furthermore, the
likely influence of Task 1 on Task 2/3 is less perturbing
than vice versa. In any case, Task 2 necessarily influ-
ences the possibilities available within 3.
After listening, participants briefly summarised

their ordering strategy(ies); whether they would like
to label the sound groups in Task 2; and whether they
would like less or more boxes in Task 2.
Comparing the orderings indicated by the two tasks,

person by person, requires taking account of the fact
that Task 2 could be done with or without regard for
the order of the boxes on the page. In contrast, Task 1
requires an unambiguous single ordering of all the
sounds. Thus to determine whether the sequences in
the two tasks as performed by each individual could
or could not have been identical, all possible sequences
of the boxes (categories) in Task 2 need to be used to
assemble all the possible overall Task 2/3 orderings for
each participant. Four different boxes provide 24 per-
mutations of their orders. Note that the sounds are
labelled by numbers, but the numbers are merely
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categorical markers, thus to assess the distance
between two sequences of 30 categorical items, the
only factor of interest is the number of steps along
the sequences between sound x in Task1 and sound
x in Task 2/3, a ‘transposition distance’. Thus the max-
imum distance between x in two such sequences is 29
(position 1 in one and position 30 in the other). The
distance for item y in position 2 of one sequence is then
maximised if in position 29 of the other sequence (i.e.,
distance 27) and so on. The calculation is illustrated
below. Consequently, the maximum transposition dis-
tance feasible between two sequences of the same 30
items is 450, that is (29� 27� 25 : : : : : : � 1) × 2.
The minimum is 0, when the two sequences are iden-
tical. Code was written to determine this transposition
distance between every possible sequence of the four
box orders in Task 2/3, and the single sequence of
Task 1. Note that a result of 450 implies a precise ret-
rograde (observed once).

The total transposition distance for this pair of
sequences is obtained by adding all the individual dis-
tances. For each individual, all permutations of Task2/
3 orderings were assessed against that participant’s
Task 1 ordering. The values obtained are then assessed
across all participants, by taking all the individual
minima, and again determining their range, mean,
median and standard deviation; and similarly for
the individual participant maxima values.
All statistical analyses used R version 3.5, and the

igraph and Statnet network analysis packages. These
are explained further in the following section.

4. RESULTS

We first showed that the inter-item relationships of
Task 1 and Task 2/3 were distinct. Network analysis
then illustrated the distinction and demonstrated the
relationship mutability.

Table 1. Subdivision of the environmental group addressed in the network analyses

Sound number/description Design group Environmental subgroup

1/AkkordionRTDprocessed-v1 RTD
2/Best_Helicopter_Pass-Mike_Koenig-1156203370 Env Machine/Human
3/Convolution_Piano_Teufelsberg Conv
4/Convolution_Sax_Stadium Conv
5/Convolution_Synth_Tunnel Conv
6/Convolution_Trombone_Plate Conv
7/Guitar-RTDprocessedv1 RTD
8/Humpback Whales-SoundBible.com-1557869991 Env Natural
9/Ice-skating-daniel_simon Env Machine/Human
10/Impulse_MMA_Stadium_IR Imp
11/Impulse_Plate3s_IR Imp
12/Impulse_Teufelsberg_IR Imp
13/Impulse_Tunnel_IR Imp
14/Instrument_Piano-soundlab Inst
15/Instrument_Sax-soundlab Inst
16/Instrument_Synthesiser_dry Inst
17/Instrument_Trombone-soundlab Inst
18/Monsoon-SoundBible.com-382003327 Env Natural
19/Pelican Chick-SoundBible.com-549990839 Env Natural
20/Photocopy-machine-daniel_simon Env Machine/Human
21/Piano-RTDprocessedv1 RTD
22/Rowing A Boat-SoundBible.com-2108783030 Env Natural
23/Saxophone-RTDprocessedv4 RTD
24/Sewing Machine 3-SoundBible.com-1495871530 Env Machine/Human
25/Slot-machine-daniel_simon Env Machine/Human
26/Trombone-RTDprocessedv1 RTD
27/Water-drops-daniel_simon Env Natural
28/Waterphone-daniel_simon Inst
29/Wind_1234-mike-koenig Env Natural
30/Windy-SoundBible.com-1165996801 Env Natural

Note. Sound Design Groups: Conv, Convolved sounds; Env, Environmental sounds; Imp, Impulse Responses; Inst, Acoustic
musical instrument; RTD, Computer music DSP-manipulated acoustic instrument sounds. In the final column,
Environmental sounds are subcategorised: ‘Natural’ are those not requiring human intervention; ‘Machine/Human’ are
either industrial or human activity sounds (both involving human intervention). Sound 22 is similar to the creaking of a
tree. The Machine/Human subgroup is sometimes simply termed ‘Machine’. The RMS intensities of all sounds were
equalised, but participants could adjust their listening level.
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4.1. Cumulative orderings from Task 1 and Task 2/3
are distinct

We expected correlation between orderings in the two
tasks as performed by any individual participant, since
once used to conceive relationships a sonic feature is
likely to remain in memory. But did participants nev-
ertheless present different orderings in the two tasks,
given the different demands, and as assessed by the

transposition distances? Forty-five participants used
all four boxes in Task 2/3, while one used only three
(22, Figure 3). This latter was accommodated within
the analysis code (using only six permutations of the
box order for this participant).
Every participant’s Task 2/3 orderings (i.e., all the

permutation orders) were all different from their
ordering of Task 1. The mean, median and standard
deviation of the minimum transposition distances,

Figure 1. A screen dump of the interface for Task 1, coded in Max.

Figure 2. A screen dump of the interface for Task 2.
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participant by participant, were 155.4, 146.9 and 58.7
with the range 48–276. Even the lowest value corre-
sponds to more than 10% of the maximum possible.
For the maximum distances, mean, median, standard
deviation and range were, respectively, 398, 410, 33.3
and 334–450 (from 74.2 to 100% of the maximum pos-
sible). This shows that every participant behaved
differently in Task 2/3 than in Task 1, as we hoped.
A first-order adjacency matrix was constructed for

each of the tasks, based on the frequencies with which
each sound was placed next to another. Figure 4a
shows the matrix for Task 1: the diagonal is occupied
by 0, since no item can appear twice. The matrix is
symmetrical with respect to the diagonal (because
these are undirected frequencies, AB equivalent to
BA, providing one adjacency shared by A and B).
In Task 1, all sounds are aligned in a single sequence,
left to right, so this construction is straightforward.
However, in Task 2/3 we provided no suggestion that
the four boxes were themselves ordered. Figure 3
shows the disposition of the design groups by box
for all participants: several members of a design group

were often co-boxed, with no regard for the position of
that box. So DSP-manipulated sounds (magenta)
commonly appear in the same box, but that box
may be any of the four. The fact that the box ordering
giving the lowest transposition distance between Task
1 and 3, was blue–green–orange–turquoise, the screen
order, in only 9/46 cases, confirms that that the boxes
were not treated as part of an ordering process.
Consequently, for the adjacency analysis we assume
no relation between the four suborders in Task 2/3,
and each suborder is treated as a partial realisation
of the overall ordering. This means that there are three
less adjacency values obtained per participant from
Task 2/3 than Task 1 (because no adjacencies between
the boxes are assumed). Thus the adjacency matrix for
Task 2/3 (Figure 4b) is obtained simply by adding
together those from the occupied boxes from each
participant.
Given this evidence on the interpretation of Task

2/3 ordering, there still remain two ways of interpret-
ing orderings cumulated across participants: as being
directed (a left to right adjacency of x and y is distinct

43atResult02 44akResult02 45ehResult02 46ctResult02

36apResult02 37ttResult02 38skResult02 39ghResult02 40tlsResult02 41ffResult02 42mrResult02

29abResult02 30mtResult02 31dzResult02 32ekResult02 33crResult02 34rsResult02 35haResult02

22msResult02 23ohResult02 24tpResult02 25dsResult02 26awResult02 27saResult02 28mapResult02

15ekResult02 16xgResult02 17pwResult02 18aeaResult02 19llResult02 20bbResult02 21lkResult02

08mhtResult02 09jlResult02 10mmResult02 11mmResult02 12atResult02 13dbResult02 14jrmResult02

01jhResult02 02jvResult02 03agResult02 04mhResult02 05esResult02 06lyResult02 07hmResult02
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Figure 3. Sound grouping: the distribution of the sounds by participant and box in Task 2.
Note. Abbreviations: The sound design abbreviations are as before. Boxes are numbered 1–4 from left to right; anonymised participants are
indicated above each individual display as the first two numbers. ‘Sound’ refers to items 1–30.
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from its reversal), or undirected (where the two cases
are not differentiated).

The proliferation of 0 values outside the Figure 4
diagonal shows that some adjacency pairings are
unexploited: 172 (6.4% of counts) for Task 1, and
314 (13.1%) for Task 2/3. These two adjacency matri-
ces are distinct, in accord with the observations
comparing the individual participant sequences from
Task 1 and Task 2/3. However, as commented already,
one would expect correlation between the matrices.
The Mantel test (a form of permutation analysis
involving repeated correlations) confirms this, show-
ing a strong correlation of 0.86 (p= 0.001, two-
sided). This means that about 26% of the variance
in the adjacency data is not shared in the two order-
ings, revealing the flexibility we are focused on. The
distinction between the matrices remains even when
a random 10% of participants’ data are removed from
the matrix for Task 1 (since there are approximately
10% less counts in the Task 2/3 matrix). The Mantel
test does not take account of intra- or inter-personal
differences: it is rather like taking two global averages.
So the strong correlation is unsurprising, and it
remains clear that each individual performed differ-
ently in the two tasks.

4.2. Restricted Markov chain predictions of orderings

Next we consider the adjacency matrices as directed
(i.e., we distinguish L to R sequences 1–2–3 and
3–2–1). This is treating the sequences as first-order

Markov chains restricted by the fact that no item
can recur. Put simply, in such a Markov chain, the
probability of an item appearing in position n�1 is
entirely predicted by the occupancy of position n.
This is termed the transition probability between the
two positions. This allows us to determine the directed
adjacency matrices using the R ‘Markov’ package,
and then to construct the correspondingMarkov chain
models. The values in these directed adjacency matri-
ces (not shown) are now transition probabilities, but
they again allow theMantel test. This confirms the dif-
ference between the two matrices, which remains true
when 10% of the Task 1 participants are removed at
random. We can again conclude that the adjacency
matrices of Task 1 and Task 2/3 are distinct.
Figure 5 illustrates this by comparing the Markov
ordering predictions for the two tasks.
The all-participants’ Markov chain model also

allows prediction of individual participants’ orderings
in Task 1 based on their choice of the extreme left
sound. These predictions are much better than chance;
for example, showing 4–10 correct predictions (for
which the chance probability is only approximately
10–6). Various tests indicate that the data are legiti-
mately described as Markovian, and there is no
indication that Markov orders higher than one are
required for their best modelling.
Thus whether directed or undirected, the Task 1 and

Task 2/3 orderings are statistically distinct, and
unlikely to arise by chance.

Figure 4 (a) Undirected adjacency matrix for Task 1. (b) Undirected adjacency matrix for Task 2/3
Note. Numbers 1–30 are the test sounds. The sum of the adjacencies in Task 1 is 2,668 (corresponding correctly to 29 adjacent pairings × 46
participants × 2 since the matrix is symmetric, undirected). There are 2,394 adjacencies in Task 2/3 because of the omission of counts between
boxes, and the fact that one participant only used three of the four possible boxes. The easiest way to interrogate these data is probably to choose
a column, and read downwards from the diagonal of zeros, bearing in mind that the matrices are symmetrical about the diagonal.
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4.3. Relationships between sounds’ design group and
their orderings: participant strategies

If our five design groups were perceptually influential,
then members of a group would be adjacent more
often than they are to members of another group, even
though our purpose was to partially disrupt these rela-
tionships. A simple analysis of this issue used the data
from Task 2, where categorisation is explicitly
required. Table 2 shows a co-occurrence matrix repre-
senting these results. Because one group only
contained four members, Table 2 shows the frequency
that >25% of the sounds of one group were co-boxed
with >25% of another. The diagonal values show that
members of each design group commonly co-located
with other members of that group, and the main ‘con-
fusion’ (off-diagonal entries) was between convolved
and instrument sounds, which is unsurprising since
convolutions were done on the instruments.
In response to enquiries on ordering strategy(ies)

used in any task, participants often mentioned using
pitch, and quite often loudness (even though the
sounds were RMS-equalised). We did not ask about
their interpretation of our instructions on ‘cohesively’
and ‘grouping : : : by affinity’, so as to minimise direc-
tional influences of our questions. A few people
identified sonic categories (e.g., ‘music’, referring pri-
marily to instruments), and a few mentioned their
degree of liking. A very few explicitly used ‘categori-
sation’ in the box Task 2 more than in ordering
Task 1, while a few considered ordering as a series
of nearest neighbours in features. Most participants
had no interest in attaching labels to the boxes after

they had occupied them (suggesting they might not
have explicitly identified design features). Twenty-four
respondents wanted additional boxes in Task 2/3, 11
wanted fewer (some having difficulty recollecting
numerous sonic features), while the remaining 11 were
indifferent to this. Participants were thus not invested
in shared ordering strategies, rather, they were diverse,
as we anticipated. A slight majority, preferring addi-
tional boxes, implicitly recognised the categorisation
pressure of Task 2.

4.4. Network analysis of orderings

The co-occurrence matrix of Table 2 emphasises that
sounds from different design groups co-relate in
diverse ways. This suggests that a desired composi-
tional usage of timbral items (partially recreated by
our two tasks) is to form relationship networks that
can be used diversely. Thus it is interesting to consider
the network features (Betzel and Bassett 2017) implied
by our data. Network models identify the intensity of
the relationship between pairs of sounds, rather than
providing a more abstract ‘distance’ measure. For
example, some social network analyses might use
numerous features that link any individual person
(in this case, the ‘agents’ that are the subjects of any
generic network model are individual people), such
as frequency of contact, topics of contact, shared
activities or disciplines, age, gender and financial sta-
tus. In the present case, the information we are using
that links our agents (being individual sounds) is solely
their frequency of contact (adjacency in the orderings
determined by the participants), but as we point out
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Figure 5. Markov model predicted orders for Tasks 1 and 2/3.
Note. TheMarkovmodels of Tasks 1 and 2/3 are used to predict the overall most likely ordering patterns across all participants, in each case given
a starting sound of 29, and sequentially predicting the next sound using the transition probabilities. Predictions at each point are restricted to
sounds which have not already been allocated.
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later, other features could be relevant for different pur-
poses (such as acoustic features, as distinct from
perceptual relationships). We present both descriptive
networks, which display the observed structures, and
then generative network models, which suggest the
processes by which the networks arise and allow
extrapolation to generate the full set of networks con-
sistent with a particular model.

Given the task natures, we only consider undirected,
but in this section, valued networks. So an L to R link
(adjacency) between sounds 1 and 2 is taken as equiv-
alent to R to L, but its intensity is considered: the
frequency of occurrence in either direction. Because
of the sound group size unevenness and the networks
observed, we sometimes subdivide the Environmental
into Natural and Machine/Human categories (defined
in Table 1). Figure 6 shows the descriptive networks of
the two tasks. Note that each link intensity is repre-
sented by the thickness of its line, but 2D layout is
algorithmically chosen to optimise clarity, and has lit-
tle bearing on the interpretation of the network.

In Figure 6 the Impulse response and DSP groups
are relatively discrete in the networks, while
Instruments and Convolution are interspersed, as
are Instrument, Machine and Natural Environment
in Task 2/3. This is partly due to sound 28, a ‘water-
phone’ instrument that produces complex rapidly
changing timbres like the sound of a stream of water.
This sound could be classified as ‘Machine’ (but there
is a sense in which all musical instruments are
machines). As emphasised, the most objective feature
of the representation is the edge width, proportional to
the link strength. For example, note that some of the
strong edges within the DSP in Task 1 are weakened in
Task 2/3, as are some within the Impulse response
group. There are also some stronger edges for Task
2/3 than 1, such as 13–25 and 5–30. Overall, these net-
work representations confirm and display the
distinctiveness of Tasks 1 and 2/3.

The fundamental features of each node in a network
include not only the intensity of its connection to other
nodes, but also its ‘degree’ of interconnectedness (the
number of distinct connections it makes). Many
important network features depend on further consid-
eration of its linkage structure, such as detecting
‘communities’: do user perceptions indicate sound
communities corresponding to or different from the
design groups? A community is a group of nodes that
are more connected internally than to the rest of the
network. These further features suggest mechanisms
that may be responsible for network generation. For
example, if items A and B are strongly linked, and
so are B and C, then this is quite likely to result in
the formation of a link between A and C, as we know
from our own experiences of social networking (this is
termed the triangular relation in models). Such analy-
ses identify community distinctions between the tasks,
and are not simply congruent with the design groups.
Figure 7 shows communities detected by the so-called
label propagation algorithm (note the different colour-
ing system from Figure 6). The label propagation
algorithm (see Betzel and Bassett 2017) assigns rand-
omised labels to all nodes to commence, and then by
progressively (empirically) changing the labels of con-
nected nodes (e.g., applying the same label to the
members of a linkage triangle) and assessing the out-
come, it maximises the number of nodes which are
directly connected to nodes with the same label, and
in this case gave stable results.
Figure 7 suggests that in both tasks communities are

formed by the impulse responses (sounds 10–13), DSP
(sounds 1, 7, 21, 23, 26), and the mixture of convolu-
tions (3, 4, 5, 6) with all but one of the instruments (14–
17). The remaining (mainly Natural and Machine
environmental) sounds form two communities in
Task 1, and are interspersed as one in Task 2/3.
Figure 7 is based on label propagation, but other
aspects of the connections and weights can be used
for community detection (Betzel and Bassett 2017).
Among these, detection by ‘greedy optimization of
modularity’ gives the same patterns as Figure 7.
‘Community betweenness’ is an alternative criterion
for community discrimination, maximising the differ-
ence between intra-community and inter-community
edge frequencies. For Task 1, it indicates 10 commu-
nities, nine of which contain a single item, while for
Task 2/3 it indicates nine, seven of which have single
members (four shared with Task 1), while one contains
four, and the final large community contains the
remaining 19. Thus diverse community analyses again
confirm the distinctness of networks from the two
tasks (for a detailed comparative review of community
detection methods see Yang, Algesheimer and
Tessone 2016).

Table 2. Co-occurrence matrix from Task 2 (categorisation)

Env Inst Conv Imp RTD

Env 44 7 8 15 10
Inst 7 51 40 10 15
Conv 8 40 49 7 13
Imp 15 10 7 40 12
RTD 10 15 13 12 47

Note. Each number shows the frequency that >25% of the
sounds of the design group specified on the vertical axis
were assigned to the same box as were >25% of the group
specified on the horizontal axis. Design group
abbreviations are as before. Note that the column and
row sums are heterogeneous.
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Table 3 compares some important network statis-
tics, supporting their distinctiveness.
Besides differentiating the networks, the mean

degree parameters (the mean number of other nodes
to which a node is connected) indicate both networks
are profuse (19.5 and 24.3 out of a maximum

attainable of 29): whereas the evolutionary popular
music networks (Serrà et al. 2012) only have compar-
atively sparse degree medians of four for pitch classes,
and eight for timbre. While timbre contrasts may be
‘rarely the basis for musical discourse’ (Serrà et al.
2012) in popular music, this is clearly not true of
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Figure 6. Descriptive networks for Tasks 1 and 2/3.
Note. Each node represents a numbered sound. The configurations use the Fruchterman–Reingold force-directed algorithm to maximise legi-
bility. The graph shows the interspersing of the design groups, and the frequencies of node links are represented by edge widths.
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1

2

3

4
56

7

8

9

10

11

1213

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30

Task2/3: Communities based on label propagation
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Figure 7. Communities based on label propagation for Tasks 1 and 2/3.
Note. Sounds are numbered as before, but the colouring systems of both background and vertices solely reflect the identified communities.
Within community edges are black, between are red.
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our sounds and our experiment, nor likely to be true
generally for EAM.

4.5. Generative network models: modelling the two
different networks

Such models seek to explain network generation,
rather than simply describe networks; for example,
as mentioned earlier, the formation of ‘triangular’
node sets can be a generative path. Exponential ran-
dom graph models (ERGM) are a widely used class
of generative network models (Betzel and Bassett
2017). Given clear criteria of connection, describing
a network is unambiguous. In contrast, generative
models have to be assessed for relative ‘goodness of
fit’ (GOF: the degree to which they reflect the proper-
ties of the data); and GOF may assess a selection of
features, not just link frequencies. Ideally, a generative
model would be assessed not only by comparing its
modelled predictions (i.e., the features that it explicitly
sought to explain) with those observed, but also by
comparing unmodelled predictions with those
observed. In these ways models can be compared such
that the best available can be selected, and some of its
limitations understood.

For valued nets, such as those studied here, the R
ERGM-count package (from within the statnet pack-
age) does not yet provide a GOF test which goes
beyond the predicted variables. In contrast, with sim-
pler non-valued nets one can also test whether the
generative model produces nets whose statistics coin-
cide with the unmodelled parameters, such as some of
those in Table 3. Thus, the models of Table 4 (valued
nets) achieved good fit solely to the modelled varia-
bles, and were optimised by means of residual
deviance and information criteria (representing preci-
sion and efficiency of the model, where efficiency is a
measure of predictive power per predictor variable
used, with a preference for simpler models with less
predictors given equal precision). Some further techni-
cal details are given in the Table 4 notes.

Table 4 models the distinctness of the two networks,
particularly in terms of the coefficient on

nodesqrtcovar, the index of the individuality of the
behaviour of individual sounds. The quantitative
interpretation of the estimated values is as follows:
the odds determining the likely weight between any
pair of sounds in Net 1 model is exp(-2.13), which is
0.12. That determining the weights between any pair
of Impulse responses is exp(2.41), that is, 11.1 times
higher. The corresponding figures for Net 2/3 are
0.10 and 18.5. While the general pattern of coefficients
is similar for the two nets, nodesqrtcovar confirms the
substantially lesser diversity of the weights of edges in
Net 2/3, in accord with our hypothesis of transforming
conceived relationships between sounds in the two
task conditions.

4.6. Modelling the temporal transformation of the
timbral networks

The R statnet tergm package allows modelling a tem-
porally changing network on the basis of two (or more)
distinct successive samples of it, which is essentially
what we can take Net 1 and Net 2/3 to be. Tergm
for valued networks is not readily feasible presently,
but we determined models of the edge structure of
unvalued Nets 1 and 2/3 to be of the form net ∼ edges
� triangles (as noted earlier ‘triangles’ is a term repre-
senting a simple form of triadic closure). Nodematch
terms (concerning whether or not an edge links mem-
bers of a single sound design group) were not effective
in these unvalued models (cf. Table 4 for the valued
version). A tergm model includes both an edge forma-
tion and a dissolution model (since with time, both
processes can occur), and Table 5 summarises our
optimised model. Note that the deviance and informa-
tion criteria values of this table cannot be compared
with those of Table 3. This model met GOF criteria
both for modelled and unmodelled (e.g., degree)
variables.
As noted, Net 1 has 364 edges, Net 2/3 293 (in

each case out of a possible maximum of 435), and
these numbers give rise to the degrees of freedom
of the Formation and Dissolution models. Taking
these two nets as one step apart (with Net 1 first,

Table 3. Network statistics for Tasks 1 and 2/3

Network: Edge density Transitivity Diameter Mean degree Centrality Mean distance

Task 1 0.84 0.84 3 24.3 0.16 1.16
Task 2/3 0.67 0.68 4 19.5 0.15 1.32

Note. Edge density describes the proportion of possible edges that are occupied, and transitivity is closely related (there are 435
possible undirected edges in these networks). Other measures are also closely interrelated. Diameter represents the maximum
distance (number of edges) required to get from any node to any other node. Mean degree summarises the number of nodes
connected to any one other node. Centrality is a global betweenness measure, while mean distance represents that between
pairs of nodes on average. Note that in principle, part of these differences between Tasks 1 and 2/3 might flow from the fact
that 10% less edge counts are provided by the latter task (as discussed earlier): again, comparisons based on randomly
removing 10% of participants from Task 1 suggest any such effect is minimal.

416 Roger T. Dean, Felix Dobrowohl and Yvonne Leung

https://doi.org/10.1017/S1355771823000250 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000250


as it was produced by the participants) in the possi-
ble transformation of the temporal network, one can
simulate a series of steps from the model of Table 5.
Starting with Net 1, and applying the generative
model of Table 5, each and every single transforma-
tion step creates and dissolves multiple edges. The
product of one step can be then used sequentially
in a further transformation. Over multiple such sim-
ulations, one can assess the cumulative network
adoption of the possible edges: this showed that
all 435 possible edges always occurred at least once
in the first nine networks, often earlier. When the
two networks were treated as if in the reverse order
(which could readily occur), with the categorisation/

ordering task (2/3) first so that the number of edges
rises between the two time slices, simulating with the
different resultant tergm model always showed full
coverage of all 435 edges even within six time steps.
Thus tergm confirms the potential of the modelled
generative dynamic network process representing
participants’ possible developing concepts of inter-
sound linkages to rapidly survey all the possible
linkages. This again supports our proposal that lis-
teners (including composers) can readily conceive
diverse and changeable relationships between tim-
bres. We wished to avoid categorisation as a first
step in our experiment (since it would likely drasti-
cally influence a subsequent unilinear ordering

Table 4. Exponential random graph models for the valued networks of Tasks 1 and 2/3
Formula for both models: net(1 or 2/3) ∼ sum � nodesqrtcovar(center = TRUE) � transitiveweights (‘min’, ‘max’, ‘min’) �
nodematch (‘type’, diff = TRUE, form = ‘sum’). Both models show Monte Carlo Maximum Likelihood Estimate results.

Estimate SE z value Pr(>|z|)

Task 1
sum −2.13 0.06 −34.03 < 1e-04 ***
nodesqrtcovar.centered −7.89 1.61 −4.90 < 1e-04 ***
transitiveweights.min.max.min −0.24 0.05 −4.39 < 1e-04 ***
nodematch.sum.type.Mach 0.87 0.14 6.37 < 1e-04 ***
nodematch.sum.type.Conv 1.08 0.19 5.70 < 1e-04 ***
nodematch.sum.type.Natural 0.89 0.14 6.58 < 1e-04 ***
nodematch.sum.type.Imp 2.41 0.17 14.37 < 1e-04 ***
nodematch.sum.type.Inst 0.59 0.18 3.38 0.00074 ***
nodematch.sum.type.RTD 2.02 0.13 15.16 < 1e-04 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Null Deviance: 0 on 435 degrees of freedom; Residual Deviance: -9036 on
426 degrees of freedom. AIC: -9018 BIC: -8981

Estimate SE z value Pr(>|z|)

Task 2/3
sum −2.32 0.05 −40.56 <1e-04 ***
nodesqrtcovar.centered −17.71 2.06 −8.58 <1e-04 ***
transitiveweights.min.max.min −0.28 0.04 −6.19 <1e-04 ***
nodematch.sum.type.Mach 1.07 0.13 8.39 <1e-04 ***
nodematch.sum.type.Conv 1.30 0.18 7.10 <1e-04 ***
nodematch.sum.type.Natural 1.22 0.13 9.66 <1e-04 ***
nodematch.sum.type.Imp 2.92 0.19 15.60 <1e-04 ***
nodematch.sum.type.Inst 0.67 0.17 4.05 <1e-04 ***
nodematch.sum.type.RTD 2.29 0.13 17.05 <1e-04 ***

Null Deviance: 0 on 435 degrees of freedom; Residual Deviance: -10081 on 426 degrees of freedom. AIC: -10063 BIC: -10026
Note. The formula indicates that the model predicts the basic network edge weights by means of the specified variables.
Estimate: the determined coefficient of the specified predictor in the model formula; SE, standard error (of estimate): SE
that are low in relation to the Estimate indicate a reliable estimate, and the final Pr(probability) value indicates how
likely it is the result could occur by chance rather than as modelled; AIC, Aikake’s Information Criterion; BIC, Bayesian
Information Criterion – in all cases lower values are better, and these values are used in model selection, but the two task
models cannot be compared in this respect as explained below. All parameters are highly significant as indicated by the
triple asterisks.

All ‘sum’ parameters refer to the sum of the relevant edge weights (the modeled response parameter for these valued
networks, while nodematch : : : refers to the design group of the sound, with the same abbreviations at the end of the
name as before, in this case considering six groups. Here, nodesqrtcovar.centered is an index of the distinctiveness of the
behaviour of the individual nodes; while transitive weights is a triadic closure measure for valued nets, analogous to the
concept of edge ‘triangles’ in non-valued nets.
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task). On the other hand, doing the categorisation
step first, contrary to our experiment, may well be
a composerly approach (Dean 2017).

5. GENERAL DISCUSSION

The data confirm the distinctness of the two task
orderings. Furthermore, the generative network anal-
yses indicate that sequential transformation of the
networks can cumulatively explore every possible link
between sounds very efficiently, that is within nine or
less time steps. This suggests the flexibility with which
our participants can conceive diverse inter-timbre rela-
tionships even with uncommon sounds. An EAM
composer can reasonably expect that listeners can
adjust to the compositional relationships they foster.

Is this conceptual flexibility special to music? One
aspect that might suggest this is the fact the orderings
we required do create temporal sequencing when a
participant listens to their sounds in their chosen
order, temporal sequencing being of the essence of
music. But we would expect that conceptual flexibility
would be found in most contexts. Artistic areas of
endeavour again suggest this; for example, abstraction
in painting and 3D-arts is widely appreciated, but
requires the formation of conceptual links between
novel objects (which may also be temporal and kinetic
in the case of video art). An experimental approach
such as ours might therefore be of general use, and
we should perhaps not be surprised by conceptual flex-
ibility with sound orderings. Nevertheless, its
demonstration has importance for composers and
for the potential for affective meaning generation

and reception in music according to the way that dif-
ferent timbral relationships are arranged temporally.
A critique of sound distance mappings, but also of

relationship mappings such as defined here, is that
they compress cognitive relationships. This is proba-
bly of greater concern when viewing the relationships
as fixed than when seeking to consider their flexibil-
ity. Also of interest are the mentioned roles of pitch
and loudness perceptions in the organisation. These
are likely to be significant, but arguably, virtually
inseparable from ‘timbral’ assessments. Indeed, pitch
is not usually necessarily salient in many of our
sounds, and can be construed as a compression of
timbral features, while loudness is a perception
dependent strongly on the spectral distribution of
physical energy. The spectral energies of our sounds
varied across the sound, as is normal. Thus the only
way we could limit the influence of loudness was to
standardise RMS: had we chosen perceptual equal-
isation of loudness of samples per se, this would
have distorted the relative impact of the timbral
(spectral) components.
Another aspect of our sounds may be relevant: a lis-

tener may automatically seek to identify a sound
source, and sometimes be successful. Acousmatic
EAM has taught us to not always expect detectable
agency, but a biological tendency to assess the origin
of a sound has behavioural value. Our participants
description of their methods often implied less holistic
approaches (e.g., focusing on loudness), but the use of
a distinction between ‘music’ and other sounds (men-
tioned by some) does indicate seeking the origin of a
sound. Similarly, the co-boxing of instruments and
their digital transforms would be consistent with a
consideration of sound sources.
Also relevant are possible sequential effects within

the experiment. We provided the tasks in the fixed
order 1, 2, 3 so as to change and increase task demand
after Task 1. It would be interesting to perform repe-
titions of orderings and categorisation. For Task 1 we
predict variation in orderings (i.e., conceptual flexibil-
ity). While random orderings would not be of interest,
nor would test–retest reliability be pertinent. Test–
retest reliability tests how secure a verdict is, usually
when multiple evaluators need to be harmonised.
These tests are used when there is assumed to be a
‘true’ verdict: this does not hold here.
Because the experiment concerned conceptual flex-

ibility, some possible analytical approaches have been
excluded. For example, one could assess the acoustic
features of the individual sounds as predictors of
relationships. But here we postulate changing relation-
ships between pairs of sounds, and hence a single set
of acoustic features may not predict this. Instead,
we chose to consider design groups and their

Table 5. A separable temporal exponential random graph
model of unvalued Nets 1 and 2/3

Formation model. Formula: net ∼ edges � triangles Monte
Carlo MLE Results

Estimate SE z value Pr(>|z|)

edges 1.59 3.65 0.436 0.66
triangle −0.06 0.15 −0.41 0.69

Null Deviance: 98.43 on 71 degrees of freedom. Residual
Deviance: 98.13 on 69 degrees of freedom. AIC: 102.1;
BIC: 106.7

Estimate SE z value Pr(>|z|)

edges −0.32 0.38 −0.84 0.40
triangle 0.12 0.04 3.12 0.002 **

Null Deviance: 504.6 on 364 degrees of freedom. Residual
Deviance: 435.3 on 362 degrees of freedom. AIC: 439.3;
BIC: 447.1. The probabilities show that this model was
less strong than those of Table 5.
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influences on network structure (Table 4, nodematch
parameters). One approach to accommodating acous-
tic features would attach them to each node, and
construct a model considering both node values and
edge weights. One could also include as a feature of
each node the second- and higher-order links, but
the Markov analysis did not suggest orders above 1,
so this seemed unlikely to be informative.
Approaching timbres as conceptual networks is not

apparent in the psychoacoustic literature. One partial
exception is the demonstration of ‘analogies’ between
MDS-derived relationships between pairs of sounds,
at least implying relationship networks (McAdams
and Cunible 1992). However, in the computational
acoustic feature networks between pieces of pop
(Serrà et al. 2012), progressive homogenisation is
observed, so here acoustic diversity and association
does not seem a key expressive tool. Indeed, in con-
trast to the present work, pop-music feature
networks seem sparse: each item is connected to 0
or 1 other. Serrà et al (2012) argue that pop seeks con-
ventionality to be accessible.
Whereas network analysis of sounds in a piece or

compositional process has apparently not been under-
taken previously, constructing pieces on this basis is
well known, as elaborated by Trevor Wishart (1985,
1994), and discussed more recently (Cancino 2013).
Data such as here could be a compositional tool for
choosing novel networks while making EAM and
sound art (where environmental sounds are common).
What are the benefits for a composer of conceiving

timbral relationships as flexible within a network?
Most obvious perhaps is the possibility of surveying
sounds that might follow a current sound by pursuing
the edges of a network according to their intensity (or
in a converse manner to achieve novelty), and within a
community (or outside it in order to achieve novelty).
Non-linearity of progression, an important idea in
writing at least since hypertext, and music for a

comparable period become immediately accessible
(reviewed Smith and Dean 1997). Indeed, the tasks
undertaken by our participants are similar to those
a digital music composer might apply, though a com-
poser might well use Tasks 2/3 preceding or instead of
1. Creating a soundscape or EAM piece does often
involve creating a sequential montage (though with
overlaps), and individual sound objects within this
are always moved around in an experimental-aesthetic
editing process that takes advantage of the composer’s
conceptual flexibility, and their ability to link this to
ideas of transmissible expressive potential. The results
here support the view that a composer’s organisation
of the sounds is cognitively approachable to untrained
listeners.
Here we have considered our results as indicating a

cognitive action by listeners, hence the word ‘concep-
tual’. Our results on conceptual flexibility suggest that
the use of ordering tasks such as here, or other tasks
that force several different appraisals of the relation-
ship between a group of timbres, might influence
behaviour in subsequent paired distance rating tasks.
It would be reasonable to predict consequent changed
distance perceptions both between sounds used in an
appraisal task such as ours, and between other unap-
praised sounds with some acoustic relation to them.
Such a study remains for future attention.
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