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Abstract

An automorphism group of a graph is said to be s-regular if it acts regularly on the set of .s-arcs in the
graph. A graph is s-regular if its full automorphism group is .s-regular. For a connected cubic symmetric
graph X of order 2p" for an odd prime p, we show that if p ^ 5,7 then every Sylow p-subgroup of
the full automorphism group Aut(X) of X is normal, and if p ^ 3 then every .s-regular subgroup of
Aut(X) having a normal Sylow p-subgroup contains an (s — l)-regular subgroup for each 1 < .$ < 5. As
an application, we show that every connected cubic symmetric graph of order 2p" is a Cayley graph if
p > 5 and we classify the .s-regular cubic graphs of order 2p2 for each 1 < s < 5 and each prime p, as a
continuation of the authors' classification of 1-regular cubic graphs of order 2p2. The same classification
of those of order 2p is also done.
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1. Introduction

Throughout this paper, we consider a finite graph without loops or multiple edges.

Each edge of a graph X gives rise to a pair of opposite arcs and we denote by V(X),

E(X) and Aut(X) the vertex set, the edge set and the full automorphism group of X,

respectively.

A transitive permutation group P on a set £2 is said to be regular if the stabilizer Pa

of a in P is trivial for each a e £2. Let G be a finite group and 5 a subset of G such

that 1 <£ S and 5 = S~l. The Cayley graph X = Cay(G, S) on G with respect to S is

defined to have vertex set V(X) = G and edge set E(X) = {(g, sg) \ g eG,s e S}.
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By definition, Cay(G, S) is connected if and only if 5 generates G. The Cayley graph
Cay(G, S) is vertex-transitive since it admits the right regular representation R{G) of
G, the acting group of G by right multiplication, as a subgroup of the automorphism
group Aut(Cay(G, S)). Clearly, R(G) acts regularly on the vertex set. Furthermore,
the group Aut(G, S) = {a € Aut(G) | Sa = 5} is also a subgroup of Aut(Cay(G, S)).
Actually, Aut(G, S) is a subgroup of Aut(Cay(G, 5))i, the stabilizer of the vertex 1 in
Aut(Cay(G, S)). A graph X is isomorphic to a Cayley graph on a group G if and only
if its automorphism group Aut(X) has a subgroup isomorphic to G, acting regularly
on the vertex set (see [2, Lemma 16.3]).

An s-arc in a graph X is an ordered (s + l)-tuple (v0, V\,..., vs-\, vs) of vertices
of X such that u,_, is adjacent to vt for 1 < / < s and u,_i ^ vi+l for 1 < / < s.
A graph X is said to be s-arc-transitive if Aut(X) is transitive on the set of s-arcs in
X. In particular, O-arc-transitive means vertex-transitive, and 1-arc-transitive means
arc-transitive or symmetric. A graph X is said to be s-regular if for any two .s-arcs
in X, there is a unique automorphism of X mapping one to the other. In other
words, the automorphism group Aut(Z) acts regularly on the set of .s-arcs in X.
From the definition, one may show that an .s-regular graph with regular valency must
be connected. Tutte [25,26] showed that every finite connected cubic symmetric
graph is s-regular for some s, and this 5 can be at most five. A subgroup of the full
automorphism group of a graph is said to be 5-regular if it acts regularly on the set of
.s-arcs in the graph. Clearly, a 0-regular subgroup acts regularly on the vertex set of
the graph.

The study of 5-regular cubic graphs has received considerable attention for more
than 50 years and many families of such graphs have been constructed. The first
1-regular cubic graph was constructed by Frucht [15] and later Miller [19] constructed
an infinite family of 1-regular cubic graphs of order 2p, where p > 13 is a prime
congruent to 1 modulo 3. Three infinite families of 1-regular cubic graphs with
unsolvable automorphism groups were constructed in [7,10] and infinitely many
1-regular cubic graphs as regular coverings of small graphs were constructed in [8,
9,11-14]. Marusic and Xu [23] showed a way to construct a 1-regular cubic graph
from a tetravalent half-transitive graph with girth 3, so that one can construct infinitely
many 1-regular cubic graphs from the half-transitive graphs constructed by Alspach
et al. in [1] and by Marusic and Nedela in [21]. Djokovic and Miller [6] constructed an
infinite family of 2-regular cubic graphs, and Conder and Praeger [5] constructed two
infinite families of .s-regular cubic graphs for s = 2 or 4. Marusic and Pisanski [22]
classified the 5-regular cubic Cayley graphs on the dihedral groups D2n for each
1 < s < 5. Also, as shown in [21] or [22], one can see the importance of a study
for 1-regular cubic graphs in connection with chiral (that is regular and irreflexible)
maps on a surface by means of tetravalent half-transitive graphs or in connection with
symmetries of hexagonal molecular graphs on the torus.
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Feng et al. [8,13] classified the ^-regular cubic graphs of order 4p, 4p2, 6p, 6p2,
8p, and 8p2 for each 5 and each prime p. However, the method of those classifications
cannot be applied to classify the ^-regular cubic graphs of order 2p or 2p2. By using
Cheng and Oxley's classification of symmetric graphs of order 2p [3], one can easily
deduce a classification of ^-regular cubic graphs of order 2p for each 1 < 5 < 5 and
each prime p. In [11], the authors investigated 1-regular cubic graphs of order twice
an odd integer, and classified the 1-regular cubic graphs of order 2p2. The purpose
of this paper is to investigate the automorphism groups of .$ -regular cubic graphs of
order 2p". Let X be a connected cubic symmetric graph of order 2p" for an odd prime
p and a positive integer n. It is shown that if p ^ 5,7, every Sylow p-subgroup
of the automorphism group Aut(X) of X is normal, and each s-regular subgroup G
(1 < s < 5) of Aut(X) contains an (s — l)-regular subgroup if p ^ 3 and G has
a normal Sylow p-subgroup. This implies that if p > 7, every s-regular subgroup
(1 < 5 < 5) of Aut(X) contains an (s - l)-regular subgroup. However, this is not
true in general as shown in [6]. As an application, we show that every s-regular cubic
graph of order 2p" is a Cay ley graph if p > 5 and we classify the 5-regular cubic
graphs of order 2p2 for each 1 < s < 5 and each prime p.

2. Preliminaries and some notation

Let it be a nonempty set of primes and let n' denote the set of primes that are not
in jr. A finite group G is called a n-group if every prime factor of \G\ is in the set n.
In this case, we also say that \G\ is a n-number.

Let G be a finite group. A 7r-subgroup H of G such that \G : H\ is a 7r'-number is
called a Hall n -subgroup of G. The following proposition is due to Hall.

PROPOSITION 2.1 ([20, Theorem 9.1.7]). If G is a finite solvable group, then every
n-subgroup is contained in a Hall n-subgroup ofG. Moreover, all Hall n -subgroups
ofG are conjugate.

The following proposition is known as Burnside's p-q Theorem.

PROPOSITION 2.2 ([20, Theorem 8.5.3]). Let p and q be primes and let m and n be
non-negative integers. Then, any group of order pmq" is solvable.

For a subgroup H of a group G, denote by CG{H) the centralizer of H in G and
by NG(H) the normalizer of H in G. Then CG(H) is normal in NG(H).

PROPOSITION 2.3 ([24, Chapter I, Theorem 6.11]). The quotient group NG(H)/
CG(H) is isomorphic to a subgroup of the automorphism group Aut(H) of H.
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Let G be a finite group and g e G. The function gT: G -> G defined by
xgt = g~';t,g is an automorphism of G. Set Inn(G) = {gz | g e G}. We call
Inn(G) the inner automorphism group ofG. A finite group G is said to be complete
if its center is trivial and Inn(G) = Aut(G). By [24, Chapter III, Theorem 2.19], the
symmetry group Sn (n > 3) is complete except for n = 6.

For any complete normal subgroup N of G, one may easily get the following
lemma.

LEMMA 2.4. If a finite group G has a complete normal subgroup N then G =
CG(N) x N, where CG(N) is the centralizer ofN in G.

As usual, we denote by 1n the cyclic group of order n. The following proposition
describes the vertex stabilizer in an ^-regular automorphism group of a connected
cubic symmetric graph.

PROPOSITION 2.5 ([6, Propositions 2-5]). Let X be a connected cubic symmetric
graph and let G be an s-regular subgroup o/Aut(X). Then the stabilizer Gv of
v 6 V(X) in G is isomorphic to Z3, S3, S3 x Z2, 54, or S4 x Z2/or s = 1, 2, 3, 4 or 5,
respectively.

Let Cay(G, S) be a Cayley graph on a finite group G. Recall that R(G) is the
right regular representation of G and Aut(G, S) = {a e Aut(G) | 5" = 5}. Let
N = A^Aut(Cay(c,s))(̂ (G)) be the normalizer of /?(G) in Aut(Cay(G, S)). By God-
sil [16], we have the following.

PROPOSITION 2.6. N = R(G) x Aut(G, S).

By Proposition 2.6, Aut(Cay(G, 5)) = R(G) x> Aut(G, S) if and only if R(G) <
Aut(Cay(G, 5)), that is, R(G) is normal in Aut(Cay(G, 5)). In this case, the Cayley
graph Cay(G, 5) is called normal by Xu [27].

Let n be a positive integer. For the cyclic group 1n of order n, we denote by 2* the
multiplicative group of 2n consisting of numbers coprime to n. Let p be a prime and
let

D2p» = { a , b \ a 2 = bp" = 1

be the dihedral group of order 2p". If 3 divides p — 1 then Z*» = Zp»_p»-i and
so Z*n has two elements of order 3, say X and A.2. It is easy to show that the map
a —>• ab, b —> b~l~k2 induces an automorphism of D2p«, which maps {a, ab, ab~k] to
{a, ab, ab~k2}. It follows that Cay(D2pn, {a, ab, ab~k}) S Cay(O2pn, {a, ab, ab-k2}).
That is, the Cayley graph Cay(D2p*, {a, ab, ab~k}) is independent of the choice of
an element X of order 3 in T*pn. The graph Cay(Z)2/,», [a, ab, ab~k}) will be used
frequently throughout this paper.
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PROPOSITION 2.7 ([ 11, Theorem 3.5]). Let p be a prime and let Xbea connected cu-
bic symmetric graph of order 2p2. Then X is 1 -regular if and only if p — 1 is a multiple
of 3 and X is isomorphic to C&y{D2Pi, {a, ab, ab~x\). Furthermore, the Cayley graph
Cay(D2p2, {a, ab, ab~1}) is normal, that is, R{D2pi) < Aut(Cay(D2p

2. {a, ab, ab~k})).

Combining Theorem 1 of Marusic and Pisanski in [22] and Table 1 of Cheng and
Oxley in [3], we have the following classification of ^-regular cubic graphs of order 2p.

PROPOSITION 2.8. Let p be a prime and let X be a connected cubic symmetric
graph of order 2p. Then X is 1-, 2-, 3- or 4-regular. Furthermore,

(1) X is 1-regularifandonlyifX is isomorphic to the graph Cay(D2p, {a, ab, ab~k})
for a prime p > 13 such that p — 1 is a multiple of 3. In this case, the Cayley graph
Cay(D2p, [a, ab, ab~x}) is normal and it is independent of the choice of an element X
of order 3 in I*p.
(2) X is 2-regular if and only ifX is isomorphic to the complete graph K4 of order 4.
(3) X is 3-regular if and only ifX is isomorphic to the complete bipartite graph K33

of order 6 or the Petersen graph 0 3 of order 10.
(4) X is A-regular if and only ifX is isomorphic to the Heawood graph of order 14.

Let X be a connected cubic symmetric graph and let G be an s -regular subgroup
of Aut(X) for some s > 1. Let N bea normal subgroup of G and let X/N denote the
quotient graph corresponding to the orbits of N. In view of [18, Theorem 9], we have
the following result.

PROPOSITION 2.9. IfN has more than two orbits, then N is semiregular and G/N
is an s-regular subgroup ofAut(X/N).

3. Main results

Let X be a connected cubic symmetric graph of order 2p" with an odd prime p and
a positive integer n. First, we show that every Sylow p-subgroup of Aut(X) is normal
if p ^ 5, 7. To prove this, we need the following lemma.

LEMMA 3.1. Let X bea connected cubic symmetric graph of order 2p" with an odd
prime p and a positive integer n. Ifn > 2, then any minimal normal subgroup of an
arc-transitive automorphism subgroup of Aut(X) is an elementary abelian p-group.

PROOF. Let iV be a minimal normal subgroup of an arc-transitive subgroup G of
Aut(X). The stabilizer Gu of u e V(X) in G is a {2, 3}-group by Proposition 2.5.
Moreover, \GU\ = 3 • 2r for some 0 < r < 4 and \G\ - 2pn\Gu\.
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If N is an elementary abelian 2-group, it is semiregular by Proposition 2.9, so that
N = 22. It follows that the quotient graph X/N has an odd number of vertices and
odd valency 3, which is impossible.

Let p = 3. Then G is a {2, 3}-group, implying that G is solvable. Thus, N is an
elementary abelian 3-group because it cannot be an elementary abelian 2-group.

Now, let p > 5 be an odd prime. Suppose that N is a product of a non-abelian
simple group T, that is N = T\ x T2 x • • • x Tt, where I > 1 and Tt = T. Since
\G\ = 2pn\Gu\, G is a {2, 3, p}-group and hence T is a {2, 3, p}-group. By [17,
pages 12-14], T is one of the following simple groups: A5, A6, L2(7), L2(8), L2(l7),
L3(3), £/3(3), and f/4(2) with p = 5,1, 13 or 17. Most of the groups in this list
have order divisible by 9, so they cannot be subgroups of G. Only A5 and L2(7)
are candidates. In this case, I = 1 and N = T is a non-abelian simple group.
Furthermore, since n > 2 and p2 \ \T\, we have | V(X/N)\ > p. By Proposition 2.9,
N is semiregular. This is impossible because |N| cannot divide | V(X)| =2p". So far,
we have proved that N is elementary abelian, but not an elementary abelian 2-group.
Also, N cannot be an elementary 3-group because otherwise N < Gu and N is not
semiregular, which contradicts Proposition 2.9. Thus, N is an elementary abelian
p-group. •

THEOREM 3.2. Let X be a connected cubic symmetric graph of order 2p" with an
odd prime p and a positive integer n. If p jL 5,1, then all Sylow p-subgroups of
Aut(X) are normal.

PROOF. We prove this theorem by induction on n. If n = 1, one can easily
check that all Sylow p-subgroups of Aut(X) are normal from their classification in
Proposition 2.8. Assume n > 2. Let N be a minimal normal subgroup of Aut(X).
Then N is an elementary abelian /7-group by Lemma 3.1. Denote by X/N the quotient
graph of X corresponding to the orbits of N. Since \V(X)\ = 2p", N has at least two
orbits. If N has more than two orbits, then Aut(X)/N is a subgroup of Aat(X/N)
by Proposition 2.9. By the inductive hypothesis, one can assume that all Sylow p-
subgroups of Aut(X/N) are normal, so that all Sylow p-subgroups of Aut(X)/N are
normal. Since N is a p-group, all Sylow p-subgroups of Aut(X) are normal. Now,
let N have exactly two orbits. If p ^ 3, N must be a Sylow p-subgroup of Aut(X)
because | Aut(X)| = 2p" • 3 • 2r for some 0 < r < 4. However, N is already known to
be normal and we are done. Let p = 3. If Nu ^ 1, then \N\ > 3". Thus, A7 is a Sylow
3-subgroup of Aut(X) and it is normal, which is what we need to prove. If Nu = I, N
acts regularly on each of its orbits. Clearly, X is a bipartite graph with the two orbits of
A' as its partite sets. By the regularity of N on each partite set of X, one may identify
R(N) = {R(n) \ n e N] and L(N) = [L(n) \ n e N} with the two partite vertex sets
of X. The actions of n 6 N on R(N) and on L(N) are just the right multiplication by
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n, that is R(g)n = R(gn) and L(g)n = L(gn) for any g e N. Let L(n,), L(n2), and
L(n3) be the vertices adjacent to R(\). Without loss of generality, one may assume
that n, = 1. By the connectivity of X, we have N — {nun2,n3). Thus, \V(X)\ = 18
because n > 2. In this case, X is isomorphic to the Pappus graph 93 of order 18.
By [12], X is a cyclic covering of ^3,3 and Aut(X) = Z3 : ((53 x S3) xi Z2) has normal
Sylow 3-subgroups. D

If p = 5 or 7, Theorem 3.2 is not true because the automorphism groups of the
Petersen graph and the Heawood graph have non-normal Sylow p-subgroups.

Let X be a connected cubic symmetric graph and let G be an ^-regular subgroup
of Aut(X). Let 0 < t < s. Does G contain a f-regular subgroup? The answer is
negative in general (see [6]), but affirmative if X has order 2pn for a prime p > 3 and
all Sylow p-subgroups of Aut(X) are normal. All Sylow p-subgroups of Aut(X) are
normal if p > 7, by Theorem 3.2.

THEOREM 3.3. Let X be a connected cubic symmetric graph of order 2p" for a
prime p > 3 and let G be an s-regular subgroup of Aut(X) for some 1 < s < 5.
If G has a normal Sylow p-subgroup, then G contains an (s — \)-regular subgroup.
Furthermore, ifs = 2, then G contains a normal 0-regular subgroup.

PROOF. Let P be a Sylow p-subgroup of G and let P <1 G. By Proposition 2.5,
the stabilizer Gv of v e V(X) in G is a {2, 3}-group. Since \G\ = 2p"\Gv\, we have
that G/P is a {2, 3}-group. By Burnside's p-q Theorem, a {2, 3}-group is solvable
and hence G/P is solvable. This implies that G is solvable and by Proposition 2.1,
there exists a Hall {2, 3}-subgroup, say H, of G such that Gv < H. Since P < G,
X is bipartite with two orbits of P as its partite sets. Clearly, G = PH. Since
\G\ - 2p"\Gv\, we have \H : Gv\ = 2, which forces Gv < H. Also, Gv fixes the
partite sets of X setwise, but H does not because G = PH is transitive on V{X).
Thus for each /J € H\GV, h interchanges the two partite sets of X. This fact will be
used repeatedly in the remainder of the proof.

Without any loss of generality, by Proposition 2.5 one may assume that Gv = 23,
S3, Si x I2, 54, or S4 x Z2 for s = 1, 2, 3, 4 or 5 respectively. We now consider five
cases for s.

Case I: s = 1. In this case Gv — Z3 and \H\ = 6 . Let c be an involution in H. Then
c £ Gv and hence c interchanges the two partite sets of X. Since P <d G, P(c) is a
0-regular subgroup of G.

Case II: s = 2. In this case, Gv = S3 and | # | = 12. Since Gv <\ H and S3 is
complete, we have H = 53 x Z2 by Lemma 2.4. Clearly, the non-trivial element of Z2

interchanges the two partite sets of X. Let Z3 be the unique Sylow 3-subgroup of H.
Then, P(Z3 x Z2) is 1-regular.
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We now prove that G contains a normal 0-regular subgroup. Clearly, PZ2 acts
regularly on V(X), that is, PZ2 is a 0-regular subgroup of G. We claim that PZ2 <3 G.
Since Z2 <3 H and P < G, we have that PZ2 is normalized by any h e //. Also, PZ2

is normalized by any r e P since P < PZ2. So, PZ2 is normalized by PH = G.

Case III: s = 3. In this case, Gv = S3 x Z2 and |H| = 24. Since Z3 is characteristic
in Gv and C < H, Z3 < H. Let C = CW(Z3) be the centralizer of Z3 in //. Then,
C < H. By Proposition 2.3, / / /C is isomorphic to a subgroup of Aut(Z3). It follows
that \H\ = \C\ or \H\ = 2|C|. Suppose |H| = \C\. Then C is a Hall {2, 3}-subgroup
of G. This implies that C = # and Gu < C, which is impossible because S3 ^ C.
Thus, | / / | = 2|C|, forcing |C| = 12. Since Gv + C, H = CG,. Thus, there exists a
c e C such that c £ G,,. Recalling that c interchanges the two partite parts of X, PC
is vertex-transitive on V(X). Since \PC\ = 12p\ PC is 2-regular.

Case IV: s = 4. In this case, Gv = S4 and \H\ = 48. Since 54 is complete and normal
in H, Lemma 2.4 implies that H = Gv x Z2 = 54 x Z2. Let A4 be the alternating
subgroup of 54. Then, P(A4 x Z2) is 3-regular.

Case V: $ = 5. In this case, Gv = S4 x Z2 and \H\ =96 . One may easily show
that A4 < S4 is characteristic in Gv, so it is normal in H. Let Z2 x Z2 be the Sylow
2-subgroup of A4. Then, Z2 x Z2 is characteristic in A4 and hence Z2 x Z2 < H.
Set C = CW(Z2 x Z2). By Proposition 2.3, H/C is isomorphic to a subgroup of
Aut(Z2 x Z2), which has order 6. Let P3 be a Sylow 3-subgroup of A4 and let P2

be a Sylow 2-subgroup of S4. Clearly, P3 ^ C and P2 ^ C. Thus \H/C\ = 6 and
|C| = 96/6 = 16. If C < Gu, then C is a normal Sylow 2-subgroup of Gv because
C < H. It follows that P2 < C, a contradiction. Thus, C £ Gv and H = GVC,
implying that there is a c e C such that c £ Gv. Noting that c interchanges the two
partite sets of X, we have that PC is vertex-transitive on V(X). Since PC<iPH = G,

is a subgroup of G and since |PCP3| = 48p\ PCP3 is 4-regular. •

The following example shows that Theorem 3.3 is not true when p = 3. Consider
the complete bipartite graph Ki3 of order 6. It is 3-regular and Aut(/T33) = (53 x
S3) >i Z2 is of order 3223, so that Aut(/sT33) has a normal Sylow 3-subgroup, say P.
Clearly, there is an element a of order 4 in Aut(AT33) which interchanges the two
partite sets of K33. It follows that Aut(AT33) has a 2-regular subgroup P(a) which
contains neither a 1-regular subgroup nor a 0-regular subgroup.

Let X be a connected cubic symmetric graph of order 2p" with a prime p. By
Theorems 3.2 and 3.3, if p > 7, then each s-regular (5 > 2) subgroup of Aut(X)
contains a 2-regular subgroup which has a normal 0-regular subgroup. However, a
1-regular subgroup of Aut(X) may not have a normal 0-regular subgroup. In fact,
by a straightforward analysis of Case II in the proof of Theorem 3.3, each 2-regular
subgroup of Aut(X) contains a 1-regular subgroup, which has no normal 0-regular
subgroup. This implies that, in some sense, it is easier to classify the s-regular (s > 2)
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cubic graphs of order 2p" than to classify the 1-regular ones.

COROLLARY 3.4. Let p > 5 be a prime and let n be a positive integer. Then all
connected cubic symmetric graphs of order 1pn are Cayley graphs.

PROOF. Let X be a connected symmetric cubic graph of order 2p". Set A =
Aut(X). If p > 11, by Theorems 3.2, all Sylow p-subgroups of A are normal and
by Theorems 3.3, A has a 0-regular subgroup, that is, X is a Cayley graph. Thus, we
only need to prove the corollary for p = 1. To complete the proof, it suffices to show
that each ^-regular subgroup of A for 1 < s < 5, contains a 0-regular subgroup. We
show this by induction on n.

If n = 1, then X is the Heawood graph of order 14 and its automorphism group is
PSL(2, 7) • 2. Since PSL(2, 7) is simple, PSL(2, 7) • 2 has neither a 2- nor 3-regular
subgroup because of the bipartiteness of the Heawood graph. Let B be a 1-regular
subgroup of PSL(2, 7) • 2. Then |B| = 2 x 7 x 3 and B is solvable. By [11,
Lemma 3.2], a solvable 1-regular automorphism group of a connected cubic graph
contains a regular subgroup, so B contains a 0-regular subgroup. Thus, the claim is
true for n = 1.

Assume that n > 2. Let G be an ^-regular subgroup of A for some 1 < s < 5 and
let A7 be a minimal normal subgroup of G. By Lemma 3.1, N is an elementary abelian
7-group. If A7 is a Sylow 7-subgroup then, the claim is true by Theorem 3.3. If N is
not a Sylow 7-subgroup, by Proposition 2.9, N is semiregular and G/N is an s-regular
automorphism group of the quotient graph X/N corresponding to the orbits of N. By
the inductive hypothesis, one can assume that G/N contains a 0-regular subgroup,
say H/N, on V{X/N). Clearly, H is transitive on V(X). By the semiregularity of N
on V(X) and the O-regularity of H/N on V(X/N), we have that \H\ = \V(X)\. It
follows that H is a 0-regular subgroup of G on V(X). •

A connected cubic symmetric graph of order 6, 18 or 54 is a Cayley graph (see [8]).
We conjecture that the corollary is true for p — 3, but the proof is still elusive. The
corollary is not true for p — 5 because the Petersen graph is not Cayley. In fact, one
may construct infinitely many non-Cayley graphs of order 2 • 5" by considering the
regular coverings of the Petersen graph [2, Chapter 19].

From elementary group theory we know that there are three non-abelian groups of
order 2p2 up to isomorphism:

Gdp) = (a,b \a2 = bpl = 1, aba=b-x)\

G2(p) = {a, b,c\ap = b" = c2 = [a, b] = 1, c~lac = a~\ c'xbc = ft"1);

G3(p) = (a, b, c | ap = bp = c2 = 1, [a, b] = [a,c] = l, c~lbc = b~l).

Now, we are ready to classify the ^-regular cubic graphs of order 2p2 for 1 < s < 5,
where p is any prime.
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THEOREM 3.5. Let X be a connected cubic symmetric graph of order 2p2 with a
prime p. Then X is 1-, 2- or 3-regular. Furthermore,

(1) X is l-regular if and only ifX is isomorphic to the graph

(3.1) Cay(Giip), {a, ab,ab-"})

for a prime p such that p — 1 is a multiple of 3, where X is an element of order 3 in the
multiplicative group Z*2. Here, the Cayley graph (3.1) is independent of the choice of
k in Z*2.
(2) X is 2-regular if and only if X is isomorphic to either the three dimensional

hypercube Q3 of order 8 or one of the Cayley graphs Ca.y(G2(p), [c, ca, cb})for a
prime p^2,3.
(3) X is 3-regular if and only ifX is isomorphic to the Pappus graph 93 of order 18.

PROOF. If p = 2, then | V(X)| = 8. There is only one connected cubic symmetric
graph of order 8, and that is the 2-regular three dimensional hypercube <23. Thus, we
may assume that p > 3 from now on.

Clearly, (1) follows from Proposition 2.7. Thus, we assume that X is .s-regular for
some s > 2. It is straightforward to show that Aut(G2(p), [c, ca, cb}) is 2-transitive
on [c, ca, cb}. Consequently, the Cayley graphs Cay(G2(p), [c, ca, cb}), p > 3, are
2-arc-transitive. By Conder and Dobcsanyi [4]'s lists of cubic symmetric graphs of
order up to 768, there is only one connected cubic symmetric graph of order 2p2 for
each prime p = 3, 5 or 7, that are 2-regular for p = 5 or 7 and 3-regular for p = 3.
It follows that all connected cubic symmetric graphs of order 2p2 with p = 3, 5 or
7 are the 2-regular graphs Cay(G2(p), [c, ca, cb}) for p — 5 or 7 and the 3-regular
graph Cay(G2(p), [c, ca, cb}) for p = 3, of which the last one is the Pappus graph 93

of order 18. Thus, we assume p > 11. To complete the proof, it suffices to show that
X is isomorphic to Cay(G2(p), {c, ca, cb}) and that it is 2-regular.

Since X is ^-regular for some s > 2, by Theorems 3.2 and 3.3, Aut(X) contains a
2-regular subgroup, which contains a normal 0-regular subgroup. Thus, X is a Cayley
graph on a finite group G of order 2p2, say X — Cay(G, S). Moreover, there is a
2-regular subgroup M of Aut(X) such that the right regular representation R(G) is
normal in M. By Proposition 2.6, M < R(G) x Aut(G, 5) and the 2-regularity of
M implies that Aut(G, S) is 2-transitive on 5. Since X has valency 3, 5 contains at
least one involution and the transitivity of Aut(G, 5) on 5 implies that 5 consists of
three involutions. If G is abelian, then (S) = G implies that \G\ < 8, contrary to the
hypothesis p > 11. Thus, G is non-abelian and G = Gt(p), G2(p), or G3(p).

Suppose G = G\(p). Since p > 11, by Theorem 1 of Marusic and Pisanski in [22],
X is l-regular, contrary to the hypothesis that s > 2. Since G3(p) cannot be generated
by involutions, we have G = G2(p). One may check that Aut(G) is 2-transitive on
the set of involutions of G. Thus, we assume that 5 = {c, ca, ca'bj}. Since (5) = G,
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j j ^ 0. Then, the map c —• c, a —> a, and b ->• a'b' induces an automorphism of

G2(p) that maps {c, ca, cb} to S. This implies that X = Cay(G2(p), {c, ca, cb}).

Now we shall prove that X is 2-regular. Since X is 2-arc-transitive, it is at least 2-

regular. ThenCay(G2(p), [c, ca, cb}) has girth 6 and there are exactly two girth cycles

passing through any given edge. Thus, X is not 3-arc-transitive because otherwise

there is at least four girth cycles passing through any given edge. It follows that

Cay(G2(p), {c, ca, cb}) is 2-regular, as required. •

COROLLARY 3.6. All connected cubic symmetric graphs of order 2p2 are Cayley

graphs.

This corollary is not true for connected cubic symmetric graphs of order 2p because

the Petersen graph of order 10 is not Cayley.
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